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5 Errors

There are several kind of errors that may occur in programs, generally speaking, and it
makes sense to classify them somehow.

(1) Syntax errors — for instance, writing clas instead of class.

(2) Type errors —

(a) Applying an operation that works only on some type of values on values of the
wrong type. For instance, trying to add two Boolean values, or trying to divide
strings.

(b) Invoking a method m on an object that does not define such a method m, for
instance, if p is an instance of Point, trying to invoke p.playTune() is an error.

(3) Runtime errors —

(a) Invoking an operation with arguments of the right types for which the operation
is undefined. For instance, dividing by 0, or taking the tangent of π/2.

(b) Events out of a programmer’s control, such as hardware failures. For instance, disk
failures during disk IO, network failure during network IO, or the CPU melting.
Running out of memory is also something that sometimes occurs.

(4) Logical errors — the program does not behave as expected, such as an implementation
of addition that returns 3 when given inputs 1 and 1, or a distance() method on
points that miscomputes the distance.

These distinctions are not sharply defined; some errors may well be classified in different
categories. But the categories are useful as a general sense of the kind of errors that arise.1

Different languages check and deal with these errors differently. An error, when it is recog-
nized as such, can either be detected before the code is run — in which case we say the error
is detected statically — or detected while the code is run — in which case we say the error
is detected dynamically.

1Some errors do not fit neatly in the above categories. For instance, infinite loops are strange beasts—
they often are errors (but not always, since some programs are essentially infinite loops, such as operating
systems) but they cannot be detercted during execution, since how do you ever know that your long-running
computation is actually an infinite loop as opposed to, say, an actual long but terminating computation?
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There are advantages to checking for errors before execution; in particular, you still have a
chance to correct the problem while the code is in your hands. With dynamic type checking,
errors may only show up after the code has been shipped and the piece of software is in
the hands of the customer, making it more difficult and expensive to correct. Static error
checking also has some disadvantages. In particular, there is no way to identify exactly
all those programs that have errors without actually executing the program.2 Thus, the
error checker needs to approximate, and it will approximate conservatively. Thus, there are
programs that would not cause problems during execution that the error checker will reject.

Languages will differ in terms of where they draw the line as to what errors they try to detect
statically, and what errors they try to detect dynamically. For example, it is generally the
case that the first kind of errors, syntax errors, are detected statically, by a simple parsing
pass over the program.

In contrast, runtime errors, errors of type (3), are generally detected during execution,
for a variety of reasons: (3a) because they are too difficult to detect statically, and (3b)
because it doesn’t make sense to try to detect statically errors that occur because something
bad happens during execution! Errors of type (4), logical errors, cannot be detected by a
language in the first place, either statically or dynamically, since they rely on the notion of
“what’s expected” which only exists in the designer’s or programmer’s head. We’ll need to
do something else for those.

In summary, the main difference between languages, at least with respect to detecting errors,
will involve how they deal with errors of type (2), namely type errors.

5.1 Type Errors

When a language checks for type errors dynamically, we say that the language supports
dynamic type checking. Scheme supports dynamic type checking. Other languages actually
can check for type errors at compile time, that is, before programs execute. They support
static type checking. Java and Scala support static type checking.

In Scala, because everything is in an object, that is, every value is an instance of some class,
all type errors amount to errors of type (2b), that is, errors where one is attempting to invoke
a method that does not exist.

A type checker is the mechanism that languages such as Scala employ to try to determine
if there are type errors in a program. Now, it turns out that it is impossible to exactly
recognize, given a specific program P , whether program P will ever attempt to invoke an
undefined method during its execution. The reason for this is the same as that hinted at

2This is a deep limitation in what we can say about programs in general, which you will see in a good
theory of computation course. It is a consequence of the so-called undecidability of the halting problem for
Turing machines. Very roughly speaking, the limitation is that it is impossible to write a program that takes
a program P as input and (without executing the program) answers correctly a question about how P will
execute.
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in Footnote 2, and the following series examples may help you get a sense for what the
difficulties might be.

