
Object-Oriented Design Lecture 4
CS 3500 Fall 2010 (Pucella) Friday, Sep 24, 2010

4 Object-Oriented ADT Implementations

Last time, we talked about implementing ADTs, and we have looked at sample implemen-
tations in Scheme (as well as in ACL2).

Those implementations, while they do provide all the operations in the signature and sat-
isfy the specification, are not perfect, however. The main problem is that they expose the
representation of the elements of the ADT. This makes it too easy for clients to rely on
representation details, such as the “bad client” we saw last time. A client relying on im-
plementation details means that we, as implementers of the ADT, cannot just change the
implementation without breaking client code.

Many languages have facilities to prevent the exposure of data representation, thereby en-
suring that clients cannot take advantage of it.

One approach, called signature ascription, is to “wall off” the data representation and the
operations that operate on it, and by only exposing the operations themselves.

Another approach, which is similar in its results but philosophically different, is to push
the operations inside the data representation (and hide that data representatino). Because
the operations live inside the data representation, they know the data representation (which
they need in order to actually implement their required functionality), but clients cannot
access that representation. This approach is the basis for object orientation.

We will be using Scala as an implementation language for this course. Scala is similar to
Java, and you can think of it as the next step in the evolution of Java. Some remarks on
the language: Scala is a class-based object-oriented language. “Object-oriented” here means
that every value in the language is an object. “Class-based” means that objects are created
from classes. A class is essentially a template, a description of how objects of the class are
created.

It helps to think of a program has having two parts. One part, the part that correspond to the
source code, is static. (Static means non-moving, which we take to mean non-executing). It
represents what information about the program we have before anything executes. In Scala,
the only thing we know before a program executes are what classes are defined. Thus, the
classes are static. Classes exist, in some sense, even before programs start executing. The
other part is the dynamic part, which corresponds to program execution. During execution,
instances of the classes, that is, objects, get created, updated, destroyed. Thus, objects are
dynamic.

You should probably be aware that not every object-oriented language is class-based. Self,

1



for example, has no concept of class, but still has objects. Scala is also statically typed —
types are associated with variables, and before a program is run those types are checked,
to make sure that values of the right kind are stored in variables, or passed to methods.
Not every object-oriented language is statically typed. Smalltalk, for example, checks types
dynamically, like Scheme does. We’ll talk more about types next lecture.

4.1 Object-Oriented Signatures and Specifications

To help us devise implementation for ADTs in object-oriented languages, we consider a
slightly different way of writing signatures and specifications. Recall the Point ADT sig-
nature from last time (except I’ve replaced all Float with Double for convenience):

CREATORS

cartesian : (Double, Double) -> Point

polar : (Double, Double) -> Point

OPERATIONS

xCoord : (Point) -> Double

yCoord : (Point) -> Double

angleWithXAxis : (Point) -> Double

distanceFromOrigin : (Point) -> Double

distance : (Point, Point) -> Double

move : (Point, Double, Double) -> Point

add : (Point, Point) -> Point

rotate : (Point, Double) -> Point

isEqual : (Point, Point) -> Boolean

isOrigin : (Point) -> Boolean

An object-oriented signature, to a first approximation, consider that operations (but not the
creators), which must take at least one argument of the type of the ADT1 take that value on
which they act as an implicit argument, as opposed to an explicit argument that appears in
the argument list. Implicit arguments are meant to capture the idea that the operations live
inside an object (an element of the ADT) and therefore have access to that element as an
implicit argument. For instance, if p and q are Points, while we would write add(p,q) to
add p and q in a conventional language, in an object-oriented setting we would call the add

operation inside p, usually written p.add(q), and p here is considered the implicit argument
to add, while q is an explicit argument.

Thus, here is the object-oriented signature for the Point ADT:

1if not, such an operation probably has no business being part of the ADT.

