
Studies on Full Security

in Multiparty Computation

Ran Cohen

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel June, 2016

This work was carried out under the supervision of

Prof. Yehuda Lindell
Department of Computer Science, Bar-Ilan University

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Yehuda Lindell, who has been
an inspiration before, throughout and even after the conclusion of my graduate studies. As
a researcher and a teacher Yehuda is an example of striving for excellence while keeping true
to his internal integrity. It is always a tremendous pleasure to talk with Yehuda and discover
his curiosity and knowledgability. I have been very fortunate to have worked with Yehuda and
learned so much from him. However, an advisor is much more than a scholar, and indeed one
of the great beauties of Yehuda is that his non-compromising strive for excellence never comes
at the expanse of his kindness and patience. The path for a Ph.D. is filled with ups and downs
– Yehuda always knows when to say a kind word that puts the winds in the sails again. I will
always be grateful to Yehuda for his endless support and continuous faith. Thank you very
much.

Any work becomes easier when working in a nice environment. I was privileged to be a part
of the Cryptography Research Group at Bar-Ilan University. I would like to thank the past
and present members of the group for a very enjoyable time. Benny Pinkas who is with no
doubt the kindest cryptographer I’ve met, Carmit Hazay with the perpetual smile and endless
energy. The (no longer) post-docs: Rafi Chen, Eran Omri, Claudio Orlandi, and Ben Riva.
My fellow graduate students and office mates: Gilad Asharov, Ariel Nof, Omer Shlomovits,
Erez Waisbard, Avishay Yanai, and Hila Zarosim. The master students: Asaf Cohen, Tali
Oberman, Eli Oxman, and Or Weinstein. The software team: Assi Barak, Yael Ejgenberg,
Moriya Farbstein, Asaf Kleinbort, Lior Koskas, and Meital Levy. Tal Malkin and Kobbi Nissim
who visited us. Moti Geva and Nehora Krolzig. And most importantly Yonit Homburger who
is the living force behind the group. Thank you all for most entertaining talks on cryptography,
mathematics, life and good places to have lunch.

During my studies I was also very fortunate to join a very warm and welcoming research
community. I would like to especially thank Ran Canetti, Iftach Haitner, Yuval Ishai, Juan
Garay, Tal Malkin, Benny Pinkas, and Tal Rabin – each of you has inspired me and helped me
throughout the way both in your willingness to share your knowledge and more importantly in
giving me good advice and guidance. You are true role models.

One of the nicest things about research is the ability to collaborate with other colleagues;
a special thanks to my co-authors for most fruitful discussions: Sandro Coretti, Juan Garay,
Iftach Haitner, Eran Omri, Chris Peikert, Lior Rotem, and Vassilis Zikas. I have learned a lot
from each and every one of you.

Looking back, when I started my studies I was a happy single man, and now, when the
journey has completed, I am even happier with my wonderful family. My deepest gratitude
goes to my wife Elise, for the endless love and encouragement, for taking the burden in many
sleepless nights before deadlines, and for being my partner throughout these special times. My

graduate studies are divided into two parts: before and after my son, Daniel, was born. It has
been great pride and joy to see Daniel grow up. My growth as a scholar is intertwined with
your growth as a person, as apparently, I only know how to publish papers with you in my life.
Finally, my daughter, Noa, and her smile have been a boost of joy over the last three months.
I dedicate this thesis to my family.

Ran Cohen June, 2016

Contents

Abstract i

1 Introduction 1
1.1 Background . 1

1.1.1 Secure Multiparty Computation . 1
1.1.2 The Simulation Paradigm . 3
1.1.3 Adversarial Power . 3
1.1.4 Feasibility of Secure Computation . 5

1.2 Feasibility of Full Security . 6
1.2.1 Fairness Versus Guaranteed Output Delivery 6
1.2.2 Characterization of Multiparty Computation without Broadcast 10

1.3 Round-Efficient MPC with Full Security . 15
1.4 Organization . 21

I Feasibility of Full Security 23

2 Definitions 25
2.1 Security of Protocols . 25
2.2 Execution in the Real World . 27
2.3 Execution in the Ideal World . 28

2.3.1 Secure Computation with Guaranteed Output Delivery 29
2.3.2 Secure Computation with Complete Fairness 29
2.3.3 Secure Computation with Complete Fairness and Identifiable Abort . . . 30
2.3.4 Secure Computation with Abort . 31
2.3.5 Secure Computation with Identifiable Abort 31

2.4 Security as Emulation of a Real Execution in the Ideal Model 32
2.5 The Hybrid Model . 32

3 Fairness Versus Guaranteed Output Delivery 35
3.1 Separating Fairness from Guaranteed Output Delivery 35
3.2 Fairness Implies Guaranteed Output Delivery for Default-Output Functionalities 39
3.3 The Role of Broadcast . 41

3.3.1 Fairness is Invariant to Broadcast . 42
3.3.2 Fairness with Identifiable Abort Implies Guaranteed Output Delivery . . 43
3.3.3 Fairness with Broadcast Implies Guaranteed Output Delivery 44

3.4 Black-Box Fairness does not Help for Guaranteed Output Delivery 46
3.5 Additional Results . 47

3.5.1 Broadcast is Necessary for Identifiable Abort 47
3.5.2 Fairness Implies Guaranteed Output Delivery for Fail-Stop Adversaries . 47

3.6 Overview of Related Protocols . 48
3.6.1 The GMW Compiler . 48
3.6.2 The Detectable Broadcast Protocol of Fitzi et al. 49
3.6.3 The Protocols of Gordon and Katz . 49

4 Characterization of Secure Multiparty Computation without Broadcast 51
4.1 Attacking Consistent Protocols . 51

4.1.1 Protocols of Strict Running-Time Guarantee 51
4.1.2 Protocols of Expected Running-Time Guarantee 54

4.2 Impossibility Results for Secure Computation . 55
4.2.1 Public-Output Functionalities . 55
4.2.2 Coin-Flipping Protocols . 57

4.3 Characterizing Secure Computation without Broadcast 58
4.3.1 No Honest Majority . 58
4.3.2 Honest Majority . 58

II Round-Efficient MPC with Full Security 63

5 Preliminaries 65
5.1 The UC Framework . 65

5.1.1 The Real Model . 65
5.1.2 The Ideal Model . 66
5.1.3 The Hybrid Model . 67

5.2 Synchronous Communication in the UC Framework 67
5.3 On Parallel (In)Composability of Protocols with Probabilistic Termination 70

6 Secure Computation with Probabilistic Termination 73
6.1 Canonical Synchronous Functionalities . 73
6.2 Probabilistic Termination in UC . 75

7 (Fast) Composition of Probabilistic-Termination Protocols 81
7.1 Composition with Deterministic Termination . 82
7.2 Composition with Probabilistic Termination . 86
7.3 Wrapping Secure Channels . 92

8 Applications of Our Fast Composition Theorem 95
8.1 Fast and Perfectly Secure Byzantine Agreement 95
8.2 Fast and Perfectly Secure Parallel Broadcast . 101

8.2.1 Unfair Parallel Broadcast . 101
8.2.2 Parallel Broadcast . 107

8.3 Fast and Perfectly Secure SFE . 108

A Abstracts of Additional Results 111

Bibliography 113
Hebrew Abstract ℵ

Abstract

In the setting of secure multiparty computation, a set of mutually distrusting parties wish to
jointly compute a function of their inputs in a secure manner. The computation should preserve
security properties such as privacy (no party should learn anything more than its prescribed
output), correctness (each party is guaranteed to receive a correct output), independence of
inputs (the corrupted parties must choose their inputs independently of the honest parties’
inputs), fairness (if one party receives output then all parties receive output), and guaranteed
output delivery (corrupted parties should not be able to prevent honest parties from receiving
their output). Loosely speaking, a protocol has full security if it satisfies all of the above
requirements.

Secure computation provides a general and strong notion of security, and essentially every
distributed task can be computed securely. Impressive feasibility results have been established
(under appropriate assumptions): If a majority of the parties are honest, every function can be
computed with full security, when the parties can communicate over a broadcast channel. In
the special case where more than two-thirds of the parties are honest, broadcast is not required.
If an honest majority is not assumed, every function can be computed with privacy, correctness
and independence of inputs, but without fairness and guaranteed output delivery.

The aim of this thesis is to study full security in multiparty computations, both in terms
of feasibility, i.e., when full security can be achieved and when it is impossible, and in terms of
efficiency, i.e., how many resources, such as round complexity, are needed in order to achieve
full security.

The first part of this thesis explores the feasibility of full security. The main results presented
are as follows:

1. We analyze the relation between fairness and guaranteed output delivery and show that
in the multiparty setting these properties are the same if parties can communicate over a
broadcast channel, but distinct in general. More specifically, we show the existence of non-
trivial functions for which complete fairness is achievable (without an honest majority)
but guaranteed output delivery is not, and the existence of non-trivial functions for which
complete fairness and guaranteed output delivery are achievable (without broadcast).

2. We provide a complete characterization of public-output functionalities that can be com-
puted with full security, when all parties communicate over a point-to-point network, but
no broadcast channel (nor a secure setup phase) is available:

• An n-party functionality can be computed with full security in the presence of n/3 ≤
t < n/2 corruptions (i.e., honest majority) if and only if every subset of (n − 2t)
parties can choose input values that determine the output of the function.

i

• Assuming the existence of one-way functions, an n-party functionality can be securely
computed as above in the presence of t ≥ n/2 corruptions (i.e., no honest majority)
if and only if every party can choose an input value that determines the output and,
in addition, the function can be securely computed with broadcast.

The second part of this thesis focuses on the efficiency cost, in terms of round complexity, of
achieving full security. It is well known that every function can be computed with perfect and
full security (i.e., unconditionally and without any error probability) in the presence of t < n/3
corruptions using secure point-to-point channels, and moreover, in the broadcast model, the
round complexity is linear only in the depth of the circuit representing the function. An ana-
logue result was not known in the point-to-point model, since instantiating a broadcast channel
using “fast” protocols results with probabilistic and non-simultaneous termination rounds, and
introduces numerous composition problems.

We put forth the first simulation-based treatment of multiparty protocols with probabilistic
termination. We define (fully) secure multiparty computation with probabilistic termination
in the UC framework, and prove a universal composition theorem for probabilistic-termination
protocols. We showcase our definitions and compiler by providing the first composable protocols
(with simulation-based security proofs) for the following primitives, relying on point-to-point
channels:

1. Expected-constant-round perfect Byzantine agreement.

2. Expected-constant-round perfect parallel broadcast.

3. Multiparty computation with perfect and full security, with round complexity independent
of the number of parties.

ii

Chapter 1

Introduction

1.1 Background

There is a new terrorist threat over the world. Several intelligence agencies try to prevent the
attack. Each of the agencies holds some secret information (the time of the attack, the location,
which terror organization is planing the attack, and so on) but cannot stop the attack on its
own. It is essential that the information each intelligence agency managed to gain will remain
private, as any unnecessary leakage might risk the sources of the data. Moreover, it is known
that the terrorists have double agents inside some of the agencies, and so each intelligence
agency cannot trust the rest. Can the agencies join forces and stop the attack?

The scenario described above demonstrates the power of secure multiparty computation. By
using secure protocols the intelligence agencies can perform computations over their private
data without exposing any information but the outcome of the computation. The aim of this
dissertation is to study a strong security notion, called full security, which informally means, in
the example above, that the terrorists cannot prevent the intelligence agencies from stopping
the attack nor gain any information about the sources of the data.

1.1.1 Secure Multiparty Computation

In the setting of secure multiparty computation, a set of mutually distrusting parties wish to
jointly compute a function of their inputs in a “secure” manner. In order to carry out this joint
computation, the parties execute an interactive protocol amongst themselves. In this sense,
security means that even when a subset of dishonest parties collude, they will not be able to
interfere with the computation: the colluding parties will not be able to learn the honest parties’
inputs (beyond what is revealed by the output), nor to affect the result of the computation,
thus causing the honest parties to obtain an invalid output. This threat is normally modeled
by a central adversarial entity, which may corrupt a subset of parties and control them.

Secure computation is a very general notion, and in a sense, anything that can be computed
can also be computed in a secure manner. Examples where secure protocols are used range from
basic distributed-computing tasks such as coin flipping (where all parties agree on a common
unbiased bit) and broadcast (where a sender distributes its message to all the parties) and more
involved computations such as online auctions (where each party bids and the highest bidder

1

wins the auction) and the example described above of information sharing.
Intuitively, a secure protocol should provide several security properties. Below we list some of

the security requirements, and illustrate them by using the example of an online auction, where
the input of each party is its bid and the joint output is the highest bid. Loosely speaking, we
say that a protocol has full security if it satisfies all of the requirements described below.

Privacy: No party should learn any additional information other than its prescribed output.
In particular, the adversary should not learn any information about the honest parties’
inputs other than what can be derived from corrupted parties’ inputs and the output
of the computation. In the auction example, the meaning of privacy is that although
each party learns the highest bid, and thus an upper bound on all the inputs, no other
information is learned on individual inputs.

Correctness: It is guaranteed that if a party receives an output, then the output is correct.
In other words, the only way the adversary can affect the output of the computation is
by choosing the input values for the corrupted parties. Continuing with the example,
correctness means that a party cannot win the auction without providing the highest bid.

Independence of Inputs: Corrupted parties must choose their inputs independently of the
honest parties’ inputs. The meaning in the auction example is that corrupted parties
cannot choose their bids as a function of the honest parties’ bids, e.g., the highest honest
bid plus 1. Note that despite the similarity of this requirement to privacy, there is a
significant difference, which can be illustrated in the following scenario.

Say party A encrypts its bid x using some homomorphic encryption scheme (where ci-
phertexts can be “added” to obtain an encryption of the sum of the plaintexts). Party B
cannot learn anything about x (as long as the encryption scheme is semantically secure),
nonetheless, B can generate an encryption of x + 1, and so claim to have a higher bid
than A without breaching privacy, i.e., without obtaining any additional information on
A’s actual bid.