Consider the following method:

def test (x:Boolean, P:Point):Double =

if (x)

p.distanceFromOrigin()

else

p.explode()

What should the type checker do with this method? Should it accept it, or flag it as an
error? Note that a Point does not have an explode() method. This method intuitively
causes an error whenever it is called with false as a first argument — since then the program
will attempt to call method explode() on a point, which doesn’t exist. If we have the full
program, maybe we can figure out whether the method is ever called with a false as a
first argument. But if we don’t — if we’re compiling pieces of the program separately, then
we cannot determine in advance what the first arguments to test() will be, and the type
checker has to be conservative and say that because there might be an error, it has to reject
the program.

But even if we do have the full program in front of us, things are not so easy. Consider
the following variant, where instead of taking a Boolean value as first argument, we take an
arbitrary integer:

def test2 (y:Int, P:Point):Double =

if (y==0)

p.distanceFromOrigin()

else

p.explode()

This causes an error whenever we call test2() with a non-zero first argument. Can we
always check if the first argument is non-zero? Well, suppose that test2() is ever only
called once in the program, but in the following way:

test2(someComplicatedFunction(10),p)

where p is a Point. This causes an error exactly when someComplicatedFunction(10) is
non-zero. The point being, someComplicatedFunction() may be arbitrarily complicated,
involving for instance some non-trivial number theory, and it is completely unreasonable
to expect a type checker to analyze someComplicatedFunction() carefully and figure out
that when given 10, it returns a non-zero number. So here, again, the type checker will
have to be conservative and say that because test2 may cause an error (because function
someComplicatedFunction() is too complicated to analyze), it will report a type error.
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So the type checker is really an approximation to detecting type errors that may occur during
execution. This approximxation is conservative. It will reject programs if there is a reason
to believe that they may cause type errors. This is made precise by the following property
of the Scala type systems, called type safety.

Type Safety; If a Scala program P type checks (that is, passes the type checker), then no
execution of P ever attempts to invoke a method m on a (non-null) object that does
not define m.

We say a program P is safe if no execution of P ever attempts to invoke a method m on a
non-null object that does not define m. Thus, type safety says that if a Scala program P
type checks, then P is safe.

Note the direction of the implication. It may well be the case that P never attempts to
invoke a method m on an object that does not define m, but that type checker does not
recognize that situation and rejects the program. That’s not uncommon. In fact, the above
says less than one might hope. In particular, a really dumb type checker that simply rejects
all programs satisfies type safety. (Why?) But thankfully, we know that the Scala type
checker does accept some programs, so it is not completely vacuous.

It is important to keep in mind the property above, that the type system guarantees safety.
Because that’s the only thing that the type system enforces. And the name of the game will
be trying to get the most programs to type check, and still be guaranteed safety. So when
we look at the ways Scala has of reusing code, we will make sure to check in what way those
techniques still ensure safety. And when Scala forbids us from doing something, we will be
able to check in what way that something could be used to subvert safety.

5.2 Runtime Errors

Errors of type (2) are errors that are generally detected during execution. Every language
will have a different way to report those errors. Generally, the error will abort execution
and report a useful error message on the console. But in many languages, Scala included,
these errors can be dealt with within the program itself, and the execution need not actually
abort. In other words, these errors can often be recovered from gracefully.

In medevial times, one way to report errors at run time was to have functions return a
special value called various an error value, or an error flag. Basically, a special value that
did not make sense as a return value for the function, and that could be used to indicate
that execution failed. For instance, a function could return −1 to indicate an error instead
of the usual positive number it would return on a correct execution.

The problem with error values is that it is very easy to forget to check the result of a function
call to see if an error occurred. And forgetting to check the result of a function call means
that if there was indeed an error, the error value gets propagated in your code and will
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Throwable

|

+-- Error

| |

| +-- OutOfMemoryError

| +-- AssertionError

|

+-- Exception

|

+-- IOException

+-- InterruptedException

+-- RuntimeException

|

+-- ArithmeticException

+-- ClassCastException

+-- NullPointerException

+-- IllegalArgumentException

+-- NumberFormatException

Figure 1: Exceptions Class Hierarchy

likely cause problems somewhere else (e.g., if you end up taking the square root of the value
returned by the function, and that value was the error value −1). Tracking these kinds of
bugs is difficult.