2



CREATORS

cartesian : (Double, Double) -> Point

polar : (Double, Double) -> Point

OPERATIONS

xCoord : () -> Double

yCoord : () -> Double

angleWithXAxis : () -> Double

distanceFromOrigin : () -> Double

distance : (Point) -> Double

move : (Double, Double) -> Point

add : (Point) -> Point

rotate : (Double) -> Point

isEqual : (Point) -> Boolean

isOrigin : () -> Boolean

Let’s change how those operations are used, to understand exactly where the implicit argu-
ment to operations is coming from. Creators are invoked as before, e.g., cartesian(10,20).
Operations, on the other hand, are invoked on an expression yielding a Point value, e.g.,
p.xCoord(), where p is a Point value, or p.rotate(2.0).move(3,4), again where p is a
Point value.

We can easily adapt the specification of points to this new way of invoking operations —
here is the specification from Lecture 2, adapted to the signature above, and presented in
such a way that we have exactly two equations per operation, once for each creator.

cartesian(x,y).xCoord() = x

polar(r,θ).xCoord() = r cos θ

cartesian(x,y).yCoord() = y

polar(r,θ).yCoord() = r sin θ

cartesian(x,y).distanceFromOrigin() =
√
x2 + y2

polar(r,θ).distanceFromOrigin() = r

cartesian(x,y).angleWithXAxis() =


tan−1(y/x) if x 6= 0

π/2 if y ≥ 0 and x = 0

−π/2 if y < 0 and x = 0

polar(r,θ).angleWithXAxis() = θ

cartesian(x,y).distance(q) =
√

(x− q.xCoord())2 + (y − q.yCoord())2

3



polar(r,θ).distance(q) =√
(p.xCoord()− q.xCoord())2 + (p.yCoord()− q.yCoord())2

cartesian(x,y).move(dx,dy) = cartesian(x+ dx,y + dy)

polar(r,θ).move(dx,dy) = cartesian(r cos θ + dx,r sin θ + dy)

cartesian(x,y).add(q) = cartesian(x+ q.xCoord(),y + q.yCoord())

polar(r,θ).add(q) = cartesian(r cos θ + q.xCoord(),r sin θ + q.yCoord())

cartesian(x,y).rotate(ρ) = cartesian(x cos ρ− y sin ρ,x sin ρ+ y cos ρ)

polar(r,θ).rotate(ρ) = polar(r,θ + ρ)

cartesian(x,y).isEqual(q) =

{
true if x = q.xCoord() and y = q.yCoord()

false otherwise

polar(r,θ).isEqual(q) =


true if r = q.distanceFromOrigin() and

θ ≡ q.angleWithXAxis()

false otherwise

cartesian(x,y).isOrigin() =

{
true if x = 0 and y = 0

false otherwise

polar(r,θ).isOrigin() =

{
true if r = 0

false otherwise

(Where ≡ for angles is defined in Lecture 2.)

4.2 Implementation in Scala

Let’s implement the above signature, then. The one decision we have to make, at this point,
is how to represent points. The same decision was had to make when we were thinking
of implementing points in Scheme last time. Just like in that case, we have two natural
representation for points — as a pair of cartesian coordinates, or as a triple where the first
element of the triple is a flag indicating whether the next two elements are the coordinates
of the point in cartesian coordinates or in polar coordinates. Let’s do the first representation
first. We define a class Point to hold the representation of points. The definition of the class
specifies the values that must be supplied to the class to construct an instance of the class:� �
class Point (xpos : Double, ypos : Double) {

// OPERATIONS

4



...

// CANONICAL METHODS

...

}� �
To construct an instance of a point, we will use an expression new Point(10.2,20.4) or
somesuch, where xpos will be bound to 10.2 in the newly created instance, and ypos will
be bound to 20.4 in the newly created instance. Both xpos and ypos are available as fields
in the instance created. (They are not accessible from outside the instance, though — they
are private.)

Let’s fill in the body of this class.

There are several rules that we will follow when writing classes in this course. Four, to be
precise, to be introduced throughout this example. Here is the first one:

(1) The only methods in the class that we should be able to invoke are those corresponding
to the operations in the signature, as well as the canonical methods.