Fairness: If one party obtains output then all parties obtain the output. In particular, if the
corrupted parties get output, they cannot prevent the honest parties from receiving their
output. Note that fairness does not rule out scenarios where the adversary prevents honest
parties from receiving output, as long as corrupted parties also do not get output. In the
auction example, fairness means that the adversary cannot first learn the highest bid (i.e.,
the output), and decide based on this information whether to allow the computation to
complete or to prematurely abort the protocol.

Guaranteed Output Delivery: The honest parties are guaranteed to receive their output,
regardless of the actions taken by the adversary. This requirement is very similar to
fairness, as in both cases corrupted parties do not gain any advantage over honest parties.
However, if only fairness is required the adversary can carry out “denial of service” attacks,
in which the computation is aborted repeatedly, without any party learning the output. If
guaranteed output delivery is required, such attacks cannot take place, and honest parties
are promised to receive output eventually. In the auction example, guaranteed output
delivery means that the adversary cannot prevent the honest parties from executing the
auction, and receiving their output.

2

The above list does not constitute a security definition but merely a “check list” of security
requirements. Using the simulation paradigm a central security definition can simultaneously
capture all of these requirements (and more).

1.1.2 The Simulation Paradigm

Standard security definitions for multiparty computation are based on the simulation paradigm.
Consider an ideal world, where an incorruptible trusted party is willing to carry out the compu-
tation for the parties. Each party hands its input to the trusted party (over a perfectly secure
channel), the trusted party computes the function and sends the corresponding output to each
party. Now consider the real world (in which no such trusted party exist), where parties execute
a protocol in order to compute the function. The execution of the protocol in the real world is
compared to the ideal-world computation. The requirement is that the computation in the real
world behaves just like the computation in the ideal world, i.e., that no external distinguisher,
that provides inputs to the parties and receives their outputs, can tell if it is interacting with
parties in the real world or in the ideal world.

The ideal computation is secure by definition, as there is no interaction whatsoever between
the parties. When an adversary corrupts a subset of parties in the ideal world, all it can do is
to alter the inputs and outputs of these parties and nothing more. A protocol for computing a
function in the real world is considered secure if whatever an adversary, controlling some subset
of the parties, can obtain in a real execution of the protocol, can also be obtained in the ideal
world where the parties communicate with a trusted party. The underlying idea is that if every
attack in the real-world execution of the protocol can be simulated in the ideal world, and no
meaningful attack can take place in the ideal world, then the conclusion is that no meaningful
attack can be carried out on the protocol in the real world.

1.1.3 Adversarial Power

Normally, there is a clear tradeoff between security of protocols on the one hand and their feasi-
bility/efficiency on the other hand. Therefore, a key ingredient in a design of any cryptographic
protocol is defining the power of the adversary. The weaker the adversary is assumed to be,
the stronger the feasibility (and the efficiency) of computation becomes, and vice versa, the
stronger the adversary is, the weaker becomes the feasibility of computation.

There are several aspects to consider regarding the adversary’s power:

• The adversary’s complexity: this parameter relates to the running time of the adversary.
Two possibilities are normally considered:

– All-powerful adversaries: this is the so called information-theoretic model, where
the running time of the adversary is not limited. No cryptographic hardness assump-
tions can be used in this model. Traditionally, in this setting the parties communicate
over perfectly secure channels, where the adversary cannot eavesdrop nor tamper with
the communication between honest parties.
In this setting, it is customary to distinguish between perfect security where the
error probability is zero, and statistical security, where a negligible error probability
is allowed.

3

– Efficient adversaries: this is the so called computational model, where the adver-
sary is restricted to run in probabilistic polynomial time. Protocols in this setting
are normally based on certain cryptographic assumptions, such as the existence of
oblivious transfer. There is no need for secure channels in this model but merely of
authenticated channels, as the communication between honest parties can be imple-
mented using public-key encryption.

• The adversarial behaviour: this parameter relates to the behaviour that the adversary is
allowed to do once corrupting a party.

– Semi-honest adversaries: the corrupted parties follow the prescribed protocol
specification as honest parties. However, the adversary can collect the internal states
of all corrupted parties in order to try and learn additional information.

– Fail-Stop adversaries: the corrupted parties follow the prescribed protocol spec-
ification as honest parties. The difference from the semi-honest setting is that the
adversary may instruct a corrupted party to “crash” and stop sending messages.

– Malicious adversaries: in this case there are no restrictions on the behaviour of
the adversary, and it can instruct the corrupted parties to deviate from the protocol
in any arbitrary way it chooses.

• Corruption strategy: this parameter relates to the strategy in which the adversary can
corrupt the parties.

– Static adversaries: the adversary decides which parties to corrupt before the exe-
cution of the protocol begins. In particular, honest parties remain honest throughout
the course of protocol’s execution.

– Adaptive adversaries: the adversary can dynamically corrupt any party it wants
during the execution of the protocol. The decision as to which party to corrupt and
when is based on information gathered by the adversary, i.e., messages communicated
between parties (over insecure channels) and internal states of parties that have been
corrupted thus far.

• Number of corruptions: this parameter relates to (the upper bound of) the number of
parties the adversary can corrupt. Normally, there is a difference between the case where
strictly less than a third of the parties might be corrupted, the case where an honest
majority is assumed and the case where the adversary can corrupt an arbitrary number
of parties.

• The environment in which the protocol is executed: in the stand-alone setting, a single
protocol is executed at any point in time, and the adversary can attack the protocol using
only information it gathers from the protocol’s execution. When considering composition
of protocols, the adversary can use information that it collects from executions of different
protocols by different sets of parties.

Various types of protocol composition are considered: sequential composition (where pro-
tocols are executed one after the other), parallel composition (where all protocols are
executed simultaneously round-by-round) and concurrent composition (where the adver-
sary can start new protocols at any time, and proceed at its own pace, in order to attack a

4

specific protocol execution). Another classification of protocol composition considers self
composition (where a single set of parties execute several independent copies of a single
protocol) and general composition (where many sets of parties carry out many executions
of arbitrary protocols).

Looking ahead, throughout this thesis we will use various combinations of the above prop-
erties. In general, it is preferred to consider weak adversaries when proving lower bounds, and
strong adversaries when constructing protocols. For example, in Part I we present impossibility
results of full security, and we consider static, malicious, polynomial-time adversaries attacking
stand-alone protocols communicating over secure channels (the reason we consider malicious
adversaries is that, as we show, these impossibility results do not hold for the weaker notion
of fail-stop adversaries). In Part II, we construct perfect and fully secure protocols and prove
their security facing very strong adversaries, namely, adaptive, malicious, computationally un-
bounded adversaries in the universal composition (UC) framework, in which security holds even
under concurrent general composition.

1.1.4 Feasibility of Secure Computation

Impressive feasibility results have been established for secure protocols. We informally list the
main feasibility results below.

• When more than two-thirds of the parties are honest, every function can be computed
with full security in a point-to-point network.

– In the computational setting, where the adversary runs in polynomial-time and the
communication channels are authenticated, this holds under appropriate crypto-
graphic assumptions (e.g., the existence of oblivious transfer), in the stand-alone
setting facing static, malicious adversaries; see Goldreich et al. [53]. Under stronger
cryptographic assumptions, this result holds under concurrent general composition
and facing adaptive, malicious adversaries; see Canetti et al. [23].

– In the information-theoretic setting, where the adversary is computationally un-
bounded and the communication channels are ideally secure, perfect and full secu-
rity can be achieved facing adaptive, malicious adversaries; see Ben-Or et al. [12] and
Chaum et al. [25]. Perfect and full security under concurrent general composition
was presented by Canetti [20].

• When an honest majority is assumed, every function can be computed with full security,
assuming the parties have access to a broadcast channel, or if the parties share some
correlated randomness that is generated in a trusted setup phase.

– In the computational setting, this holds, under appropriate cryptographic assump-
tions, in the stand-alone setting facing static, malicious adversaries, see Goldreich
et al. [53], and under concurrent general composition facing adaptive, malicious ad-
versaries, see Canetti et al. [23].

– In the information-theoretic setting, where ideally secure channels are available in
addition to the broadcast channel, this holds unconditionally but with a negligible
non-zero error probability, facing static corruptions, see Rabin and Ben-Or [81], and
facing adaptive corruptions, Cramer et al. [35].

5

• When considering any number of corrupted parties, every function can be securely com-
puted with abort (meaning that all security properties but fairness and guaranteed output
delivery are fulfilled), in the computational setting, given access to a broadcast channel.
This holds, under appropriate cryptographic assumptions, in the stand-alone setting, fac-
ing static corruptions, see Yao [84] and Goldreich et al. [53], and under concurrent general
composition facing adaptive corruptions; see Canetti et al. [23].

1.2 Feasibility of Full Security

Full security provides very strong security guarantees. As discussed in Section 1.1, full security
ensures many security properties such as privacy, correctness, independence of inputs, fairness,
guaranteed output delivery and more.

When an honest majority is assumed, every function can be computed with full security
when a broadcast channel is available to the parties. Feasibility results were shown both in the
computational setting assuming authenticated channels and the existence of oblivious trans-
fer [53] and in the information-theoretic setting assuming secure channels [81].

When an honest majority is not assumed, Cleve [27] showed that full security cannot be
obtained in general, more specifically, that it is impossible to obtain generic protocols for secure
multiparty computation that guarantee output delivery and fairness. The security requirements
are therefore typically relaxed when no honest majority is assumed. In particular, under certain
circumstances, honest parties may not receive any output, and fairness is not always guaranteed.
Recently, Gordon et al. [57] showed that some (in fact many [2]) two-party functionalities
can be computed with full security (a characterization of full security for two-party Boolean
functions was given in [5]). In addition, Gordon and Katz [56] showed that is possible to even
compute some multiparty functionalities with full security, for any number of corrupted parties;
in particular, the majority function may be securely computed with three parties, and the
Boolean OR function may be securely computed for any number of parties.

1.2.1 Fairness Versus Guaranteed Output Delivery

The two notions of fairness and of guaranteed output delivery (i.e., full security) are quite
similar and are often interchanged. However, there is a fundamental difference between them.
If a protocol guarantees output delivery, then the parties always obtain output and cannot
abort. In contrast, if a protocol is fair, then it is only guaranteed that if one party receives
output then all parties receive output. Thus, it is possible that all parties abort. In order
to emphasize the difference between the notions, we note that every protocol that provides
guaranteed output delivery can be transformed into a protocol that provides fairness but not
guaranteed output delivery, as follows. At the beginning every party broadcasts OK; if one of
the parties did not send OK then all the parties output ⊥; otherwise the parties execute the
original protocol (that ensures guaranteed output delivery). Clearly every party can cause the
protocol to abort. However, it can only do so before any information has been obtained. Thus,
the resulting protocol is fair, but does not guarantee output delivery.

It is immediate to see that guaranteed output delivery implies fairness, since if all parties

6

must receive output then it is not possible for the corrupted parties to receive output while the
honest do not. However, the opposite direction is not clear. In the two-party case, guaranteed
output delivery is indeed implied by fairness since upon receiving abort, the honest party can
just compute the function on its own input and a default input for the other party. However,
when there are many parties involved, it is not possible to replace inputs with default inputs
since the honest parties do not necessarily know who is corrupted (and security mandates that
honest parties’ inputs cannot be changed; otherwise, this could be disastrous in an election-
type setting). This leads us to the following fundamental questions, which until now have
not been considered at all (indeed, fairness and guaranteed output delivery are typically used
synonymously):

Does fairness imply guaranteed output delivery? Do there exist functionalities that
can be securely computed with fairness but not with guaranteed output delivery? Are
there conditions on the function/network model for which fairness implies guaranteed
output delivery?

The starting point of our work is the observation that the broadcast functionality does actually
separate guaranteed output delivery and fairness. Specifically, let n denote the overall number
of parties, and let t denote an upper bound on the number of corrupted parties. Then, it is well
known that secure broadcast can be achieved if and only if t < n/3 [78, 73].1 However, it is also
possible to achieve detectable broadcast (which means that either all parties abort and no one
receives output, or all parties receive and agree upon the broadcasted value) for any t < n [47].
In our terms, this is a secure computation of the broadcast functionality with fairness but
no guaranteed output delivery. Thus, we see that for t ≥ n/3 there exist functionalities that
can be securely computed with fairness but not with guaranteed output delivery (the fact that
broadcast cannot be securely computed with guaranteed output delivery for t ≥ n/3 follows
directly from the bounds on Byzantine Generals [78, 73]). Although broadcast does provide
a separation, it is an atypical function. Specifically, there is no notion of privacy, and the
functionality can be computed information theoretically for any t < n given a secure setup
phase [79]. Thus, broadcast is a trivial functionality.2 This leaves the question of whether
fairness and guaranteed output delivery are distinct still holds for more “standard” secure
computation tasks.

It is well known that for t < n/2 any multiparty functionality can be securely computed
with guaranteed output delivery given a broadcast channel [53, 81]. Fitzi et al. [46] used
detectable broadcast in the protocols of [53, 81] and showed that any functionality can be
securely computed with fairness for t < n/2. This leaves open the question as to whether there
exist functionalities (apart from broadcast) that cannot be securely computed with guaranteed
output delivery for n/3 ≤ t < n/2.

Gordon and Katz [56] showed that the three-party majority function and multiparty Boolean
OR function can be securely computed with guaranteed output delivery for any number of

1The impossibility of broadcast for t ≥ n/3 holds in the plain model, where no trusted setup is available to
the parties (which is the model considered in this work). Indeed, if the parties have access to some correlated
randomness (e.g., a public-key infrastructure) broadcast can be computed facing any number of corrupted par-
ties both in the computational setting, assuming one-way function exist [39] and in the information-theoretic
setting [79].

2We stress that “trivial” does not mean easy to achieve or uninteresting. Rather, it means that cryptographic
hardness is not needed to achieve it in the setting of no honest majority [70].

7

corrupted parties (in particular, with an honest minority). However, the constructions of [56]
use a broadcast channel. This leads us to the following questions for the range of t ≥ n/3:

1. Can the three-party majority function and multiparty Boolean OR function be securely
computed with guaranteed output delivery without a broadcast channel?