This error-value technique is still in use nowadays, unfortunately. In Scala, for instance, the
null value is often used as an error marker — the null value is a special object that can be
considered an instance of (essentially) every class. The problem is that, as I mentioned, it
is very easy to forget to check that a value is not null when returned from a function, and
that null value can be propagated in the code, and cause problems when someone tries to
invoke a method on null, which does not implement any method. I strongly suggest you
avoid using null for error reporting — in fact you should probably avoid null altogether.
(We’ll see techniques for doing so later.)

The error-value technique has the consequence that if you don’t check that an error oc-
curred, that error is free to wreak havoc in the rest of your program. That’s bad, because
programmers are lazy and will forget to check for errors.

The opposite point of view is taken in the modern approach to dealing with run-time errors,
exceptions. An exception is just an object in the system, that gets created and thrown when
an error is encountered. This immediately terminates the currently executing method. The
methods caller can either catch and handle that exception, or it can itself simply terminate,
in which case the exception propagates to the callers caller. The exception propagates in
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this way, unwinding the call stack, until a method handles it or there are no more methods
left. Thus, if an exception is not caught, instead of letting your code continue and cause
further problem, your whole program aborts. If you want your code to keep going — perhaps
because you have another way to try to achieve your goal, such as trying to write on the
network if writing to disk failed — then you can catch the exception and deal with it.

Let’s look at how Scala implements exceptions. There is actually a whole hierarchy of classes
in Scala implementing exceptions. This hierarchy lets us distinguish the kind of exceptions
that can occur. Figure 1 presents the (partial) class hierarchy of exceptions.

Class Throwable is the most general kind of exception that every other exception sub-
classes. The Error class roughly represent the show-stoppers, that lead to aborting exe-
cution in almost all cases. The Exception class capture more “benign” forms of errors.
These include IOExceptions, representing exceptions due to failure of IO (disk failure,
network failure, and so on), while RuntimeExceptions represent exceptions such as di-
viding by 0 (an ArithmeticException), casting an object to an unacceptable class (a
ClassCastException), invoking a method on a null object (a NullPointerException).
The IllegalArgumentException is a general exception to represent passing a wrong value
to a method.

(Note that you can also create new kinds of exceptions by subclassing, generally by subclass-
ing the Exception class. We’ll see subclassing more extensively in the coming weeks.)

Many exceptions are created automatically by the system when an error is encountered —
for instance, if you try to invoke a method on a null value. You can also throw an exception
yourself in the code, as in:

throw new IllegalArgumentException("Oops, something bad happened");

This is all good and well, but how can we deal with such exceptions gracefully? After all, if
exceptions were just errors that cannot be dealt with, we could just say that an exception
aborts execution, and be done with it. The idea is that if a method call appear in the body of
a try block, and if that call returns an exception, that exception is not returned immediately,
but instead it is handled catch clause associated with the try block. This catch clause uses
pattern matching (of the kind we saw in the equals() method implementation last lecture)
to do different things depending on the kind of execution that was caught.

Suppose MyException is a new exception you have defined and suppose you wanted to
intercept this exception if it is thrown by the method someMethod() on object obj:

try {

obj.someMethod();

} catch {

case ex : MyException => // some code to deal with the exception

}
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This reads: if a MyException is thrown during the execution of obj.someMethod(), then
instead of having that exception propagate up, intercept it, name it ex, and continue exe-
cution of the current method with the code in the corresponding case of the catch clause.
(The reason why we may be interested in ex is that ex is an object that actually imple-
ments some useful methods such as getMessage() which returns a string representing the
message associated with the exception.) This lets you gracefull recover from an exception,
by intercepting it and dealing with it instead of letting it bubble up until it aborts the entire
program with an error.

Note that a catch clause catching an exception SomeException will in fact catch all ex-
ceptions that are instances of subclasses of SomeException. This lets you intercept, for
instance, any possible exception in a single catch clause:

try {

// some code doing something interesting

} catch {

case ex : Throwable => // deal with the exception

}

This works because every exception ultimately subclasses Throwable. This kind of code is
useful in testing code to nicely format the exception and report useful information.

It is also possible to catch multiple exceptions and dealing with them differently:

try {

// some code doing something interesting

} catch {

case ex : SomeExceptionClass =>

// deal with this kind of exception

case ex : SomeOtherExceptionClass =>

// deal with this other kind of exception

}

The order of the cases in the catch clauses is relevant — they are tried in order, and the first
case where the current exception is in a subclass of the specified exception will be selected.