Canonical methods will be defined in §4.3 below. Now, the class can define other methods,
we just have to make sure they are not accessible from outside the class.

Scala lets us restrict accessibility to methods (and to fields) using the private keyword.
(Much more can and will be said about private.) By default, methods and fields without
a qualifier are public.

We will not use fields much in this course. (Most of the time, they will be hidden as arguments
to the class, as we did above for xpos and ypos.) When we do use fields, though, they will
always be private.

(2) All fields are private.

Fields are not part of the signature, so the spirit of rule (1) says that they should indeed
be private. This is not a big restrictions, as we can always use methods (if the signature
tells us to) to read and update fields. Mostly, this is to make sure that the rest of the code
does not depend on there being a particular field in the object, so that we can, for instance,
change the representation of an ADT without worrying about breaking code elsewhere in
our program.

Let’s implement the operations:� �
class Point (xpos : Double, ypos : Double) {

5



// OPERATIONS

def xCoord ():Double = xpos

def yCoord ():Double = ypos

def distanceFromOrigin ():Double = math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double = math.atan2(ypos,xpos)

def distance (q:Point):Double = math.sqrt(math.pow(xpos-q.xCoord(),2)+

math.pow(ypos-q.yCoord(),2))

def move (dx:Double, dy:Double):Point = new Point(xpos+dx,ypos+dy)

def add (q:Point):Point = this.move(q.xCoord(),q.yCoord())

def rotate (t:Double):Point =

new Point(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean = (xpos == q.xCoord()) &&

(ypos == q.yCoord())

def isOrigin ():Boolean = (xpos == 0) && (ypos == 0)

// CANONICAL METHODS

...

}� �
This is all completely straightforward. A method is defined using

def name (argname:argtype,...):resulttype = body

Here, body is an expression that returns a value of type resulttype. We can use the keyword
this to stand for the implicit argument in any method body, as in Java. I will often use
this explicitly to emphasize when I’m invoking a method on the same object.

Classes can define not only methods but fields as well. In the above class, xpos and ypos

are fields, albeit implicit fields, appearing only in the signature of the class. Explicit fields
can be defined using

val name : type = initvalue

6



or
var name : type = initvalue

A val field is a field that cannot be updated, while a var field can be updated. For us, for
the time being, fields are never updated. This is important enough that I will make it a rule
that we will only break towards the end of the course:

(3) Fields, once initialized, are never updated.

In combination with rule (2) that makes every field private, this makes every instance of the
class immutable—once created, it cannot be changed. Immutable instances have a host of
advantages: the code is easier to reason about, it is easier to replace the code or debug it,
etc. As we will see when we look at mutation, understanding what actually happens when a
field is updated can get very tricky when a program uses all the features of Scala. Because
of this, and other reasons that we will return to in the course of the semester, we will restrict
our attention to immutable instances.

Okay, so we have class Point, that lets us create a representation of a point in cartesian
coordinates. The only thing missing are the creators. Now, we cannot put the creators
within the representation of points, because, intuitively, when we invoke the creators, we
may not have any point around. So what do we do with them?

Really, we would like to define two functions cartesian and polar that live outside the the
Point class, and that look like:

def cartesian (x:Double,y:Double):Point =

new Point(x,y)

def polar (r:Double,theta:Double):Point =

if (r<0)

throw new Error("r negative")

else

new Point(r*math.cos(theta),r*math.sin(theta))

But Scala doesn’t let us define “free-floating” functions like that. They need to live inside
something. It seems silly to define a class just to have those two functions live inside it, so
we’ll use a special kind of class called a singleton class — also known as a module — that is,
a class that has only one instance, and that instance is created automatically for you when
the program starts. Here is a possible definition:

Object Creators {

def cartesian (x:Double,y:Double):Point =

new Point(x,y)

7



def polar (r:Double,theta:Double):Point =

if (r<0)

throw new Error("r negative")

else

new Point(r*math.cos(theta),r*math.sin(theta))

}

This creates an instance (called Creators) of the class Creators, and doesn’t let you define
new instances of that class. To invoke methods in the Creators module, you would call
them like you would any other methods, that is, as Creators.cartesian(10.2,20.4), or
Creators.polar(10.0,math.Pi/2).