2. Can the three-party majority function and multiparty Boolean OR function be securely
computed with fairness without a broadcast channel?

3. Does the existence of broadcast make a difference with respect to fairness and/or guaran-
teed output delivery in general?

We remark that conceptually guaranteed output delivery is a stronger notion of security and
that it is what is required in some applications. Consider the application of “mental poker”; if
guaranteed output delivery is not achieved, then a corrupted party can cause the execution to
abort in case it is dealt a bad hand. This is clearly undesirable.

1.2.1.1 Our Results

Separating fairness and guaranteed output delivery. We show that the three-party ma-
jority function, which can be securely computed with fairness [56], cannot be securely computed
with guaranteed output delivery. Thus, there exist non-trivial functionalities (i.e., functional-
ities that cannot be securely computed in the information-theoretic setting without an honest
majority) for which fairness can be achieved but guaranteed output delivery cannot. Techni-
cally, we show this by proving that the three-party majority function can be used to achieve
broadcast, implying that it cannot be securely computed with guaranteed output delivery.

Theorem 1.2.1 (informal). Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist non-trivial functionalities f (e.g., the majority function) such that
f can be securely computed with fairness but f cannot be securely computed with guaranteed
output delivery.

This proves that fairness and guaranteed output delivery are distinct, at least in a model
without a broadcast channel.

Feasibility of guaranteed output delivery without broadcast. The protocols of [56] for
majority and Boolean OR both use a broadcast channel to achieve guaranteed output delivery.
As shown in Theorem 1.2.1, this is essential for achieving their result for the majority function.
However, is this also the case for the Boolean OR function? In general, do there exist non-trivial
functionalities for which guaranteed output delivery is achievable without a broadcast channel
and for any number of corrupted parties?

Theorem 1.2.2 (informal). Consider a model without a broadcast channel and consider any
number of corruptions. Then, there exist non-trivial functionalities f (e.g., the Boolean OR
function) such that f can be securely computed with guaranteed output delivery.

8

On the role of broadcast. We show that the existence or non-existence of broadcast is
meaningless with respect to fairness, but of great significance with respect to guaranteed output
delivery. Specifically, we show the following:

Theorem 1.2.3 (informal). Let f be a multiparty functionality. Then:

1. There exists a protocol for securely computing f with fairness with a broadcast channel
if and only if there exists a protocol for securely computing f with fairness without a
broadcast channel.

2. If there exists a protocol for securely computing f with fairness (with or without a broadcast
channel), then there exists a protocol for securely computing f with guaranteed output
delivery with a broadcast channel.

Thus, fairness and guaranteed output delivery are equivalent in a model with a broadcast
channel and distinct without a broadcast channel. In contrast, by Theorem 1.2.1 we already
know that without broadcast it does not hold that fairness implies guaranteed output delivery
(otherwise, the separation in Theorem 1.2.1 would not be possible). We also show that under
black-box reductions, fairness never helps to achieve guaranteed output delivery. That is:

Theorem 1.2.4 (informal). Let f be a multiparty functionality and consider a hybrid model
where a trusted party computes f fairly for the parties (i.e., either all parties receive output
or none do). Then, there exists a protocol for securely computing f with guaranteed output
delivery in this hybrid model if and only if there exists a protocol for securely computing f with
guaranteed output delivery in the real model with no trusted party.

Intuitively, Theorem 1.2.4 follows from the fact that an adversary can always cause the
result of calls to f to be abort in which case they are of no help. This does not contradict item
(2) of Theorem 1.2.3 since given a broadcast channel and non-black-box access to the protocol
that computes f with fairness, it is possible to apply a variant of the GMW compiler [53] and
detect which party cheated and caused the abort to occur.

Conditions under which fairness implies guaranteed output delivery. We have al-
ready seen that fairness implies guaranteed output delivery given broadcast. We also consider
additional scenarios in which fairness implies guaranteed output delivery. We prove that if a
functionality can be securely computed with fairness and identifiable abort (meaning that the
identity of the cheating party is detected), then the functionality can be securely computed
with guaranteed output delivery. Finally, we show that in the fail-stop model (where the only
thing an adversary can do is instruct a corrupted party to halt prematurely), fairness is always
equivalent to guaranteed output delivery. This follows from the fact that broadcast is trivial in
the fail-stop model.

Identifiable abort and broadcast. In the model of identifiable abort, the identity of the
cheating party is revealed to the honest parties. This definition was explicitly used by Aumann
and Lindell [6], who remarked that it is met by most protocols (e.g., [53]), but not all (e.g., [55]).
This model has the advantage that a cheating adversary who runs a “denial of service” attack
and causes the protocol to abort cannot go undetected. Thus, it cannot repeatedly prevent
the parties from obtaining output. An interesting corollary that comes out of our work—albeit

9

not related to fairness and guaranteed output delivery—is that security with identifiable abort
cannot be achieved in general for t ≥ n/3 without broadcast. This follows from the fact that
if identifiable abort can be achieved in general (even without fairness), then it is possible to
achieve broadcast. Thus, we conclude:

Corollary 1.2.5 (informal). Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist functionalities f that cannot be securely computed with identifiable
abort.

Summary of feasibility results. Table 1.1 summarizes the state of affairs regarding feasi-
bility for secure computation with fairness and guaranteed output delivery, for different ranges
regarding the number of corrupted parties.

Number of Corrupted With Broadcast Without Broadcast
t < n/3 All f can be securely computed

with guaranteed output delivery
n/3 ≤ t < n/2 All f can be computed with for can be computed with

guaranteed output delivery guaranteed output delivery
t ≥ n/2 Fairness implies fmaj cannot be computed with

guaranteed output delivery guaranteed output delivery
t < n f can be securely computed fairly with broadcast iff

f can be securely computed fairly without broadcast

Table 1.1: Feasibility of fairness and guaranteed output delivery

1.2.2 Characterization of Multiparty Computation without Broadcast

Broadcast (introduced by Lamport et al. [73] as the Byzantine Generals problem) allows any
party to deliver a message of its choice to all parties, such that all honest parties will receive
the same message even if the broadcasting party is corrupted. Broadcast is an important
resource for implementing secure multiparty computation. Indeed, much can be achieved when
broadcast is available; in the computational setting, assuming the existence of oblivious transfer,
every efficient functionality can be securely computed with abort, facing an arbitrary number
of corruptions [83, 53]. Some functionalities can be computed with full security, e.g., Boolean
OR and three-party majority [56], or with 1/p-security,3 e.g., coin-flipping protocols [76, 60].
In the information-theoretic setting, considering ideally secure communication lines between
the parties, every efficient functionality can be computed with full security against unbounded
adversaries, facing any minority of corrupted parties [81].

The above drastically changes when broadcast or a secure setup phase are not available,4

specifically, when considering multiparty protocols (involving more than two parties), in which
3The success probability of any efficient distinguisher between the real model and an “ideal computation”

without abort is bounded from above by 1/p.
4In case a secure setup phase is available, authenticated broadcast can be computed facing t < n corrupted

parties; Authenticated broadcast exists in the computational setting over authenticated channels assuming the
existence of one-way functions [39] and in the information-theoretic setting over secure channels given a correlated-
randomness setup [79].

10

the parties are connected only via a point-to-point network and one third of the parties, or
more, might be corrupted.5 Considering authenticated channels and assuming the existence of
oblivious transfer, every efficient functionality can be securely computed with abort, facing an
arbitrary number of corruptions [47]. In the full-security model, some important functionalities
cannot be securely computed when a third of the parties might be corrupted (e.g., Byzan-
tine agreement [78] and three-party majority, see Theorem 1.2.1), whereas other functionalities
can be securely computed facing an arbitrary number of corruptions (e.g., weak Byzantine
agreement [47] and Boolean OR, see Theorem 1.2.2). The characterization of many other func-
tionalities, however, was unknown. For instance, it was unknown whether the coin-flipping
functionality or the Boolean XOR functionality can be computed with full securely, even when
assuming an honest majority.

1.2.2.1 Our Result

A protocol is t-consistent, if in any execution of the protocol, in which at most t parties are
corrupted, all honest parties output the same value. Our main technical result is the following
attack on consistent protocols.

Lemma 1.2.6 (main lemma, informal). Let n ≥ 3, t ≥ n/3, and let s = n − 2t if t < n/2
and s = 1 otherwise. Let π be an n-party, t-consistent protocol in the point-to-point model with
secure channels. Then, there exists an adversary that by corrupting any s-size subset I of the
parties can do the following: first, before the execution of π, output a value y∗ = y∗(I). Second,
during the execution of π, force the remaining honest parties to output y∗. The running time of
the adversary is proportional to executing polynomially many instances of π.

The lemma extends to expected polynomial-time protocols, and to protocols that only guar-
antee consistency to hold with high probability. We prove the lemma by extending the well-
known hexagon argument of Fischer et al. [44], originally used for proving the impossibility of
reaching (strong and weak) Byzantine agreement in the point-to-point model.

A corollary of Lemma 1.2.6 is the following lower bound on public-output functionalities,
where all parties receive the same output value. (To give a stronger lower bound, we state the
result in the secure-channels model rather than in the authenticated-channels model, since any
functionality that can be computed with authenticated channels can also be computed with
secure channels.) A functionality is k-dominated, if there exists a value y∗ such that any k-
size subset of the functionality input variables, can be manipulated to make the output of the
functionality be y∗ (e.g., the Boolean OR functionality is 1-dominated with value y∗ = 1).

Corollary 1.2.7 (Informal). Let n ≥ 3, t ≥ n/3, and let s = n − 2t if t < n/2 and s = 1
otherwise. A public-output n-party functionality that can be computed with full security in the
point-to-point model with secure channels, facing up to t corruptions, is s-dominated.

Interestingly, the above lower bound is tight. Theorem 1.2.2 shows that assuming one-way
functions exist, any 1-dominated functionality (e.g., Boolean OR) that can be securely computed

5For two-party protocols, the broadcast model is equivalent to the point-to-point model (and thus all the
results mentioned in the broadcast model hold also in the point-to-point model). If less than a third of the
parties are corrupted, broadcast can be implemented using a protocol, and every functionality can be computed
with information-theoretic security [12, 25].

11

in the broadcast model with authenticated channels can be securely computed in the point-to-
point model with authenticated channels. This shows tightness when an honest majority is not
assumed. We generalize this approach, using the two-threshold detectable precomputation of
Fitzi et al. [48], to get the following upper bound (in all our positive results, the efficiency of
the protocol is considered to be polynomial in the circuit size of the functionality).

Proposition 1.2.8 (Informal). Let n ≥ 3 and n/3 ≤ t < n/2. Assuming up to t corruptions,
any public-output n-party functionality that is (n−2t)-dominated, can be computed in the secure-
channels point-to-point model with information-theoretic security.

Combining Corollary 1.2.7, Proposition 1.2.8 and Theorem 1.2.2, yields the following char-
acterization of public-output functionalities.

Theorem 1.2.9 (main theorem, informal). Let n ≥ 3, let t ≥ n/3, and let f be a public-output
n-party functionality.

1. For t < n/2, f can be t-securely computed (with information-theoretic security) in the
secure-channels point-to-point model if and only if f is (n− 2t)-dominated.

2. For t ≥ n/2, assuming one-way functions exist, f can be t-securely computed (with
computational security) in the authenticated-channels point-to-point model if and only
if f is 1-dominated and can be t-securely computed (with computational security) in the
authenticated-channels broadcast model.

Another application of Lemma 1.2.6 regards coin-flipping protocols. A coin-flipping pro-
tocol [15] allows the honest parties to jointly flip an unbiased coin, where even a coalition of
(efficient) cheating parties cannot bias the outcome of the protocol by too much. We focus on
protocols in which honest parties must output the same bit. Although Theorem 1.2.9 shows that
fully secure coin flipping cannot be achieved facing one-third corruptions, we provide a stronger
impossibility result under a weaker security requirement that only assumes n/3-consistency and
a non-trivial bias. In particular, we show that 1/p-secure coin flipping cannot be achieved using
consistent protocols in case a third of the parties might be corrupted.

Corollary 1.2.10 (impossibility of multiparty coin flipping in the point-to-point model, infor-
mal). In the secure-channels point-to-point model, there exists no (n ≥ 3)-party coin-flipping
protocol that guarantees a non-trivial bias (i.e., smaller than 1/2) against an efficient adversary
controlling one third of the parties.

The above is in contrast to the broadcast model, in which coin flipping can be computed
with full security if an honest majority exists [17, 26], and with 1/p-security when no honest
majority is assumed [27, 9, 60, 1, 18, 34].

1.2.2.2 Our Technique

We present the ideas underlying our main technical result, showing that the following holds in
the point-to-point model. For any consistent protocol involving more than two parties, if one
third of the parties (or more) might be corrupted, then there exists an adversary that can make
the honest parties output a predetermined value. Furthermore, the adversary is efficient and
its running time is proportional to executing a polynomial number of instances of the original

12

A

B

C

Aq
Bq

Cq

A1

B1

C1
A2

P∗
> q

Figure 1.1: The original three-party protocol π = (A,B,C) is on the left. On the right is the 3q-Ring — q copies of π
concatenated. Communication time between parties of opposite sides is larger than 3q/2 > q.

protocol. In the following discussion we focus on three-party protocols with a single corrupted
party.

Let π = (A,B,C) be a 1-consistent, three-party protocol, and let q be its round complexity
on inputs of fixed length κ. (For the sake of clarity and by abuse of notation, we consider
the joined bit-length of the deterministic inputs and random coins to be κ; see Section 4.1 for
a formal analysis.) Consider the following 3q-party protocol R = (A1,B1,C1, . . . ,Aq,Bq,Cq),
where the parties are connected in a ring network such that each two consecutive parties, as
well as the first and last, are connected via a secure channel, and party Pj , for P ∈ {A,B,C},
has the code of P (see Figure 1.1).