5.3 Logical Errors

Errors of type (4), logical errors — programs not behaving as expected — are the most diffi-
cult to catch and correct, if only because languages do not offer any facilities for identifying
those errors. They rely on the notion of “expected program behavior”, which is really only
in the head of the designer or the programmer.
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As far as ADTs are concerned, we know what behavior to expect: it’s exactly the behavior
described by the specification. So how do we check that a program satisfies its specification
(i.e., behaves as expected)? There are two main ways: formal verification, and software
testing.

5.3.1 Testing versus Formal Verification

Formal verification, what you learned in Logic and Computation, is the process of verifying
using logic or other means that a program satisfies its specification. As you will remember
from Logic and Computation, formal verification is usually difficult. The purpose of formal
verification is proving a program correct (i.e., satisfies its specification) for all possible inputs.
The point of testing, on the other hand, is to find bugs, and not to prove programs correct.
Why?

To prove that a program is correct using tests, we need to exercise all the inputs to the
program. This can be a problem if there many inputs to test. For instance, a program that
takes two 64-bit integers as input, that is, 128 bits of input total, would require 1022 years
to run through tests for all inputs, even if we allow a millon tests to be performed every
second. That’s clearly infeasible. Things get worse, of course, because some programs can
take one of infinitely many inputs — for instance, programs manipulating lists.

So we cannot in general exercise all inputs, and therefore need to focus only on a few. This
leaves the possibility of bugs for the other inputs.

Consider the well-publicized story of the Intel FDIV bug. In 1994, Intel recalled its Pentium
processors to repair a bug in its floating point division instruction, FDIV. Intel has estimated
that this recall cost the company 475 million dollars.

Here is an example of the bug:

4195835.0/3145727.0 = 1.333 820 449 136 241 000 (Correct value)

4195835.0/3145727.0 = 1.333 739 068 902 037 589 (Flawed Pentium)

Intel estimated that the result of the FDIV instruction was incorrect a little more often than
once in every 9 billion floating point divisions. An IBM study found, however, that the
values that occur most often in spreadsheet and scientific computations are more likely to
trigger the bug.

After the Intel debacle, AMD, Intel’s chief competitor, was worried about their own chip.
They turned to the automatic theorem proving community, and Moore, a leading researcher
in the area, proved with his team that the algorithm used to implement the FDIV instruction
in AMD’s chip was correct using a mechanical theorem prover. They in fact managed to
prove the correctness of the entire floating-point kernel (not just the FDIV instruction). In
the process, they found and repaired two design errors that had not been caught by any of
the 80 million separate tests that had been run.
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Unfortunately, as I said, proving programs correct is quite hard, so testing is often advocated
as a first approach to debugging. We may return to proving programs correct towards the
end of the course, but for the time being, we focus on testing.

5.3.2 White-Box (or Glass-Box) versus Black-Box Testing

Testing techniques can be classified along several orthogonal dimensions.

White-box testing relies on knowing the internals of the implementation. For instance, test-
ing by inserting print statements or something similar to get a sense of what gets executed
is a form of white-box testing. This is useful when you are debugging a particular imple-
mentation of an ADT, but it of course specific to that particular implementation.

A particularly useful technique for white-box testing is to use assertions. Let’s take assertions
in Scala as an example. An assertion takes the following form:

assert(BooleanExpression)

When Scala encounters an assert during execution, it will evaluate the BooleanExpression
in the assertion; if it evaluates to true, then execution proceeds to whatever statement follows
the assertion; if it evaluates to false, then an exception AssertError is thrown.

In short, assertions provide a way to put in “sanity checks” within your own code. Gener-
ally speaking, assertions are meant to check invariants that must be true in order for the
code to work correctly. This means, in particular, that whenever possible, you should have
assertions on when you ship your code out. (There are ways to make sure that Scala or
whatever language you use executes your code with assertions turned on. Please refer to
the documentation.) Many programmers do not enable assertions on production code, for
fear generally of the run-time cost of checking all those assertions. Unless your assertions
are very heavy, however, I would recomment you keep assertions on. The benefit of having
this extra layer of checks for the important invariants your code usually outweighs the minor
inconvenience of a slightly slower execution. (And, let’s face it, if you are programming in
Scala or Java, you are already more or less admitting that executing programs as fast as
possible is not your priority.)