Calling the module Creators is not very mnemonic, especially if we have other ADTs around
with their own creators. So we shall define a module called Point in which the creators for the
Point ADT live — that the module has the same name as the class used for representation
of a point is something that Scala allows.2

This gives us our fourth rule:

(4) Creators live in a module (singleton class) of the same name as the ADT.

Here is the code for the Point module and the Point class, which we can put in a file
Point.scala:� �
object Point {

def cartesian (x:Double,y:Double):Point =

new Point(x,y)

def polar (r:Double,theta:Double):Point =

if (r<0)

throw new Error("r negative")

else

new Point(r*math.cos(theta),r*math.sin(theta))

}

class Point (xpos : Double, ypos : Double) {

// OPERATIONS

def xCoord ():Double = xpos

2In that situation, the resulting module is sometimes called a companion object to the class. The details
are actually not that important.

8



def yCoord ():Double = ypos

def distanceFromOrigin ():Double = math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double = math.atan2(ypos,xpos)

def distance (q:Point):Double = math.sqrt(math.pow(xpos-q.xCoord(),2)+

math.pow(ypos-q.yCoord(),2))

def move (dx:Double, dy:Double):Point = new Point(xpos+dx,ypos+dy)

def add (q:Point):Point = this.move(q.xCoord(),q.yCoord())

def rotate (t:Double):Point =

new Point(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean = (xpos == q.xCoord()) &&

(ypos == q.yCoord())

def isOrigin ():Boolean = (xpos == 0) && (ypos == 0)

// CANONICAL METHODS

...

}� �
We are almost done. There’s just one bit left to do, namely taking care of the last ... at
the bottom there.

4.3 Canonical Methods

There are three methods that should be present in every class in Scala, which ensures that
the class interacts well with the rest of the Scala environment. The point is, even if you
don’t define those methods, default will be provided, and those defaults most likely will not
do exactly what you would like them to do.

9



4.3.1 The equals() Canonical Method

We defined a isEqual() operation in the Point ADT which allowed us to compare points
for equality. But it only works on Points. Which makes sense.

Scala, however, has an equality operator == which allows it to compare any two values
for equality. Intuitively, a == b is interpreted as a.equals(b), delegating to an equals()

method in the class of a.

If a does not define an equals() method, then the default is to use something called object
identity : two objects are equal (under object identity) if they are the same actual object.
The idea is that when an object is created, it gets allocated somewhere in memory. Two
objects to be the same actual object if they live at the same address in memory. Object
identity is very rarely what you want.

For example:

val obj1 : Point = Point.cartesian(1.0,2.0)

val obj2 : Point = obj1;

then obj1 and obj2 are the same actual object, so the default equals() method for Point
will say true. However, the slight variant:

val obj1 : Point = Point.cartesian(1.0,2.0)

val obj2 : Point = Point.cartesian(1.0,2.0)

makes obj1 and obj2 into two distinct objects, even though they “look the same” — every
invocation of Point.cartesian() ACLLSnew, which creates a different object every time.
So the defaults equals() method would say false to obj1 and obj2 being equal. Not good.

So the easiest way to take care of this is to redefine equals() in Point so that it uses our
isEqual() operation. But we have a slight problem. Scala expects the equals method to
have the following signature:

def equals (other : Any):Boolean

Intuitively, type Any asys that equals can handle any kind of value, of any type. (We’ll
come back to type Any in Lecture 6.) Now, generally, if we compare a value that is not a
value of the ADT to a value of the ADT for equality, the result should be false.