Consider an execution of R on input w = (w1
A, w

1
B, w

1
C, . . . , w

q
A, w

q
B, w

q
C) ∈ ({0, 1}κ)3q (i.e.,

party Pi has input wiP, containing its actual input and random coins – the actual inputs are
arbitrarily chosen whereas the random coins are uniformly distributed). A key observation is
that the view of party Aj , for instance, in this execution, is a valid view of the party A on input
wjA in an interaction of π in which B acts honestly on input wjB. It is also a valid view of A,
on input wjA, in an interaction of π in which C acts honestly on input wj−1 (mod q)

C . Hence, the
consistency of π yields that any two consecutive parties in R output the same value, and thus
all parties of R output the same value.

Consider for concreteness an attack on the parties {A,B}. The adversary A first selects a
value w ∈ ({0, 1}κ)3q, emulates (in its head) an execution of R on w, and sets y∗ to be the
output of the party P∗ = Aq/2 in this execution. To interact with the parties {A,B} in π, the
adversary A corrupts party C and emulates an execution of R, in which all but

{
A1,B1} have

their inputs according to w (the roles of all parties but
{

A1,B1} are played by the corrupted
C), and {A,B} take (without knowing it) the roles of

{
A1,B1}.

We claim that the output of the parties {A,B} under the above attack is y∗. Observe that
the emulation of R, induced by the interaction of A with {A,B}, is just a valid execution of R
on some input w′ (not completely known to the adversary). Hence, by the above observation,
all parties in R (including {A,B}) output the same value at the end of this emulation. Since
the execution of R ends after at most q rounds, and since the number of communication links
between parties

{
A1,B1} and the designated party P∗ is ≈ 3q/2 > q, the actions of

{
A1,B1}

have no effect on the view of P∗. In particular, the output of P∗ in the attack is also y∗, and
by the above this is also the output of parties {A,B}.

13

Extension to expected-polynomial-round protocols. The above attack works perfectly
if the round complexity of π is (strictly) polynomial. For expected-polynomial-round protocols,
one has to work slightly harder to come up with an attack that is (almost) as good.

Let q be the expected round complexity of π. That is, an honest party of π halts after q
rounds in expectation, regardless of what the other parties do, where the expectation is over
its random coins. Consider the m-party protocol R = (A1,B1,C1, . . . ,Am,Bm,Cm), for m = 2q,
connected in a ring topology as before. By Markov bound, in a random execution of R, a party
halts after m rounds with probability at least 1/2.

The adversary A attacking the honest parties {A,B} is defined as follows. For choosing
a value for y∗, A emulates an execution of R on arbitrary inputs and uniformly distributed
random coins. If the party P∗ = Am/2 halts in at most m rounds, A sets y∗ to be P∗’s output,
and continues to the second stage of the attack. Otherwise, it emulates R on new inputs and
random coins. Note that in k attempts, A finds a good execution with probably (at least)
1− 2−k. After finding y∗, the adversary A continues as in the strict polynomial case discussed
above.

The key observation here is that in the emulated execution of R, induced by the interaction
of A with parties {A,B}, the party P∗ never interacts in more than m communication rounds.
Therefore, again, being far from the parties {A,B}, their actions do not affect P∗ in the first m
rounds, and so do not affect it at all. Hence, P∗ outputs y∗ also in the induced execution, and
so do the parties {A,B}.

Relation of our attack to the impossibility of Byzantine agreement. Our attack is
based on the hexagon argument that was used to rule out three-party Byzantine agreement
tolerating one corrupted party [44].6 Assuming such a protocol exists, two copies are composed
into a hexagonal system, where every pair of adjacent parties must output the same bit (by
agreement) and upon starting with the same bit b, must output b, independently of the rest of
the system (by validity). The adversary, controlling one party in the three-party protocol, can
force the output of the remaining parties to be 0, even upon starting with input 1, by emulating
towards both honest parties the hexagonal system where all virtual parties have input 0. This
argument does not extend to arbitrary three-party consistent protocols, since the output of two
adjacent parties might be influenced by the entire hexagonal system. We overcome this barrier
by using a larger ring system, and by running the system twice: once to learn the output value
and second to force the output for the honest parties in the three-party protocol.

1.2.2.3 Additional Related Work

Negative results. In their seminal work, Lamport et al. [73] defined the problem of simulating
a broadcast channel in the point-to-point model in terms of the Byzantine agreement problem.
They showed that a broadcast protocol exists if and only if more than two-thirds of the parties
are honest. Lamport [72] defined the weak Byzantine agreement problem, and showed that
even this weak variant of agreement cannot be computed, using deterministic protocols, facing
one-third corruptions. Fischer et al. [44] presented simpler proofs to the above impossibility
results using the so-called hexagon argument, which is also the basis of our lower bound (see

6In a Byzantine agreement protocol all honest parties must output the same bit (agreement), and if all honest
parties have the same input bit b, then the common output should be b (validity).

14

Section 1.2.2.2). They assumed a protocol exists for the three-party case, and composed multiple
copies of this protocol into a ring system that contains an internal conflict. Since the ring system
cannot exist, it follows that the three-party protocol does not exist. We remark that the result
of [44] easily extends to public-coins protocols, where parties have access to a common random
string, and even when new common random coins are revealed in each round, i.e., if the three-
party protocol is defined in the coin-flipping hybrid model; this is achieved by simulating the
same random coins to all instances of the three-party protocol in the ring system. It follows that
coin flipping is not sufficient for solving Byzantine agreement, and thus the impossibility result
for coin flipping stated in Corollary 1.2.10 is not implied by the aforementioned impossibility of
Byzantine agreement.

Positive results. If the model is augmented with a trusted setup phase, e.g., a public-key in-
frastructure (PKI), then Byzantine agreement can be computed facing any number of corrupted
parties [73]. Pfitzmann and Waidner [79] presented an information-theoretic broadcast protocol
given a correlated-randomness setup. Fitzi et al. [47] presented a probabilistic protocol that
securely computes weak Byzantine agreement facing an arbitrary number of corrupted parties.

Graham and Yao [59] showed that if agreement is only required to be achieved with a
constant probability (at most (

√
5− 1)/2), then broadcast protocols exist for n = 3 and t = 1.

Indeed, our attack does not apply to protocols with small consistency guarantees, and our
impossibility results consider protocols that are consistent with all but negligible probability.

Goldwasser and Lindell [55] presented a weaker definition for MPC without agreement, in
which non-unanimous abort is permitted, i.e., some honest parties may receive output while
others might abort. Using this definition, they utilized non-consistent protocols to construct
secure protocols in the point-to-point model, assuming an arbitrary number of corruptions.

1.3 Round-Efficient MPC with Full Security

As discussed in Section 1.1, the original security definitions of multiparty computation had a
property-based flavor (i.e., the protocols were required to satisfy correctness and privacy, and
potentially, as in the case of full security, other security properties such as independence of
inputs, fairness and guaranteed output delivery). However, it is by now widely accepted that
security of multiparty cryptographic protocols should be argued in a simulation-based manner.
Informally, the protocol execution is compared to an ideal world where the parties have access
to a trusted third party (aka the “ideal functionality”) that captures the security properties
we want the protocol to achieve. The trusted party takes the parties’ inputs and performs the
computation on their behalf. A protocol is regarded as secure if for any adversary attacking it,
there exists an ideal adversary (the simulator) attacking the execution in the ideal world, such
that no external distinguisher (environment) can tell the real and the ideal executions apart.

There are several advantages in proving a protocol secure in this way. For starters, the
definition of the functionality captures all security properties the protocol is supposed to have,
and therefore its design process along with the security proof often exposes potential design
flaws or issues that have been overlooked in the protocol design. A very important feature of
many simulation-based security definitions is composability, which ensures that a protocol can

15

be composed with other protocols without compromising its security. Intuitively, composability
ensures that if a protocol πG which uses a “hybrid” G (a broadcast channel, for example) securely
realizes functionality F, and protocol ρ securely realizes the functionality G, then the protocol
πρ/G , which results by replacing in π calls to G by invocations of ρ, securely realizes F. In fact,
simulation-based security is the one and only way we know to ensure that a protocol can be
generically used to implement its specification within an arbitrary environment.

Round complexity. The prevalent model for the design of MPC protocols is the synchronous
model, where the protocol proceeds in rounds and all messages sent in any given round are
received by the beginning of the next round. When executing such synchronous protocols over
large networks, one needs to impose a long round duration in order to account for potential
delay at the network level, since if the duration of the rounds is too short, then it is likely that
some of the messages that arrive late will be ignored, or worse, assigned to a later round. Thus,
the round complexity (i.e., the number of rounds it takes for a protocol to deliver outputs) is
an important efficiency metric for such protocols, and depending on the network parameters,
can play a dominant role in the protocol’s running time.

An issue often overlooked in the analysis of the round complexity of protocols is that the
relation between a protocol’s round complexity and its actual running time is sensitive to the
“hybrids” (e.g., network primitives) that the protocol is assumed to have access to. For example,
starting with the seminal MPC works [83, 53, 12, 25, 81], a common assumption is that the
parties have access to a broadcast channel which they invoke possibly in every round. In reality,
however, such a broadcast channel might not be available and would have to be implemented by
a broadcast protocol designed for a point-to-point network. Using a standard (deterministic)
broadcast protocol for this job incurs a linear blowup (in n, the number of parties7) on the
round complexity of the MPC protocol, as no deterministic broadcast protocol can tolerate a
linear number of corruptions in a sub-linear number of rounds; see Fischer and Lynch [43] and
Dolev and Strong [39]. Thus, even though the round complexity of these protocols is usually
considered to be linear in the multiplicative depth d of the computed circuit, in reality their
running time could become linear in nd (which can be improved to O(n+d) [66]) when executed
over point-to-point channels.8

In fact, all so-called constant-round multiparty protocols (e.g., [69, 8, 37, 64, 4, 50, 58, 77])
rely on broadcast rounds (rounds in which parties make calls to a broadcast channel) and
therefore their running time when broadcast is implemented by a standard protocol would
explode to be linear in n instead of constant.9 As the results from [43, 39] imply, this is not a
consequence of the specific choice of protocol but a limitation of any protocol in which there
is a round such that all parties are guaranteed to have received their output; consistently with
the literature on fault-tolerant distributed computing, we shall refer to protocols satisfying this
property as deterministic-termination protocols. In fact, to the best of our knowledge, even if
we allow a negligible chance for the broadcast to fail, the fastest known solutions tolerating a

7In fact, in the number of corruptions a protocol can tolerate, which is a constant fraction of n.
8Throughout this work we will consider fully secure protocols, in which all honest parties receive their output.

If one relaxes this requirement (i.e., allow that some parties do not receive their output and give up on fairness)
then the techniques of Goldwasser and Lindell [55] allow for replacing broadcast with a constant-round multi-cast
primitive.

9We remark that even though those protocols are for the computational setting, the lower bound on broadcast
round complexity also applies.

16

constant fraction of corruptions follow the paradigm from Feldman and Micali [42] (see below),
which requires a poly-logarithmic (in n) number of rounds.

Protocols with probabilistic termination. A major breakthrough in fault-tolerant dis-
tributed algorithms (recently honored with the 2015 Dijkstra Prize in Distributed Computing),
was the introduction of randomization to the field by Ben-Or [10] and Rabin [80], which, effec-
tively, showed how to circumvent the above limitation by using randomization. Most relevant to
this work, Rabin [80] showed that linearly resilient Byzantine agreement (BA) protocols [78, 73]
in expected constant rounds were possible, provided that all parties have access to a “common
coin” (i.e., a common source of randomness).10 This line of research culminated with the work
of Feldman and Micali [42], who showed how to obtain a shared random coin with constant
probability from “scratch,” yielding a probabilistic BA protocol tolerating the maximal number
of misbehaving parties (t < n/3) that runs in expected constant number of rounds. The ran-
domized BA protocol in [42] works in the information-theoretic setting; these results were later
extended to the computational setting by Fitzi and Garay [45] and by Katz and Koo [65] who
showed that, assuming digital signatures, there exists an (expected-)constant-round protocol
for BA tolerating t < n/2 corruptions. The speedup on the running time in all these protocols,
however, comes at the cost of uncertainty, as now they need to give up on guaranteed (even-
tual) termination (no fixed upper bound on their running time11) as well as on simultaneous
termination (a party that terminates cannot be sure that other parties have also terminated12);
see Dolev et al. [40]. These issues make the simulation-based proof of these protocols a very
delicate task which is the motivation for the current work.

What made the simulation-based approach a more accessible technique in security proofs
was the introduction of simulation-based security frameworks. The ones that stand out in this
development, and most often used in the literature, are Canetti’s modular composition (aka
stand-alone security) [19] and the universal composition (UC) frameworks [20, 21]. The former
defines security of synchronous protocols executed in isolation (i.e., only a single protocol is
run at a time and whenever a subroutine-protocol is called, it is run until its completion); the
latter allows protocols to be executed alongside arbitrary (other) protocols and be interleaved in
an arbitrary manner. We remark that although the UC framework is inherently asynchronous,
several mechanisms have been proposed to allow for a synchronous execution within it (e.g., [21,
71, 68]).

Despite the widespread use of the simulation-based paradigm to prove security of proto-
cols with deterministic termination, the situation has been quite different when probabilistic-
termination protocols are considered. Here, despite the existence of round-efficient BA proto-
cols as mentioned above [42, 65], to our knowledge, no formal treatment of the problem in a
simulation-based model exists, which would allow us to apply the ingenious ideas of Rabin and
Ben-Or in order to speed up cryptographic protocols. We note that Katz and Koo [65] even
provide an expected-constant-round MPC protocol using their fast BA protocol as a subrou-
tine, employing several techniques to ensure proper use of randomized BA. However, in lack of a

10Essentially, the value of the coin can be adopted by the honest parties in case disagreement at any given
round is detected, a process that is repeated multiple times.

11Throughout this section we use running time and round complexity interchangeably.
12It should be noted, however, that in many of these protocols there is a known (constant) “slack” of c rounds,

such that if a party terminates in round r, then it can be sure that every honest party will have terminated by
round r + c.