In contrast to white-box testing, black-box testing treats the implementation as hidden, and
can only test the code based on its interface and its specification. (It treats the ADT as a
black box — you do not get to peek inside.) The advantage of black-box testing is that it
can be used to test any implementation of the ADT.

The testing you performed in Fundies I and II, using test cases, is a form of black-box
testing.

A black-box testing infrastructure for an ADT must be able to test any implementation of
the ADT, and any correct implementation must pass the test.
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5.3.3 Unit Versus Integration Testing

A different axis of comparison for testing approaches, orthogonal to the white-box/black-box
axis, is to consider whether we are testing pieces of the program in isolation or as a whole.
Let me try to make that a bit more precise.

A class or a closely related set of classes (module) is often implemented by a single program-
mer. The class or module all by itself is not runnable, and generally will not do anything
useful on its own. It is used within the context of a larger piece of software. A key feature of
the ADT approach we advocate in this course is that it allows the class to be implemented
without regard to the context in which it will be used in.

(This is in fact the whole point of specification-based design in the wider context of engi-
neering. By designing a piece according to a specification, other pieces needing to interact
with the piece need only assume that the piece satisfies its specification. The actual details
of how the specification is met — the implementation — does not matter.)

Unit testing is the process of taking a class implementation and making sure it satisfies its
specification. This requires making up test data and a test program to test the implemen-
tation against the specification.

In contrast, integration testing tests the class in a context with other classes to make sure
that the higher-level interaction between the classes works correctly.

In this course, because of our ADT design philosophy, we will concentrate on black-box unit
testing.

Yet another sort of testing that is sometimes mentioned is regression testing. Roughly
speaking, regression testing is the process of keeping old tests around; because adding a new
feature to a piece of software should not change existing behaviors, we can run the old tests
to ensure that the code still behaves as expected.

5.3.4 Test Coverage

Given that we can only test a finite (and in fact small) number of cases, how do we choose
those tests?

A good test is a test that finds bugs. Finding good tests therefore requires a basic under-
standing of the common bugs that can occur. This depends on the actual programming
language used, and on the kind of program being tested. Many books have been written on
common bugs in various programming languages.

In general, test coverage should include:

• Trivial cases (e.g., empty list inputs for list-processing functions)

• Typical cases (both easy and hard)
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• Boundary cases (cases that are either just acceptable, or just outside acceptable; e.g.,
inputs that access an array close to its bounds)3

• Weird cases

• Error cases (if the specification mentions how error cases are treated)

What should be tested during a test? Every equation in the specification should be tested.
You may also want to check the implicit specifications of some of the methods that are Scala-
specific, such as equals(), which is required to be reflexive, symmetric, and transitive; or
hashCode(), which is required to satisfy that a.equals(b) implies a.hashCode()==b.hashCode().

5.3.5 Example: Black-Box Unit Testing Infrastructure for ADTs

Let us look at an example of a black-box unit testing class for the Point ADT we’ve been
playing with. Recall the signature:

CREATORS

cartesian : (Double, Double) -> Point

polar : (Double, Double) -> Point

OPERATIONS

xCoord : () -> Double

yCoord : () -> Double

angleWithXAxis : () -> Double

distanceFromOrigin : () -> Double

distance : (Point) -> Double

move : (Double, Double) -> Point

add : (Point) -> Point

rotate : (Double) -> Point

isEqual : (Point) -> Boolean

isOrigin : () -> Boolean

and the specification:

cartesian(x,y).xCoord() = x

polar(r,θ).xCoord() = r cos θ

cartesian(x,y).yCoord() = y

3In some cases, boundary cases may depend on the specifics of an implementation of an ADT; this sort
of boundary case has a flavor of white-box testing.