So what we would like is an equals() operation that essentially does the following:

override def equals (other : Any):Boolean =

// if other is a Point, return the result of isEqual()

// if other is not a point, return false

10



First off, note the override qualifier on the method, which indicates to Scala that we want
to override the default. This is required. The compiler will complain if you don’t supply it.
All of the canonical methods require this override annotation.

So how do we do this check to see if other has the right type? There are a few ways to do
that, the cleanest is to use pattern matching — we’re going to do a match on the type of the
value supplied as an argument to equals(). Technically, we’re going to do a match on the
dynamic type of the value — more on that in Lecture 7.

So here is the structure of our equals() method for Point:

override def equals (other : Any):Boolean =

other match {

case that : Point => this.isEqual(that)

case _ => false

}

The match primitive checks the type of other against the various cases, and if it finds a
match it binds the value at the appropriate type within the corresponding branch, and returns
the value of the branch. Here, the first case matches when other is of type Point, and you
can use that to refer to the value as a value of type Point — since other has type Any still.
The second case is a catch-all, which always matches.

This is our first pass at an equals() method. For the time being, this is how we are going to
implement equals(): do a match, then rely on an underlying isEqual() predicate defined
in the ADT.

A few side notes. In order for equals() to truly behave like an equality, it has to satisfy the
three main properties of equality:

Reflexivity: obj1.equals(obj1) = true

Symmetry: if obj1.equals(obj2) = true, then obj2.equals(obj1) = true

Transitivity: if obj1.equals(obj2) = true and obj2.equals(obj3) = true, then
obj1.equals(obj3) = true.

These are the three properties that equals() must satisfy in order for it to behave like
a “good” equality method. Programmers will often unconsciously take as a given that
equals() satisfies the above properties. It is an implicit specification that equals() satisfies
the three properties above. Because of this, we will require that equals() always satisfies
these properties. As we shall see later on, it is difficult to get equals() to satisfy them in
Scala — in fact, in any object-oriented language. In particular, most naive implementations
of equality will fail to satisfy symmetry. My own implementation above, for instance, will
not satisfy symmetry in the general case. That may surprise you, and we’ll come back to
that point later in the course, after we see subtyping.

11



Now, programming languages (Scala included) do not enforce any of those properties! It
would be cool if they did, but it’s a very hard problem. Think about it: you can write
absolutely anything in an equals() method... so you need to be able to check properties of
arbitrary code, something we know is hard to do after taking Logic and Computation.

4.3.2 The hashCode() Canonical Method

The next canonical method turns out to be related to equals(), and it is used to define a
hash code for an object. Intuitively, the hash code of an object is an integer that cen be
used to identify (not uniquely) an object. That hash codes are integers makes them useful
in data structures such as hash tables.

Suppose you wanted to implement a data structure to represents sets of objects. The main
operations you want to perform on sets is adding and removing objects from the set, and
checking whether an object is in the set. The naive approach is to use a list, but of course,
checking membership in a list is proportional to the size of the list, making the operation
expensive when sets become large. A more efficient implement is to use a hash table. A hash
table is just an array of some size n, and each cell in the array is a list of objects. To insert
an object in the hash table, you convert the object into an integer (this is what the hash
code is used for), convert that integer into an integer i between 0 and n− 1 using modular
arithmetic (e.g., if n = 100, then 23440 is 40 (mod 100)) and use i as an index into the array.
You attach the object at the beginning of the list at position i. To check for membership of
an object, you again compute the hash code of the object, turn it into an integer i between
0 and n − 1 using modular arithmetic, and look for the object in the list at index i. The
hope is that the lists in each cell of the array are much shorter than an overall list of objects
would be.

In order for the above to work, of course, we need some restrictions on what makes a good
hash code. In particular, let’s look again at hash tables. Generally, we will look for the
object in the set using the object’s equals() method — after all, we generally are interested
in an object that is indistinguishable in the set, not for that exact same object.