17

formal treatment, existing constructions are usually proved secure in a property-based manner
or rely on ad hoc, less studied security frameworks [74].13

A simulation-based and composable treatment of such probabilistic-termination (PT for
short) protocols would naturally allow, for example, to replace the commonly used broadcast
channel with a broadcast protocol, so that the expected running time of the resulting protocol
is asymptotically the same as the one of the original (broadcast-hybrid) protocol. However, a
closer look at this replacement exposes several issues that have to do not only with the lack of
simulation-based security but also with other inherent limitations. Concretely, it is usually the
case in an MPC protocol that the broadcast channel is accessed by several (in many cases by
all) parties in the same (broadcast) round in parallel. Ben-Or and El-Yaniv [11] observed that
if we näıvely replace each such invocation with a PT broadcast protocol with expected constant
running-time, then the expected number of rounds until all broadcasts terminate is no longer
constant; in fact, it is not hard to see that in the case of [42] the expected round complexity
would be logarithmic in the number of instances (We expand on the reason for this blowup
in the round complexity in Section 5.3.) Nevertheless, Ben-Or and El-Yaniv [11] proposed a
mechanism for implementing such parallel calls to broadcast so that the total number of rounds
remains constant in expectation.

The difficulties arising with parallel composition are not the only issue with probabilistic-
termination protocols. As observed by Lindell et al. [74], composing such protocols in sequence
is also problematic. The main issue here is that, as already mentioned, PT protocols do not
have simultaneous termination and therefore a party cannot be sure how long after he receives
his output from a call to such a PT protocol he can safely carry on with the execution of
the calling protocol. Although PT protocols usually guarantee a constant “slack” of rounds
(say, c) in the output of any two honest parties, the näıve approach of using this property to
synchronize the parties (i.e., wait c rounds after the first call, 2c rounds after the second call,
and so on) imposes an exponential blowup on the round complexity of the calling protocol. To
resolve this, Lindell et al. [74] proposed using fixed points in time at which a re-synchronization
subroutine is executed, allowing the parties to ensure that they never get too far out-of-sync.
An alternative approach for solving this issue was also proposed by Katz and Koo [65], but
again, with a restricted (property-based) proof.

Despite their novel aspects, the aforementioned results on composition of PT protocols do
not use simulation-based security, and therefore it is unclear how (or if) they could be used to,
for example, instantiate broadcast within a higher-level cryptographic protocol. In addition,
they do not deal with other important features of modern security definitions, such as adaptive
security and strict polynomial time execution. In fact, this lack of a formal cryptographic
treatment places some of their claims at odds with the state-of-the-art cryptographic definitions.
Somewhat pointedly, Ben-Or and El-Yaniv [11] claimed adaptive security, which, although can
be shown to hold in a property-based definition, is not achieved by the specified construction
when simulation-based security is considered (cf. Chapter 8).

13As we discuss below, the protocol of Katz and Koo [65] has an additional issue with adaptive security in the
rushing-adversary model, as defined in the UC framework, similar to the issue exploited by Hirt and Zikas [61].

18

Our Contributions

We provide the first formal simulation-based (and composable) treatment of MPC with prob-
abilistic termination. Our treatment builds on the universal composition (UC) framework of
Canetti [20]. In order to take advantage of the fast termination of PT protocols, parties typi-
cally proceed at different paces and therefore protocols might need to be run in an interleaved
manner, e.g., in an MPC protocol a party might initiate the protocol for broadcasting his r-
round message before other parties have received output from the broadcasting of messages for
round r − 1. This inherent concurrency along with its support for synchrony makes the UC
framework the natural candidate for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler that allows us to
transform any UC protocol π, even one that cannot be realized in the real world, making calls
to deterministic-termination UC protocols ρi in a “stand-alone fashion” (similar to [19], i.e., the
protocols ρi are invoked sequentially and in each round exactly one protocol is being executed
by all the parties) into a (probabilistic-termination) protocol π′ (where parties are no longer
synchronized and the hybrids are invoked concurrently) that can be realized in the real world,
and in which each ρi is replaced by a PT protocol ρ′i. The compiled protocol π′ achieves the
same security as π and has (expected) round complexity proportional to

∑
i diri, where di is

the expected number of calls π makes to ρi and ri is the expected round complexity of ρi.
Toward this goal, the first step is to define what it means for a protocol to UC-securely realize

a functionality with probabilistic termination in a simulation-based manner, by proposing an
explicit formulation of the functionality that captures this important protocol aspect. The
high-level idea is to parameterize the functionality with an efficiently sampleable distribution D
that provides an upper bound on the protocol’s running time (i.e., number of rounds), so that
the adversary cannot delay outputs beyond this point (but is allowed to deliver the output to
honest parties earlier, and even in different rounds).

Next, we prove our universal composability result. Informally, our result provides a generic
compiler that takes as input a “stand-alone” protocol π, UC-realizing a probabilistic-termination
functionality FD (for a given distribution D) while making sequential calls to (deterministic-
termination) secure function evaluation (SFE)-like functionalities, and compiles it into a new
protocol π′, in which the calls to the SFEs are replaced by probabilistic-termination protocols
realizing them. The important feature of our compiler is that in the compiled protocol, the
parties do not need to wait for every party to terminate their emulation of each SFE to proceed
to the emulation of the next SFE. Rather, shortly after a party (locally) receives its output
from one emulation, it proceeds to the next one. This yields an (at most) multiplicative blowup
on the expected round complexity as discussed above. In particular, if the protocols used to
emulate the SFEs are expected constant round, then the expected round complexity of π′ is the
same (asymptotically) as that of π.

We then showcase our definition and composition theorem by providing simulation-based
(therefore composable) probabilistic-termination protocols and security proofs for several primi-
tives relying on point-to-point channels: expected-constant-round perfect Byzantine agreement,
expected-constant-round perfect parallel broadcast, and an MPC protocol with perfect and full
security, with round complexity independent of the number of parties. Not surprisingly, the
simulation-based treatment reveals several issues, both at the formal and at the intuitive levels,
that are not present in a property-based analysis, and which we discuss along the way. We now

19

elaborate on each application in turn.
Regarding Byzantine agreement, we present a protocol that perfectly UC-realizes the Byzan-

tine agreement functionality with probabilistic termination for t < n/3 with expected constant
number of rounds. (We will use RBA to denote probabilistic-termination BA, as it is often re-
ferred to as “randomized BA.”14) Our protocol follows the structure of the protocol in Feldman
and Micali [42], with a modification inspired by Goldreich and Petrank [52], to make it run in
strict polynomial time (see the discussion below). In a sense our protocol can be viewed as the
analogue for RBA of the well-known “CLOS” protocol for MPC [23]. Indeed, similarly to how
Canetti et al. [23] converted (and proved) the “GMW” protocol [53] from static security in the
stand-alone setting into an adaptively secure UC version, our work transforms the broadcast and
BA protocols from [42] into adaptively UC-secure randomized broadcast and RBA protocols.15

Theorem 1.3.1 (expected-constant-round RBA, informal). The randomized Byzantine agree-
ment functionality can be UC-realized with perfect security using an expected-constant-round
protocol in the secure-channels hybrid model, in the presence of an adaptive malicious adver-
sary corrupting at most t < n/3 parties.

Our first construction above serves as a good showcase of the power of our composition the-
orem, demonstrating how UC-secure RBA is built in a modular manner: First, we de-compose
the subroutines that are invoked in [42] and describe simple(r) (SFE-like) functionalities corre-
sponding to these subroutines; this provides us with a simple “backbone” of the protocol in [42]
making calls to these hybrids, which can be easily proved to implement expected-constant-round
RBA. Next, we feed this simplified protocol to our compiler which outputs a protocol that im-
plements RBA from point-to-point secure channels; our composition theorem ensures that the
resulting protocol is also expected constant round.

There is a sticky issue in proving Theorem 1.3.1 that we need to resolve for the above to work:
the protocol in [42] does not have guaranteed termination and therefore the distribution of the
terminating round is not sampleable by a strict probabilistic polynomial-time (PPT) machine.16

A way around this issue would be to modify the UC model of execution so that the corresponding
ITMs are expected PPT machines. Such a modification, however, would impact the UC model of
computation, and would therefore require a new proof of the composition theorem, a trickier task
than one might expect, as the shift to expected polynomial-time simulation is known to introduce
additional conceptual and technical difficulties (cf. [67]), whose resolution is beyond the scope of
this work. Instead, here we take a different approach which preserves full compatibility with the
UC framework: We adapt the protocol from [42] using ideas from [52] so that it implements a
functionality which samples the terminating round with almost the same probability distribution
as in [42], but from a finite (linear-size) domain; as we show, this distribution is sampleable in
strict polynomial time and can therefore be used by a standard UC functionality.

Next, using our composition theorem we derive the first simulation-based and adaptively
secure parallel broadcast protocol, which guarantees that all broadcast values are received within

14BA is a deterministic output primitive and it should be clear that the term “randomized” can only refer to
the actual number of rounds; however, to avoid confusion we will abstain from using this term for functionalities
other than BA whose output might also be probabilistic.

15As we show, the protocol in [42] does not satisfy input independence, and therefore is not adaptively secure
in a simulation-based manner (cf. [61]).

16All entities in UC, and in particular ideal functionalities, are strict interactive PPT Turing machines, and
the UC composition theorem is proved for such PPT ITMs.

20

expected constant number of rounds. This extends the results of [11, 65] in several ways: first,
our protocol is UC-secure, meaning that it can now be used within a UC-secure SFE protocol
to implement a broadcast channel; second, it is adaptively secure against a rushing adversary.17

Theorem 1.3.2 (expected-constant-round parallel broadcast, informal). The parallel-broadcast
functionality can be UC-realized with perfect security using an expected-constant-round proto-
col in the secure-channels hybrid model, in the presence of an adaptive malicious adversary
corrupting at most t < n/3 parties.

Finally, by applying once again our compiler to replace calls to the broadcast channel in the
SFE protocol by Ben-Or, Goldwasser, and Wigderson [12] (which provides perfect and full secu-
rity for t < n/3 corruptions in the broadcast-hybrid model [3]) by invocations to our adaptively
secure UC parallel broadcast protocol, we obtain the first UC-secure probabilistic-termination
fully secure MPC protocol in the point-to-point secure-channels model with (expected) round
complexity O(d), independently of the number of parties, where d is the multiplicative depth of
the circuit being computed. As with RBA, this result can be seen as the first analogue of the
UC compiler by Canetti et al. [23] for SFE protocols with probabilistic termination.

Theorem 1.3.3 (fully secure SFE with round complexity independent of n, informal). Let f
be an n-party function. The secure function evaluation of f can be UC-realized with perfect
and full security using a protocol whose round complexity is linear in the depth of the circuit
representing f , in the secure-channels hybrid model, in the presence of an adaptive malicious
adversary corrupting at most t < n/3 parties.

We stress that the use of perfect security to showcase our composition theorem is just our
choice and not a restriction of our composition theorem. In fact, our theorem can be also
applied to statistically or computationally secure protocols. Moreover, if one is interested in
achieving better constants in the (expected) round complexity, then one can use SFE protocols
that attempt to minimize the use of the broadcast channel (e.g., [66]). Our composition theorem
will give a direct methodology for this replacement and will, as before, eliminate the dependency
of the round complexity from the number of parties.18

1.4 Organization

The thesis consists of two parts.
Part I considers the feasibility of full security. Chapter 3 analyzes the relation between

fairness and guaranteed output delivery (i.e., full security) and Chapter 4 presents a character-
ization of full security without broadcast. The results in this part are based on [29, 32].

Part II considers round-efficient MPC with full security in the UC framework, and presents
feasibility of secure computation without broadcast with the same round complexity as secure
computation with broadcast, in expectation. The results in this part are based on [31].

17Although security against a “dynamic” adversary is also claimed in [11], the protocol does not implement
the natural parallel broadcast functionality in the presence of an adaptive adversary (see Chapter 8).

18Note that even a single round of broadcast is enough to create the issues with parallel composition and
non-simultaneous termination discussed above.

21

Each part is self contained and includes the necessary background and definitions, despite
the risk of a small amount of repetitions. We also provide an appendix containing abstracts of
additional and followup work done by the author during graduate studies at Bar-Ilan University.

22

Part I

Feasibility of Full Security

23

Chapter 2

Definitions

Notations We let κ ∈ N denote the security parameter. For n ∈ N, let [n] = {1, · · · , n}. Let
poly denote the set all positive polynomials and let ppt denote a probabilistic interactive Turing
machine that runs in strictly polynomial time. A function µ : N → [0, 1] is negligible, denoted
µ(κ) = neg(κ), if µ(κ) < 1/p(κ) for every p ∈ poly and large enough κ. The statistical distance
between two random variables X and Y over a finite set U , denoted SD(X,Y), is defined as
1
2 ·
∑
u∈U |Pr [X = u]− Pr [Y = u]|.

Two distribution ensembles X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are
computationally indistinguishable (denoted X

c≡ Y) if for every non-uniform polynomial-time
distinguisher D there exists a function µ(κ) = neg(κ), such that for every a ∈ {0, 1}∗ and κ,

|Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]| ≤ µ(κ).

The distribution ensembles X and Y are δ-close if for every a ∈ {0, 1}∗ and every κ it holds
that SD(X(a, κ), Y (a, κ)) ≤ δ(κ), and statistically close (denoted X

s≡ Y) is they are δ-close
and δ is negligible.

2.1 Security of Protocols

In this section, we present definitions for secure multiparty computation. Out definitions follow
Goldreich [51], which in turn follows [54, 7, 75, 19]. We consider several definitions of security:
full security (i.e., security with guaranteed output delivery), security with complete fairness,
security with complete fairness and identifiable abort, security with abort and security with
identifiable abort.

All of these security definitions are based on the real/ideal paradigm, i.e., comparing what an
adversary can do in the real execution of the protocol to what it can do in an ideal model, where
an uncorrupted trusted party assists the parties. In an ideal-model execution, each party sends
its input to the trusted party over a perfectly secure channel, the trusted party computes the
function based on these inputs and sends to each party its corresponding output. Informally,
a protocol is secure if whatever an adversary can do in the real protocol (where no trusted
party exists) can be done in the above-described ideal computation. The difference between the

25

various security definitions is related to whether the ideal-model adversary is allowed to abort
the ideal execution, and if so at what stage and under which conditions.