11



polar(r,θ).yCoord() = r sin θ

cartesian(x,y).distanceFromOrigin() =
√
x2 + y2

polar(r,θ).distanceFromOrigin() = r

cartesian(x,y).angleWithXAxis() =


tan−1(y/x) if x 6= 0

π/2 if y ≥ 0 and x = 0

−π/2 if y < 0 and x = 0

polar(r,θ).angleWithXAxis() = θ

cartesian(x,y).distance(q) =
√

(x− q.xCoord())2 + (y − q.yCoord())2

polar(r,θ).distance(q) =√
(p.xCoord()− q.xCoord())2 + (p.yCoord()− q.yCoord())2

cartesian(x,y).move(dx,dy) = cartesian(x+ dx,y + dy)

polar(r,θ).move(dx,dy) = cartesian(r cos θ + dx,r sin θ + dy)

cartesian(x,y).add(q) = cartesian(x+ q.xCoord(),y + q.yCoord())

polar(r,θ).add(q) = cartesian(r cos θ + q.xCoord(),r sin θ + q.yCoord())

cartesian(x,y).rotate(ρ) = cartesian(x cos ρ− y sin ρ,x sin ρ+ y cos ρ)

polar(r,θ).rotate(ρ) = polar(r,θ + ρ)

cartesian(x,y).isEqual(q) =

{
true if x = q.xCoord() and y = q.yCoord()

false otherwise

polar(r,θ).isEqual(q) =


true if r = q.distanceFromOrigin() and

θ ≡ q.angleWithXAxis()

false otherwise

cartesian(x,y).isOrigin() =

{
true if x = 0 and y = 0

false otherwise

polar(r,θ).isOrigin() =

{
true if r = 0

false otherwise

(Where ≡ for angles is defined in Lecture 2.)

Assume we have a module Point containing the creators of the ADT.
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The general structure of the tester is to first generate a set of instances of Point for each of
the creators, and test each instance against the specification. The instances, at least for the
typical cases, can be usefully generated at random.

First off, the module definition and main method, which invokes the test all() method
that runs the battery of tests.� �
object PointTester {

// The main entry point of the tester

def main (argv:Array[String]):Unit = test_all()

def test_all ():Unit = {

var failed = 0;

failed += test_cartesian()

failed += test_polar()

println("\nNumber of tests failed: " + failed)

}� �
The test all() method runs the tests for each of the creators: test cartesian() and
test polar(), each in charge of generating random points using the respective creators and
running the appropriate tests.

In order to creates point at random, we need helper functions for randomly generating data
— you can look-up the details of the class scala.util.Random in the documentation for the
Scala Standard Library.� �

private val rnd = new scala.util.Random

private def randomDouble ():Double =

1000 * rnd.nextDouble()

private def randomAngle ():Double =

2 * math.Pi * rnd.nextDouble()

private def randomPoint ():Point =

if (rnd.nextBoolean())

Point.cartesian(randomDouble()-500,randomDouble()-500)

else

Point.polar(randomDouble(),randomAngle())� �
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We can now define test cartesian() and test polar() that randomly generate a given
number of points using the corresponding creators, and call the various testing functions for
those generated points. Note that exceptions are caught and reported as failed tests.� �

// These are the tests for the creators

// For each creator, we call the tests for operations on that creator

// The result is the number of tests that failed

val numberRandomPoints = 100

private def test_cartesian ():Int = {

var failed : Int = 0

for (i <- 1 to numberRandomPoints) {

val x = randomDouble()-500

val y = randomDouble()-500

try {

failed += test_xCoord_cartesian(x,y)

failed += test_yCoord_cartesian(x,y)

failed += test_distanceFromOrigin_cartesian(x,y)

failed += test_angleWithXAxis_cartesian(x,y)

failed += test_distance_cartesian(x,y)

failed += test_move_cartesian(x,y)

failed += test_add_cartesian(x,y)

failed += test_add_cartesian(x,y)

failed += test_rotate_cartesian(x,y)

failed += test_isEqual_cartesian(x,y)

failed += test_isOrigin_cartesian(x,y)

} catch {

case ex: RuntimeException => {

// If there was an exception anywhere in there, then we

// have a problem

assertT(false, "Exception: "+ex.getMessage(),"","")

return failed+1;