This means that two equal objects must have the same hash code, to ensure that two equal
objects end up in the same cell.3 Thus, two equal objects must have the same hash code.
Formally:

For all objects obj1 and obj2, if obj1.equals(obj2) = true then obj1.hashCode() =
obj2.hashCode().

The default implementation of hashCode(), if you do not write one, is to use a value based
on the location of the object in memory. This works fine when equals() is object identity,

3Try to think in the above example of a hash table what would happen if two equal objects have hash
codes that end up being different mod n.

12



since this satisfies the above property. (Two objects are equal under object identity if they
live at the same address in memory, and therefore their hash codes are equal.)

But if you redefine equals(), then to satisfy the above property, you need to redefine
hashCode(). Because equality is typically defined in terms of the data local to the object
— that is, the value of its fields — the hash code will generally be computed from the fields
of the object as well. Here is a general recipe for computing hash codes: if the fields of the
object are x1, . . . , xn, then define h0, . . . , hn as

h0 = 1

hi = 41(hi−1) + xi.hashCode() for i = 1, . . . , n

and take the hash code of the object to be hn.

This way of computing hash codes has the advantage of satisfying another interesting prop-
erty of hashcodes, namely that the values are somewhat “spread out”: given two unequal
objects of the same class, their hash codes should be “different enough”. To see why we
want something like that, suppose an extreme case, that hashCode() returns always value 0.
(Convince yourself that this is okay, that is, it satisfies the property given in the bullet above!)
What happens in the hash table example above? Similarly, suppose that hashCode() always
returns either 0 or 1. What happens then?

For Point, the above discussion yields the following implementation of hashCode():

override def hashCode ():Int =

41 * (

41 + xpos.hashCode()

) + ypos.hashCode()

4.3.3 The toString() Canonical Method

The final canonical method is toString(), which is used to obtain a string representation
of the object. This is mostly useful for debugging, or for reporting results to the user. (This
is what the interactive loop uses to display its results.) This method is also automatically
called by methods in the Scala library, but figuring out exactly which can be tricky.4

By default, toString() returns a string made up of the class name of the object, an @ sign,
and an hexadecimal number that may or may not be related to the address of the object in
memory. Again, hardly useful. Override this method to get some nice outputs.

Here is the toString() method for Point:

override def toString ():String =

"cart(" + xpos + "," + ypos + ")"

4In reality, toString() seems to be invoked from the valueOf() method in the String class, which is
used among other places in the concatenation operation on strings, as well as the print/println operations.

13



Thus, executing:

val p = Point.cartesian(1.0,2.0)

println("result = " + p)

— where the p will be interpreted as p.toString() — will print

result = cart(1.0,2.0)

on the console.

Here is the final complete code for Point, taking everything we’ve said in this lecture into
account:� �
object Point {

def cartesian (x:Double,y:Double):Point =

new Point(x,y)

def polar (r:Double,theta:Double):Point =

if (r<0)

throw new Error("r negative")

else

new Point(r*math.cos(theta),r*math.sin(theta))

}

class Point (xpos : Double, ypos : Double) {

// OPERATIONS

def xCoord ():Double = xpos

def yCoord ():Double = ypos

def distanceFromOrigin ():Double = math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double = math.atan2(ypos,xpos)

def distance (q:Point):Double = math.sqrt(math.pow(xpos-q.xCoord(),2)+

math.pow(ypos-q.yCoord(),2))

def move (dx:Double, dy:Double):Point = new Point(xpos+dx,ypos+dy)

def add (q:Point):Point = this.move(q.xCoord(),q.yCoord())

14



def rotate (t:Double):Point =

new Point(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean = (xpos == q.xCoord()) &&

(ypos == q.yCoord())

def isOrigin ():Boolean = (xpos == 0) && (ypos == 0)

// CANONICAL METHODS

override def equals (other : Any):Boolean =

other match {

case that : Point => this.isEqual(that)

case _ => false

}

override def hashCode ():Int =

41 * (

41 + xpos.hashCode()

) + ypos.hashCode()

override def toString ():String =

"cart(" + xpos + "," + ypos + ")"

}� �
4.4 Concluding Remarks

This is the pattern that I’ll want you to use to define implementations of ADTs in Scala —
at least to a first approximation. This is not ideal — in particular, one can still access the
representation directly, that is create instances of the representation without going through
the creators. We’ll take care of that later.