Functionalities: An n-party functionality is a random process that maps vectors of n inputs
to vectors of n outputs, denoted as f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn). That is,
for a vector of inputs x = (x1, . . . , xn), the output-vector is a random variable (f1(x), . . . , fn(x))
ranging over vectors of strings. The output for the ith party (with input xi) is defined to be
fi(x). We denote an empty input by λ. A functionality f is public-output, if the output values
of all parties are the same, i.e., for every x ∈ ({0, 1}∗)n, f1(x) = f2(x) = . . . = fn(x); by abuse
of notation we refer to the functionality f as f1. Otherwise, f is a private-output functionality.

Adversarial behaviour: Loosely speaking, the aim of a secure multiparty protocol is to pro-
tect the honest parties against dishonest behavior from the corrupted parties. This is normally
modeled using a central adversarial entity, which controls the set of corrupted parties and in-
structs them how to operate. That is, the adversary obtains the views of the corrupted parties,
consisting of their inputs, random tapes and incoming messages, and provides them with the
messages that they are to send in the execution of the protocol.

We differentiate between three types of adversaries:

• Semi-honest adversaries: a semi-honest adversary always instructs the corrupted par-
ties to follow the protocol. Semi-honest adversaries model “honest but curious” behaviour,
where the adversary tries to learn additional information other than the output, based on
the internal states of the corrupted parties.

• Fail-stop adversaries: a fail-stop adversary instructs the corrupted parties to follow the
protocol as a semi-honest adversary, but it may also instruct a corrupted party to halt
early (only sending some of its messages in a round).

• Malicious adversaries: a malicious adversary can instruct the corrupted parties to
deviate from the protocol in any arbitrary way it chooses. There are no restrictions on
the behaviour of malicious adversaries.

Unless stated otherwise, we consider malicious adversaries who may arbitrarily deviate from
the protocol specification. When considering malicious adversaries, there are certain undesirable
actions that cannot be prevented. Specifically, parties may refuse to participate in the protocol,
may substitute their local input (and enter with a different input) and may cease participating
in the protocol before it terminates. Essentially, secure protocols limit the adversary to such
behaviour only.

We further assume that the adversary is static, i.e., the adversary is given a set I of corrupted
parties which it controls at the beginning of the execution.19

19In Part II we consider adaptive adversaries that can corrupt parties during the coarse of the protocol.

26

2.2 Execution in the Real World

We first define a real-model execution. An n-party protocol π = (P1, . . . ,Pn) is an n-tuple
of probabilistic interactive Turing Machines. The term party Pi refers to the ith interactive
Turing Machine. Each party Pi starts with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗

and security parameter κ ∈ N.20 An adversary A is another probabilistic interactive Turing
Machine, describing the behavior of the corrupted parties. We assume that the adversary is
static, and so A starts the execution with input that contains the identities of the corrupted
parties and their private inputs, and possibly an additional auxiliary input. The parties execute
the protocol in a synchronous network with rushing. That is, the execution proceeds in rounds:
each round consists of a send phase (where parties send their message from this round) followed
by a receive phase (where they receive messages from other parties). The adversary is rushing
which means that it can see the messages the honest parties send in a round, before determining
the messages that the corrupted parties send in that round.

We assume the parties are connected via a fully connected point-to-point network; we refer
to this model as the point-to-point model. We consider two models for the communication
lines between the parties: In the authenticated-channels model, the communication lines are
assumed to be ideally authenticated but not private (and thus the adversary cannot modify
messages sent between two honest parties but can read them).21 In the secure-channels model,
the communication lines are assumed to be ideally private (and thus the adversary cannot read
or modify messages sent between two honest parties). We sometimes assume that the parties
are given access to a physical broadcast channel in addition to the point-to-point network; we
refer to this model as the broadcast model. In each section it will be explicitly clarified whether
the existence of a broadcast channel is assumed or not. Furthermore, the delivery of messages
between honest parties is guaranteed. Finally, we note that in both models, we do not assume
any trusted preprocessing phase (that can be used to setup correlated randomness, for example,
a public-key infrastructure).

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
At the conclusion of the execution, the honest parties output their prescribed output from
the protocol, the corrupted parties output nothing and the adversary outputs an (arbitrary)
function of its view of the computation (containing the views of the corrupted parties). The
view of a party in a given execution of the protocol consists of its input, its random coins, and
the messages it sees throughout this execution.

Definition 2.2.1 (real-model execution). Let f be an n-party functionality, let π be a multiparty
protocol for computing f , and let κ be the security parameter. Denote by I ⊆ [n] the set of
indices of the parties corrupted by A. Then, the joint execution of π under (A, I) in the real
model, on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter κ,
denoted REALπ,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A resulting from
the protocol interaction, where for every i ∈ I, party Pi computes its messages according to A,

20Without loss of generality, the input length of each party is sometimes considered to be the security parameter.
21If private channels are needed in the computational model, then privacy can be achieved over authenticated

channels by simply using public-key encryption. This works for static corruptions and efficient adversaries.

27

and for every j /∈ I, party Pj computes its messages according to π.

2.2.0.1 Time and Round Complexity

We start by defining both strict and expected bounds on the time complexity of interactive
Turing machines (ITMs).

Definition 2.2.2 (time complexity of interactive Turing machines). An ITM P has running-
time T , if for every input x ∈ {0, 1}∗ and any choice of its random coins, when interacting with
arbitrary (possibly unbounded) ITMs, P’s running time is at most T (|x|). If T ∈ poly, then P
is of (strict) polynomial time.

The machine P has an expected running time T , if for every input x ∈ {0, 1}∗, when interact-
ing with arbitrary (possibly unbounded) ITMs, P’s expected running time, over its own random
coins, is at most T (|x|). If T ∈ poly, then P has expected polynomial running time.

Next, we define both strict and expected bounds on the time and round complexities of
protocols.

Definition 2.2.3 (time complexity of a protocol). Protocol π = (P1, . . . ,Pn) is a T -time proto-
col, if for every i ∈ [n], party Pi has running-time T . If T ∈ poly, then π is of (strict) polynomial
time.

Protocol π has an expected running time T , if for every i ∈ [n], party Pi has an expected
running time T . If T ∈ poly, then π has expected polynomial running time.

Definition 2.2.4 (round complexity). Protocol π = (P1, . . . ,Pn) is a q-round protocol, if for
every i ∈ [n], and every input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗, the round number in
which an honest party Pi stops being active (i.e., stops sending and receiving messages) is at
most q(|xi|), when interacting with arbitrary (possibly unbounded) interactive Turing machines
(P∗1, . . . ,P∗i−1,P∗i+1, . . . , ,P∗n). If q ∈ poly, then π has (strict) polynomial round complexity.

Protocol π has an expected round complexity q, if for every i ∈ [n], and every input value
xi ∈ {0, 1}∗, the expected round number in which an honest party Pi stops being active, over
its random coins ri, when interacting with arbitrary (possibly unbounded) interactive Turing
machines (P∗1, . . . ,P∗i−1,P∗i+1, . . . , ,P∗n) is at most q(|xi|). If q ∈ poly, then π has expected
polynomial round complexity.

Definitions 2.2.3 and 2.2.4 are fairly strong in the sense that they capture time and round
complexities as local properties of every party in the protocol. Although all of our positive results
readily meet these definitions, we note that weaker notions of time and round complexities can
be defined, in which the running time is required to hold only when interacting with up to t

corrupted parties. Our attack in Section 4.1 can be applied also to protocols with the weaker
guarantees whenever t ≥ n/3.

2.3 Execution in the Ideal World

We consider several ideal worlds, each provides a different notion of security.

28

2.3.1 Secure Computation with Guaranteed Output Delivery

This definition provides the strongest notion of security we consider, and so we also refer to
this security notion as full security. According to this definition, the protocol can terminate
only when all parties receive their prescribed output. Recall that a malicious party can always
substitute its input or refuse to participate. Therefore, the ideal model takes this inherent
adversarial behavior into account by giving the adversary the ability to do this also in the ideal
model. Since the adversary cannot abort the execution of the protocol in this model, fail-stop
adversaries are equivalent to semi-honest adversaries (in particular, they cannot substitute their
input).

Ideal-model execution. An ideal computation of an n-party functionality f on input x =
(x1, . . . , xn) for parties (P1, . . . ,Pn) in the presence of an ideal-model adversary A controlling
the parties indexed by I ⊆ [n], proceeds via the following steps.

Send inputs to trusted party: Each honest party Pi sends its input xi to the trusted party.
The adversary may send to the trusted party arbitrary inputs for the corrupted parties.
Let x′i be the value actually sent as the input of party Pi. In case the adversary is
semi-honest or fail-stop, we require that x′i = xi.

Trusted party answers the parties: If x′i is outside of the domain for Pi, for some index i,
or if no input was sent for Pi, then the trusted party sets x′i to be some predetermined
default value. Next, the trusted party computes f(x′1, . . . , x′n) = (y1, . . . , yn) and sends yi
to party Pi for every i.

Outputs: Honest parties always output the message received from the trusted party and the
corrupted parties output nothing. The adversary A outputs an arbitrary function of the
initial inputs {xi}i∈I , the messages received by the corrupted parties from the trusted
party {yi}i∈I and its auxiliary input.

Definition 2.3.1 (ideal-model computation with full security). Let f : ({0, 1}∗)n → ({0, 1}∗)n

be an n-party functionality, let I ⊆ [n] be the set of indices of the corrupted parties, and let
κ be the security parameter. Then, the joint execution of f under (A, I) in the ideal model,
on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALfull

f,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A resulting from the above-
described ideal process.

2.3.2 Secure Computation with Complete Fairness

This definition is similar to the previous one, except that the execution can terminate in two
possible ways: the first is when all parties receive their prescribed output (as in the previous
case) and the second is when all parties (including the corrupted parties) abort without receiving
output. This is “fair” since in both cases the adversary receives no more information than the
honest parties. In this definition, when sending the inputs to the trusted party, the adversary
is allowed to send a special abort command. In this case, the trusted party sends a special
failure symbol ⊥ as the output to all parties. Without loss of generality, we assume that a
malicious party always sends an input which is either in the corresponding input domain or
abort, since in case the trusted party receives a value outside of the domain, it can proceed

29

as if abort was sent. In this definition, fail-stop adversaries have the additional capability over
semi-honest adversaries to abort the computation without anyone receiving output. An ideal
execution proceeds as follows:

Send inputs to trusted party: Each honest party Pi sends its input xi to the trusted party.
The adversary may send to the trusted party arbitrary inputs for the corrupted parties,
in particular it can send the special abort input. Let x′i be the value actually sent as the
input of party Pi. We require that in the case of a semi-honest adversary x′i = xi, whereas
in the case of a fail-stop adversary x′i ∈ {xi, abort}.

Trusted party answers the parties: If x′i = abort for Pi, for some index i, the trusted
party sends ⊥ to all the parties. Otherwise, the trusted party computes f(x′1, . . . , x′n) =
(y1, . . . , yn) and sends yi to party Pi for every i ∈ [n].

Outputs: As in Definition 2.3.1.

Definition 2.3.2 (ideal-model computation with fairness). Let f : ({0, 1}∗)n → ({0, 1}∗)n be
an n-party functionality, let I ⊆ [n] be the set of indices of the corrupted parties, and let κ
be the security parameter. Then, the joint execution of f under (A, I) in the ideal model,
on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALfair

f,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A resulting from the above-
described ideal process.

2.3.3 Secure Computation with Complete Fairness and Identifiable Abort

This definition is identical to the previous definition of secure computation with complete fair-
ness, except that if the adversary aborts the computation, all honest parties learn the identity
of one of the corrupted parties.

Send inputs to trusted party: Each honest party Pi sends its input xi to the trusted party.
The adversary may send to the trusted party arbitrary inputs for the corrupted parties.
Let x′i be the value actually sent as the input of party Pi. In case the adversary instructs
Pi to send abort, it chooses an index of a corrupted party i∗ ∈ I and sets x′i = (abort, i∗).
We require that in the case of a semi-honest adversary, x′i = xi, whereas in the case of a
fail-stop adversary x′i ∈ {xi, (abort, i∗)} for some i∗ ∈ I.

Trusted party answers the parties: If x′i = (abort, i∗) for some i ∈ [n] and i∗ ∈ I, the
trusted party sends (⊥, i∗) to all the parties. Otherwise, the trusted party computes
f(x′1, . . . , x′n) = (y1, . . . , yn) and sends yi to party Pi for every i ∈ [n].

Outputs: As in Definition 2.3.1.

Definition 2.3.3 (ideal-model computation with complete fairness and identifiable abort). Let
f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, let I ⊆ [n] be the set of indices of the
corrupted parties, and let κ be the security parameter. Then, the joint execution of f under
(A, I) in the ideal model, on input vector x = (x1, . . . , xn), auxiliary input z to A and security
parameter κ, denoted IDEALid-fair

f,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A
resulting from the above-described ideal process.

30

2.3.4 Secure Computation with Abort

This definition is similar to secure computation with fairness; however the protocol can also
terminate when corrupted parties receive output yet honest parties do not. However, if one
honest party receives output, then so do all honest parties. Thus, this is the notion of unanimous
abort (cf. [55].

Send inputs to trusted party: As in Definition 2.3.2.

Trusted party answers adversary: If x′i = abort for Pi, for some index i, the trusted party
sends ⊥ to all the parties. Otherwise, the trusted party computes f(x′1, . . . , x′n) =
(y1, . . . , yn) and sends yi to party Pi for every i ∈ I.

Trusted party answers remaining parties: The adversary, depending on the views of all
the corrupted parties, sends the trusted party either continue or abort. In case of continue,
the trusted party sends yi to Pi for every i /∈ I, whereas in case of abort the trusted party
sends ⊥ to Pi for every i /∈ I.

Outputs: As in Definition 2.3.1.

Definition 2.3.4 (ideal-model computation with abort). Let f : ({0, 1}∗)n → ({0, 1}∗)n be
an n-party functionality, let I ⊆ [n] be the set of indices of the corrupted parties, and let κ
be the security parameter. Then, the joint execution of f under (A, I) in the ideal model,
on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALabort

f,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A resulting from the above-
described ideal process.