}

}

}

return failed

}

private def test_polar ():Int = {

var failed : Int = 0

for (i <- 1 to numberRandomPoints) {

val r = randomDouble()
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val t = randomAngle()

try {

failed += test_xCoord_polar(r,t)

failed += test_yCoord_polar(r,t)

failed += test_distanceFromOrigin_polar(r,t)

failed += test_angleWithXAxis_polar(r,t)

failed += test_distance_polar(r,t)

failed += test_move_polar(r,t)

failed += test_add_polar(r,t)

failed += test_add_polar(r,t)

failed += test_rotate_polar(r,t)

failed += test_isEqual_polar(r,t)

failed += test_isOrigin_polar(r,t)

} catch {

case ex: RuntimeException => {

// If there was an exception anywhere in there, then we

// have a problem

assertT(false, "Exception: "+ex.getMessage(),"","")

return failed+1;

}

}

}

return failed

}� �
To actually perform the tests, we will need helper functions to perform various comparisons
— for instance, we will want to check that two Double are close enough to each other (to
account for possible round-off errors), as well as checking for two angles being equal by taking
into account the fact that angle values wrap at every 2π intervals. Finally, we will also want
to compare points for equality without relying on the implementation of equality as defined
in the ADT itself, since we are testing that particular implementation.� �

// Our own definition of equality

// Still depends on the provided isX() methods from implementation

private val tolerance : Double = 0.00001

private def almost (d1 : Double, d2 : Double):Boolean =

(d1-d2 < tolerance) && (d1-d2 > -tolerance)

private def eqPoints (p : Point, q : Point):Boolean =

(almost(p.xCoord(),q.xCoord()) && almost(p.yCoord(),q.yCoord()))
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private def normalize (angle:Double):Double =

if (angle >= 2*math.Pi)

normalize(angle-2*math.Pi)

else if (angle < 0)

normalize(angle+2*math.Pi)

else

angle

private def eqAngles (a : Double, b : Double):Boolean =

almost(normalize(a),normalize(b))� �
We can now define our tests. For every equation in the specification (which corresponds to
a given operation op applied to the resulting value of a given creator cr), we have a method
test po cr() that checks that the corresponding equation holds. Note that these methods
take as arguments the arguments to be passed to the creator — the method is in charge
of creating an instance of a point using those values (and the corresponding creator) and
perform the test.� �

// These are individual tests, testing each equation in the

specification

// The format of the test name is ’test_Operation_Creator’

// Each test takes values needed to create an instance of the ADT

// via the requested creator

// Each test returns 0 if the test succeeds and 1 if the test fails

private def test_xCoord_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val got = p.xCoord()

val exp = x

assertT(almost(got,exp),

"cartesian("+x+","+y+").xCoord()",

exp,got)

}

private def test_yCoord_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val got = p.yCoord()

val exp = y

assertT(almost(got,exp),

"cartesian("+x+","+y+").yCoord()",

exp,got)

}

16



private def test_distanceFromOrigin_cartesian (x:Double, y:Double):Int

= {

val p = Point.cartesian(x,y)

val got = p.distanceFromOrigin()

val exp = math.sqrt(x*x+y*y)

assertT(almost(got,exp),

"cartesian("+x+","+y+").distanceFromOrigin()",

exp,got)

}

private def test_angleWithXAxis_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val got = p.angleWithXAxis()

val exp = math.atan2(y,x)

assertT(eqAngles(got,exp),

"cartesian("+x+","+y+").angleWithXAxis()",

exp,got)

}

private def test_distance_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val q = randomPoint()

val got = p.distance(q)

val exp = math.sqrt(math.pow(x-q.xCoord(),2)+

math.pow(y-q.yCoord(),2))

assertT(almost(got,exp),

"cartesian("+x+","+y+").distance("+q+")",

exp,got)

}

private def test_move_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val dx = randomDouble()-500

val dy = randomDouble()-500

val got = p.move(dx,dy)

val exp = Point.cartesian(x+dx,y+dy)

assertT(eqPoints(got,exp),

"cartesian("+x+","+y+").move("+dx+","+dy+")",

exp,got)

}
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private def test_add_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val q = randomPoint()

val got = p.add(q)

val exp = Point.cartesian(x+q.xCoord(),y+q.yCoord())

assertT(eqPoints(got,exp),

"cartesian("+x+","+y+").add("+q+")",

exp,got)