I have followed a couple of conventions for naming, which you should follow as well. The Scala
compiler will not enforce them, but your brain will learn to recognize them and use them
to spot some errors some times. Class names are capitalized, like Point, or an hypothetical
ColoredPoint. Method names and variable names are capitalized but for the first letter,
like distance, or isEqual.

All code should be commented. Not putting any comments is a sin that I will not permit

15



you to indulge in. Every class should have a comment at the top indicating the purpose of
the class, and every method and variable should have a comment indicating the role of the
method or variable.

How do you execute your code? You can either use the interactive loop, as demo-ed in class,
or (and this is more reliable), do like you do in Java and compile your code against a a
module that implements a main method of the appropriate type. Here is such a module that
could be used with the Point implementation.

object Main {

def main (args:Array[String]):Unit = {

val point1 = Point.polar(10, math.Pi/2)

val point2 = Point.cartesian(50,-50)

val point3 = Point.polar(100, math.Pi/4)

println(point1.distance(point1.add(point2).rotate(math.Pi/2)

.add(point3.rotate(math.Pi/8))))

}

}

Return type Unit for main indicates that there is essentially no result to the function.

Just so that you have more code to look at, here is a second implementation of points that
uses the second representation we talked about in class, derived using the above rules.� �
object Point {

def cartesian (x:Double, y:Double):Point =

new Point(true,x,y)

def polar (r:Double, theta:Double):Point =

new Point(false,r,theta)

}

class Point (isCart:Boolean, first:Double, second:Double) {

// if isCart is true, then (first,second) are cartesian coord

// if isCart is false, then (first,second) are polar coord

// OPERATIONS

def xCoord ():Double =

if (isCart)

first

16



else

first * math.cos(second)

def yCoord ():Double =

if (isCart)

second

else

first * math.sin(second)

def angleWithXAxis ():Double =

if (isCart)

math.atan2(second,first)

else

second

def distanceFromOrigin ():Double =

if (isCart)

distance(new Point(true,0,0))

else

first

def distance (q:Point):Double =

math.sqrt(math.pow(xCoord() - q.xCoord(),2) +

math.pow(yCoord() - q.yCoord(),2))

def move (dx:Double,dy:Double):Point =

new Point(true, xCoord()+dx, yCoord()+dy)

def add (q:Point):Point =

move(q.xCoord(), q.yCoord())

def rotate (theta:Double):Point =

if (isCart)

new Point(true,

first * math.cos(theta) - second * math.sin(theta),

first * math.sin(theta) + second * math.cos(theta))

else

new Point(false, first, second+theta)

private def normalize (angle:Double):Double =

if (angle >= 2*math.Pi)

normalize(angle-2*math.Pi)

17



else if (angle < 0)

normalize(angle+2*math.Pi)

else

angle

def isEqual (q:Point):Boolean =

if (isCart)

(first==q.xCoord()) && (second==q.yCoord())

else

(first==q.distanceFromOrigin()) &&

(normalize(second)==normalize(q.angleWithXAxis()))

def isOrigin ():Boolean =

if (isCart)

first==0 && second==0

else

first==0

// CANONICAL METHODS

override def equals (other : Any):Boolean =

other match {

case that : Point => this.isEqual(that)

case _ => false

}

override def hashCode ():Int =

41 * (

41 * (

41 + isCart.hashCode()

) + first.hashCode()

) + second.hashCode()

override def toString ():String =

if (isCart)

"cart(" + first + "," + second + ")"

else

"pol("+ first + "," + second + ")"

}� �
Note that the helper method normalize() is private.

18