2.3.5 Secure Computation with Identifiable Abort

This definition is identical to the previous definition of secure computation with abort, except
that if the adversary aborts the computation, all honest parties learn the identity of one of the
corrupted parties.

Send inputs to trusted party: As in Definition 2.3.3.

Trusted party answers adversary: If x′i = (abort, i∗) for Pi, for some index i ∈ [n] and
i∗ ∈ I, the trusted party sends (⊥, i∗) to all the parties. Otherwise, the trusted party
computes f(x′1, . . . , x′n) = (y1, . . . , yn) and sends yi to every corrupted party Pi (for every
i ∈ I).

Trusted party answers remaining parties: The adversary, depending on the views of all
the corrupted parties, sends the trusted party either continue or (abort, i∗), where i∗ ∈ I.
In case of (abort, i∗) with i∗ ∈ I the trusted party sends (⊥, i∗) to Pi for every i /∈ I; in
case of continue, the trusted party sends yi to Pi for every i /∈ I.

Outputs: As in Definition 2.3.1.

Definition 2.3.5 (ideal computation with identifiable abort). Let f : ({0, 1}∗)n → ({0, 1}∗)n

be an n-party functionality, let I ⊆ [n] be the set of indices of the corrupted parties, and let
κ be the security parameter. Then, the joint execution of f under (A, I) in the ideal model,

31

on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALid-abort

f,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A resulting from the above-
described ideal process.

2.4 Security as Emulation of a Real Execution in the Ideal
Model

Having defined the ideal and real models, we can now define security of protocols. The un-
derlying idea of the definition is that the adversary can do no more harm in a real protocol
execution than in the ideal model (where security trivially holds). This is formulated by saying
that adversaries in the ideal model are able to simulate adversaries in an execution of a protocol
in the real model. When the adversary is all-powerful, i.e., computationally unbounded, we
require that the real and ideal models are statistically close,22 and define information-theoretic
security. When the adversary is efficient, i.e., runs in probabilistic polynomial time, we require
that the real and ideal models are computationally indistinguishable and define computational
security.

Definition 2.4.1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, and let π be a
probabilistic polynomial-time protocol computing f . The protocol π t-securely computes f (with
computational security), if for every probabilistic polynomial-time adversary A for the real model,
there exists a probabilistic polynomial-time adversary S for the ideal model, such that for every
I ⊆ [n] of size at most t, it holds that{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

c≡
{

IDEALtype
f,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

Definition 2.4.2. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, and let π be
a probabilistic polynomial-time protocol computing f . The protocol π t-securely computes f
(with information-theoretic security), if for every adversary A for the real model, there exists an
adversary S for the ideal model, whose running time is polynomial in the running time of A,
such that for every I ⊆ [n] of size at most t,{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALtype
f,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

2.5 The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides
ideal computation for specific functionalities. The parties communicate with this trusted party
in exactly the same way as in the ideal models described above. The question of which ideal
model is considered must be specified. Specifically, the trusted party may work according to
any of the ideal models that we have defined above.

22In particular, perfect security means that the real and ideal models are identically distributed.

32

Let f be a functionality. Then, an execution of a protocol π computing a functionality g

in the f -hybrid model involves the parties sending normal messages to each other (as in the
real model) and in addition, having access to a trusted party computing f . It is essential that
the invocations of f are done sequentially, meaning that before an invocation of f begins, the
preceding invocation of f must finish.23 In particular, there is at most a single call to f per
round, and no other messages are sent during any round in which f is called. This is especially
important for reactive functionalities, where the calls to f are carried out in phases, and a
new invocation of f cannot take place before all phases of the previous invocation complete.
In addition, no other messages in π can be sent before f is completed. For example, if f
computes the commitment functionality, then after the first call to f , computing the commit
phase, another invocation of f cannot take place until the decommit phase of the first invocation
is completed. (In this specific example, it typically won’t be useful unless other messages can
be sent between the commit and decommit phase. This can be overcome by not modeling
the commitment as an ideal functionality. Alternatively, if the functionality allows for multiple
commitments, then ordinary messages can be sent between the commit and decommit phase of a
specific message by repeatedly committing and decommitting. This is an annoying technicality,
but is nevertheless an inherent limitation of the sequential composition theorem of Canetti [19].)

Let type ∈ {full, fair, id-fair, abort, id-abort}. Let A be a probabilistic polynomial time ma-
chine with auxiliary input z and let I ⊆ [n] be the set of corrupted parties. We denote by
HYBRIDf,type

π,I,A(z)(x, κ) the random variable consisting of the view of the adversary and the output
of the honest parties, following an execution of π with ideal calls to a trusted party computing
f according to the ideal model “type”, on input vector x = (x1, . . . , xn), auxiliary input z to A,
and security parameter κ. We call this the (f, type)-hybrid model.

The sequential composition theorem of Canetti [19] states the following. Let ρ be a protocol
that securely computes f in the ideal model “type”. Then, if a protocol π computes g in the
(f, type)-hybrid model, then the protocol πρ, that is obtained from π by replacing all ideal calls
to the trusted party computing f with the protocol ρ, securely computes g in the real model.

Proposition 2.5.1 ([19]). Let type1, type2 ∈ {full, fair, id-fair, abort, id-abort}. Let f be an n-
party functionality. Let ρ be a protocol that t-securely computes f with type1, and let π be a
protocol that t-securely computes g with type2 in the (f, type1)-hybrid model. Then protocol πρ

t-securely computes g with type2 in the real model.

23In Part II we discuss concurrent composition of protocols.

33

34

Chapter 3

Fairness Versus Guaranteed Output
Delivery

In this chapter, we analyze the relation between fairness and guaranteed output delivery. In
Section 3.1 we provide a non-trivial separation between these notions. In Section 3.2 we show a
family of functions for which both notions are the same. In Section 3.3 we discuss the meaning
of broadcast, and show that although it plays no role for feasibility of fairness, it is essential for
guaranteed output delivery. In fact, we show that in the broadcast model, every fair protocol can
be compiled into a protocol that allows to identify corrupted parties while preserving fairness,
and that this property is sufficient for guaranteed output delivery. In Section 3.4 we show
that fairness does not help in a black-box way for achieving guaranteed output delivery. In
Section 3.5 we present additional results.

3.1 Separating Fairness from Guaranteed Output Delivery

In this section, we prove Theorem 1.2.1. As we have mentioned in the Introduction, it is known
that secure broadcast can be t-securely computed with guaranteed output delivery if and only
if t < n/3. In addition, secure broadcast can be computed with fairness, for any t ≤ n, using
the protocol of Fitzi et al. [47]. Thus, broadcast already constitutes a separation of fairness
from guaranteed output delivery; however, since broadcast can be information-theoretically
computed (and is trivial in the technical sense; see Footnote 2), we ask whether or not such a
separation also exists for more standard secure computation tasks.

In order to show a separation, we need to take a function for which fairness in the multiparty
setting is feasible. Very few such functions are known, and the focus of this work is not the
construction of new protocols. Fortunately, Gordon and Katz [56] showed that the three-party
majority function can be securely computed with fairness. (In [56] a broadcast channel is used.
However, as we show in Section 3.3.1, this implies the result also without a broadcast channel.)
We stress that the three-party majority function is not trivial, and in fact the ability to securely
compute it with any number of corruptions implies the existence of oblivious transfer (this is
shown by reducing the two-party greater-than functionality to it and applying [70]).

We show that the three-party majority function fmaj cannot be securely computed with
guaranteed output delivery and any number of corrupted parties in the point-to-point network

35

model by showing that it actually implies broadcast. The key observation is that there exists an
input (1, 1, 1) for which the output of fmaj will be 1, even if a single corrupted party changes its
input to 0. Similarly, there exists an input (0, 0, 0) for which the output of fmaj will be 0, even
if a single corrupt party changes its input to 1. Using this property, we show that if fmaj can
be computed with guaranteed output delivery, then there exists a broadcast protocol for three
parties that is secure against a single corruption. Given an input bit β, the sender sends β to
each other party, and all parties compute fmaj on the input they received. This works since a
corrupted dealer cannot make two honest parties output inconsistent values, since fmaj provides
the same output to all parties. Likewise, if there is one corrupted receiver, then it cannot change
the majority value (as described above). Finally, if there are two corrupted receivers, then it
makes no difference what they output anyway.

Theorem 3.1.1. Let t ≤ 3 be a parameter and let fmaj : {0, 1}3 → {0, 1}3 be the majority
functionality for three parties fmaj(x1, x2, x3) = (y, y, y) where y = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨
(x2 ∧ x3). If fmaj can be t-securely computed with guaranteed output delivery in a point-to-
point network, then there exists a protocol that t-securely computes the three-party broadcast
functionality.

Proof. We construct a protocol π for securely computing the three-party broadcast functionality
fbc(x, λ, λ) = (x, x, x) in the (fmaj, full)-hybrid model (i.e., in a hybrid model where a trusted
party computes the fmaj functionality with guaranteed output delivery). Protocol π works as
follows:

1. The sender P1 with input x ∈ {0, 1} sends x to P2 and P3.

2. Party P1 sends x to the trusted party computing fmaj. Each party Pi (i ∈ {2, 3}) sends
the value it received from P1 to fmaj.

3. Party P1 always outputs x. The parties P2 and P3 output whatever they receive from the
trusted party computing fmaj.

Let A be an adversary attacking the execution of π in the (fmaj, full)-hybrid model; we construct
an ideal-model adversary S in the ideal model for fbc with guaranteed output delivery. S
invokes A and simulates the interaction of A with the honest parties and with the trusted party
computing fmaj. S proceeds based on the following corruption cases:

• P1 alone is corrupted: S receives from A the values x2, x3 ∈ {0, 1} that it sends to parties
P2 and P3, respectively. Next, S receives the value x1 ∈ {0, 1} that A sends to fmaj. S
computes x = fmaj(x1, x2, x3) and sends x to the trusted party computing fbc. S simulates
A receiving x back from fmaj, and outputs whatever A outputs.

• P1 and one of P2 or P3 are corrupted: the simulation is the same as in the previous case
except that if P2 is corrupted then the value x2 is taken from what A sends in the name
of P2 to fmaj (and not the value that A sends first to P2); likewise for P3. Everything else
is the same.

• P1 is honest: S sends an empty input λ to the trusted party for every corrupted party,
and receives back some x ∈ {0, 1}. Next, S simulates P1 sending x to both P2 and P3. If
both P2 and P3 are corrupted, then S obtains from A the values x2 and x3 that they send

36

to fmaj, computes x′ = fmaj(x, x2, x3) and simulates the trusted party sending x′ back to
all parties. If only one of P2 and P3 are corrupted, then S simulates the trusted party
sending x back to all parties. Finally, S outputs whatever A outputs.

The fact that the simulation is good is straightforward. If P1 is corrupted, then only consistency
is important, and S ensures that the value sent to fbc is the one that the honest party/parties
would output. If P1 is not corrupted, and both P2 and P3 are corrupted, then P1 always outputs
the correct x as required, and the outputs of P2 and P3 are not important. Finally, if P1 and P2
are corrupted, then S sends fbc the value that P3 would output in the real protocol as required;
likewise for P1 and P3 corrupted. �

Theorem 3.1.1 implies that fmaj cannot be securely computed with guaranteed output de-
livery for any t < 3 in a point-to-point network; this follows immediately from the fact that the
broadcast functionality can be securely computed if and only if t < n/3. Furthermore, by [56],
fmaj can be securely computed fairly given oblivious transfer (and as shown in Section 3.3.1 this
also holds in a point-to-point network). Thus, we have:

Corollary 3.1.2. Let t ≥ n/3 and assume that oblivious transfer exists. Then, there exist
non-trivial functionalities f such that f can be t-securely computed with fairness but cannot be
t-securely computed with guaranteed output delivery, in a point-to-point network.

Three-party functionalities that imply broadcast. It is possible to generalize the prop-
erty that we used to show that fmaj implies broadcast. Specifically, consider a functionality f

with the property that there exist inputs (x1, x2, x3) and (x′1, x′2, x′3) such that f(x1, x2, x3) = 0
and f(x′1, x′2, x′3) = 1, and such that if either of x2 or x3 (resp., x′2 or x′3) are changed arbitrarily,
then the output of f remains the same. Then, this function can be used to achieve broadcast.
We describe the required property formally inside the proof of the theorem below. We show
that out of the 256 functions over 3-bit inputs, there are 110 of them with this property. It
follows that none of these can be securely computed with guaranteed output delivery in the
presence of one or two corrupted parties. We prove the following:

Theorem 3.1.3. There are 110 functions from the family of all three-party Boolean functions
{f : {0, 1} × {0, 1} × {0, 1} → {0, 1}} that cannot be securely computed with guaranteed output
delivery in a point-to-point network with t = 1 or t = 2.

Proof. We provide a combinatorial proof of the theorem, by counting how many functions have
the property that arbitrarily changing one of the inputs does not affect the output, and there
are inputs that yield output 0 and inputs that yield output 1. As we have seen in the proof
of Theorem 3.1.1, it is possible to securely realize the broadcast functionality given a protocol
that securely computes any such functionality with guaranteed output delivery.

We prove that there are 110 functions f : {0, 1}3 → {0, 1} in the union of the following sets
F1, F2, F3:

1. Let F1 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈ {0, 1}3 such
that f(a, b, ·) = f(a, ·, c) = 1 and f(a′, b′, ·) = f(a′, ·, c′) = 0.

2. Let F2 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈ {0, 1}3 such
that f(a, b, ·) = f(·, b, c) = 1 and f(a′, b′, ·) = f(·, b′, c′) = 0.

37

3. Let F3 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈ {0, 1}3 such
that f(·, b, c) = f(a, ·, c) = 1 and f(·, b′, c′) = f(a′, ·, c′) = 0.

Observe that any function in one of these sets can be used to achieve broadcast, as described
above. Based on the inclusion-exclusion principle and using Lemma 3.1.5 proven below, it
follows that:

|F1 ∪ F2 ∪ F3| = 3 · 50− 3 · 16 + 8 = 110,

as required. We first prove the following lemma:

Lemma 3.1.4. If f ∈ F1, then a 6= a′, if f ∈ F2 then b 6= b′ and if f ∈ F3 then c 6= c′.