}

private def test_rotate_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val t = randomAngle()

val got = p.rotate(t)

val exp = Point.cartesian(x*math.cos(t)-y*math.sin(t),

x*math.sin(t)+y*math.cos(t))

assertT(eqPoints(got,exp),

"cartesian("+x+","+y+").rotate("+t+")",

exp,got)

}

private def test_isEqual_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val q = randomPoint()

val got = p.isEqual(q)

val exp = eqPoints(p,q)

assertT(got==exp,

"cartesian("+x+","+y+").isEqual("+q+")",

exp,got)

}

private def test_isOrigin_cartesian (x:Double, y:Double):Int = {

val p = Point.cartesian(x,y)

val got = p.isOrigin()

val exp = (almost(x,0) && almost(y,0))

assertT(got==exp,

"cartesian("+x+","+y+").isOrigin()",

exp,got)

}
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private def test_xCoord_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val got = p.xCoord()

val exp = r * math.cos(theta)

assertT(almost(got,exp),

"polar("+r+","+theta+").xCoord()",

exp,got)

}

private def test_yCoord_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val got = p.yCoord()

val exp = r * math.sin(theta)

assertT(almost(got,exp),

"polar("+r+","+theta+").yCoord()",

exp,got)

}

private def test_distanceFromOrigin_polar (r:Double, theta:Double):Int

= {

val p = Point.polar(r,theta)

val got = p.distanceFromOrigin()

val exp = r

assertT(almost(got,exp),

"polar("+r+","+theta+").distanceFromOrigin()",

exp,got)

}

private def test_angleWithXAxis_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val got = p.angleWithXAxis()

val exp = theta

assertT(eqAngles(got,exp),

"polar("+r+","+theta+").angleWithXAxis()",

exp,got)

}

private def test_distance_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val q = randomPoint()

val got = p.distance(q)

val exp = math.sqrt(math.pow(p.xCoord()-q.xCoord(),2)+
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math.pow(p.yCoord()-q.yCoord(),2))

assertT(almost(got,exp),

"polar("+r+","+theta+").distance("+q+")",

exp,got)

}

private def test_move_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val dx = randomDouble()-500

val dy = randomDouble()-500

val got = p.move(dx,dy)

val exp = Point.cartesian(p.xCoord()+dx,p.yCoord()+dy)

assertT(eqPoints(got,exp),

"polar("+r+","+theta+").move("+dx+","+dy+")",

exp,got)

}

private def test_add_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val q = randomPoint()

val got = p.add(q)

val exp = Point.cartesian(p.xCoord()+q.xCoord(),

p.yCoord()+q.yCoord())

assertT(eqPoints(got,exp),

"polar("+r+","+theta+").add("+q+")",

exp,got)

}

private def test_rotate_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val t = randomAngle()

val got = p.rotate(t)

val exp = Point.polar(r,theta+t)

assertT(eqPoints(got,exp),

"polar("+r+","+theta+").rotate("+t+")",

exp,got)

}

private def test_isEqual_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val q = randomPoint()
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val got = p.isEqual(q)

val exp = eqPoints(p,q)

assertT(got==exp,

"polar("+r+","+theta+").isEqual("+q+")",

exp,got)

}

private def test_isOrigin_polar (r:Double, theta:Double):Int = {

val p = Point.polar(r,theta)

val got = p.isOrigin()

val exp = (almost(r,0))

assertT(got==exp,

"polar("+r+","+theta+").isOrigin()",

exp,got)

}� �
Finally, the testing code relies on a method assertT() that report whether a test succeeded
or failed, and in the latter case what were the expected values and the values obtained. This
method is a generic method, which we’ll cover in more detail later in the course.� �

/* Result is expected to be true for passing tests, and false for

* failing tests. If a test fails, we print out the provided

* message so the user can see what might have gone wrong.

*

* We return 0 if the test succeeded, and 1 if it failed

*

* Be sure to review anything that doesn’t make sense. */

private def assertT[A] (result:Boolean, msg:String, exp:A, got:A):Int

= {

if (!result) {

println("\n**TEST FAILED** "+ msg)

println(" Got: "+got)

println(" Expected: "+exp)

}

else

print(".")

return (if (result) 0 else 1)

}

}� �

21