Proof. Let f ∈ F1 (the proof for F2, F3 is similar) and let a, a′, b, b′, c, c′ ∈ {0, 1} be inputs
fulfilling the condition for the set F1. Then,

f(a, b, c) = f(a, b̄, c) = f(a, b, c̄) = 1 and f(a′, b′, c′) = f(a′, b̄′, c′) = f(a′, b′, c̄′) = 0.

On the one hand, f(a, b′, c) = 1 because f(a, ·, c) = 1. On the other hand, if a = a′ then
f(a, b′, c) = f(a′, b′, c) = 0, because f(a′, b′, ·) = 0. �

It remains to prove the following lemma, to derive the theorem.

Lemma 3.1.5.

1. |F1| = |F2| = |F3| = 50.

2. |F1 ∩ F2| = |F1 ∩ F3| = |F2 ∩ F3| = 16.

3. |F1 ∩ F2 ∩ F3| = 8.

Proof. Let f : {0, 1}3 → {0, 1} be a function, and consider the representation of f using a binary
string (β0β1β2β3β4β5β6β7) as shown in Table 3.1:

0 0 0 β0
0 0 1 β1
0 1 0 β2
0 1 1 β3
1 0 0 β4
1 0 1 β5
1 1 0 β6
1 1 1 β7

Table 3.1: Representation of a Boolean function {0, 1}3 → {0, 1}

1. Assume f ∈ F1 (the proof for F2, F3 is similar). The first quadruple (β0β1β2β3) corre-
sponds to a = 0 and the second quadruple (β4β5β6β7) corresponds to a = 1. There exists
b, c such that f(a, b, c) = f(a, b̄, c) = f(a, b, c̄) and b′, c′ such that f(ā, b′, c′) = f(ā, b̄′, c′) =
f(ā, b′, c̄′), in addition, f(a, b, c) 6= f(ā, b′, c′). Therefore, in each such quadruple there
must be a triplet of 3 identical bits, and the two triplets have opposite values.

Denote β = f(a, b, c), there are 5 options for (β0β1β2β3) in which 3 of the bits equal β:

(ββββ), (ββββ̄), (βββ̄β), (ββ̄ββ), (β̄βββ).

38

For each such option, there are 5 options for (β4β5β6β7) in which 3 of the bits equal β̄:

(β̄β̄β̄β̄), (β̄β̄β̄β), (β̄β̄ββ̄), (β̄ββ̄β̄), (ββ̄β̄β̄).

There are 2 options for the value of β, so in total |F1| = 2 · 5 · 5 = 50.

2. Assume f ∈ F1 ∩ F2 (the proof for F1 ∩ F3, F2 ∩ F3 is similar). In this case a′ = ā and
b′ = b̄ and the constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄) 6=
f(ā, b̄, c′) = f(a, b̄, c′) = f(ā, b, c′) = f(ā, b̄, c̄′).

Therefore, the string is balanced (there are 4 zeros and 4 ones), where 3 of the bits
(β0β1β2β3) are equal to β and one to β̄, and 3 of the bits (β4β5β6β7) are equal to β̄ and
one to β.

There are 4 options to select 3 bits in (β0β1β2β3), and 2 options to select one bit in
(β4β5β6β7). These two options correspond either to (ā, b, c) or (ā, b̄, c̄). Hence, |F1∩F2| =
2 · 4 · 2 = 16.

3. Assume f ∈ F1 ∩ F2 ∩ F3. In this case a′ = ā, b′ = b̄ and c′ = c̄ and the constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄) 6= f(ā, b̄, c̄) = f(a, b̄, c̄) = f(ā, b, c̄) = f(ā, b̄, c).

Therefore, the string is of the form (β0β1β2β3β̄0β̄1β̄2β̄3), where 3 of the bits (β0β1β2β3)
are equal to β and one to β̄.

There are 4 options to select 3 bits in (β0β1β2β3), and setting them to the same value
determines the rest of the string. Hence, |F1 ∩ F2 ∩ F3| = 2 · 4 = 8.

�

This completes the proof of Theorem 3.1.3. �

As we have mentioned in the Introduction, in the case that t = 1 (i.e., when there is
an honest majority), all functions can be securely computed with fairness in a point-to-point
network. Thus, we have that all 110 functions of Theorem 3.1.3 constitute a separation of
fairness from guaranteed output delivery. That is, in the case of n/3 ≤ t < n/2, we have
that many functions can be securely computed with fairness but not with guaranteed output
delivery. In addition, 8 out of these 110 functions reduce to three-party majority and so can
be computed fairly for any t ≤ n. Thus, these 8 functions form a separation for the range of
t ≥ n/2.

3.2 Fairness Implies Guaranteed Output Delivery for Default-
Output Functionalities

In this section, we prove Theorem 1.2.2. In fact, we prove a stronger theorem, stating that
fairness implies guaranteed output delivery for functions with the property that there exists a

39

“default value” such that any single party can fully determine the output to that value. For
example, the multiparty Boolean AND and OR functionalities both have this property (for the
AND functionality any party can always force the output to be 0, and for the OR functionality
any party can always force the output to be 1). We call such a function a default-output
functionality.24 Intuitively, such a function can be securely computed with guaranteed output
delivery if it can be securely computed fairly, since the parties can first try to compute it fairly.
If they succeed, then they are done. Otherwise, they all received abort and can just output
their respective default-output value for the functionality. This can be simulated since any
single corrupted party in the ideal model can choose an input that results in the default-output
value.

Definition 3.2.1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality. f is called a
default-output functionality with default output (ỹ1, . . . , ỹn), if for every i ∈ [n] there exists a
special input x̃i such that for every xj with j 6= i it holds that f(x1, . . . , x̃i, . . . , xn) = (ỹ1, . . . , ỹn).

As an example for a default-output functionality, consider the n-party Boolean OR func-
tionality, fOR : {0, 1}n → {0, 1}n, where each party Pi has an input bit xi ∈ {0, 1}, and the
output of each party is the OR of all the inputs, i.e.,

fOR(x1, . . . , xn) = (x, . . . , x) where x = x1 ∨ . . . ∨ xn.

Observe that (1, . . . , 1) is a default output for the Boolean OR function (and similarly, (0, . . . , 0)
is a default output for the Boolean AND function). We now prove that if a functionality f has
a default-output value, then the existence of a fair protocol for f implies the existence of a
protocol with guaranteed output delivery for f .

Theorem 3.2.2. Let f : ({0, 1}∗)n → ({0, 1}∗)n be a default-output functionality and let t < n.
If f can be t-securely computed with fairness in the point-to-point model with authenticated chan-
nels (with or without a broadcast channel), then f can be t-securely computed with guaranteed
output delivery, in the point-to-point model with authenticated channels.

Proof. Let f be as in the theorem statement, and let the default output be (ỹ1, . . . , ỹn). Assume
that f can be t-securely computed with fairness with or without a broadcast channel. By
Theorem 3.3.1, f can be securely computed with fairness without a broadcast channel. We
now construct a protocol π that t-securely computes f with guaranteed output delivery in the
(f, fair)-hybrid model:

1. Each Pi sends its input xi to the trusted party computing f .

2. Denote by yi the value received by Pi from the trusted party.

3. If yi 6= ⊥, Pi outputs yi, otherwise Pi outputs ỹi.

Let A be an adversary attacking the execution of π in the (f, fair)-hybrid model. We construct
an ideal-model adversary S in the ideal model with guaranteed output delivery. Let I be the set
of corrupted parties, let i ∈ I be one of the corrupted parties (if no parties are corrupted then
there is nothing to simulate), and let x̃i be the input guaranteed to exist by Definition 3.2.1.
Then, S invokes A and simulates the interaction of A with the trusted party computing f (note

24In Chapter 4 we denote public-output functionalities satisfying this property as 1-dominated functionalities.

40

that there is no interaction between A and honest parties). S receives the inputs that A sends
to f . If any of the inputs equal abort then S sends x̃i as Pi’s input to its own trusted party
computing f (with guaranteed output delivery), and arbitrary inputs for the other parties.
Then, S simulates the corrupted parties receiving ⊥ as output from the trusted party in π,
and outputs whatever A outputs. Else, if none of the inputs equal abort, then S sends its
trusted party the inputs that A sent. S then receives the outputs of the corrupted parties from
its trusted party, and internally sends these to A as the corrupted parties’ outputs from the
trusted party computing f in π. Finally, S outputs whatever A outputs.

If A sends abort, then in the real execution every honest party Pj outputs ỹj . However,
since S sends the input x̃i to the trusted party computing f , by Definition 3.2.1 we have that
the output of every honest party Pj in the ideal execution is also ỹj . Furthermore, if A does
not send abort, then S just uses exactly the same inputs that A sent. It is clear that the view
of A is identical in the execution of π and the simulation with S. We therefore conclude that
π t-securely computes f with guaranteed output delivery, as required. �

We have proven that fairness implies guaranteed output delivery for default-output function-
alities; it remains to show the existence of fair protocols for some default-output functionalities.
Fortunately, this was already proven in [56]. The only difference is that [56] uses a broadcast
channel. Noting that the multiparty Boolean OR functionality is non-trivial (in the sense of
Footnote 2) and that it has default output (1, . . . , 1) as mentioned above, we have the following
corollary.

Corollary 3.2.3. Assume that oblivious transfer exists. Then, there exist non-trivial func-
tionalities f that can be t-securely computed with guaranteed output delivery in a point-to-point
network, for any t < n.

Feasibility of guaranteed output delivery. In Theorem 3.2.4, we prove that 16 non-trivial
functionalities can be securely computed with guaranteed output delivery in a point-to-point
network (by showing that they are default-output functionalities). Thus, guaranteed output
delivery can be achieved for a significant number of functions.

Theorem 3.2.4. Assume that oblivious transfer exists. There are 16 non-trivial functions from
the family of all three-party Boolean functions {f : {0, 1}× {0, 1}× {0, 1} → {0, 1}} that can be
securely computed with guaranteed output delivery in a point-to-point network for any number
of corrupted parties.

Proof. When represented using its truth table as a binary string (see Table 3.1), the three-party
Boolean OR function is (01111111), similarly, the Boolean AND function is (00000001). Every
function (β0β1β2β3β4β5β6β7) such that there exists i for which βi = β and for every j 6= i

βj = β̄ can be reduced to computing Boolean OR. Since there are 8 ways to choose i and 2
ways to choose β, we conclude that there are 16 such functions. �

3.3 The Role of Broadcast

In this section, we prove Theorem 1.2.3 and show that a functionality can be securely computed
fairly with broadcast if and only if it can be securely computed fairly without broadcast. In

41

addition, we show that if a functionality can be securely computed with fairness, then given a
broadcast channel, it can be securely computed with guaranteed output delivery.

We start by defining the n-party broadcast functionality, fbc : ({0, 1}∗)n → ({0, 1}∗)n, where
the sender P1 has an input x ∈ {0, 1}∗ while all other parties have the empty input λ (in plain
English, this means that only the first party P1 has input). The output of each party is x.

fbc(x, λ, . . . , λ) = (x, . . . , x).

3.3.1 Fairness is Invariant to Broadcast

Gordon and Katz [56] constructed two fair multiparty protocols, both of them require a broad-
cast channel. In this section, we show that fairness holds for both even without a broadcast
channel. More generally, fairness can be achieved with a broadcast channel if and only if it can
be achieved without a broadcast channel.

It is immediate that fairness without broadcast implies fairness with broadcast. The other
direction follows by using the protocol of Fitzi et al. [47] for detectable broadcast. In the first
stage, the parties execute a protocol that establishes a public-key infrastructure. This protocol
is independent of the parties’ inputs and is computed with abort. If the adversary aborts during
this phase, it learns nothing about the output and fairness is retained. If the adversary does
not abort, the parties can use the public-key infrastructure and execute multiple (sequential)
instances of authenticated broadcast, and so can run the original protocol with broadcast that
is fair.

One subtlety arises since the composition theorem replaces every ideal call to the broadcast
functionality with a protocol computing broadcast. However, in this case, each authenticated-
broadcast protocol relies on the same public-key infrastructure that is generated using a protocol
with abort. We therefore define a reactive ideal functionality which allows abort only in the
first “setup” call. If no abort was sent in this call, then the functionality provides a fully
secure broadcast (with guaranteed output delivery) from there on. The protocol of [47] securely
computes this functionality with guaranteed output delivery, and thus, constitutes a sound
replacement of the broadcast channel (unless an abort took place).

Theorem 3.3.1. Let f be an n-party functionality and let t ≤ n. Then, assuming the exis-
tence of one-way functions, f can be t-securely computed with fairness assuming a broadcast
channel if and only if f can be t-securely computed with fairness in a point-to-point model with
authenticated channels.

Proof sketch. If f can be t-securely computed with fairness in a point-to-point network, then it
can be t-securely computed with fairness with a broadcast channel by just ignoring the broadcast
channel.

Next, assume that f can be t-securely computed with fairness assuming a broadcast channel.
We now show that it can be t-securely computed with fairness in a point-to-point network. We
define the reactive functionality for conditional broadcast fcondbc. In the first call to fcondbc,
the functionality computes the AND function, i.e., each party has an input bit bi and the
functionality returns b = b1 ∧ . . . ∧ bn to each party. In addition, the functionality stores the
bit b as its internal state for all future calls. In all future calls to fcondbc, if b = 1 it behaves
exactly like fbc, whereas if b = 0 it returns ⊥ to all the parties in the first call and halts. By

42

inspection, it is immediate that the protocol of [47] securely computes fcondbc with guaranteed
output delivery, for any t ≤ n in a point-to-point network.

Let π be the protocol that t-securely computes f assuming a broadcast channel; stated
differently, π t-securely computes f in the (fbc, full)-hybrid model. We construct a protocol π′

for t-securely computing f in the (fcondbc, full)-hybrid model. π′ begins by all parties sending
the bit 1 to fcondbc and receiving back output. If a party receives back b = 0, it aborts and
outputs ⊥. Else, it runs π with the only difference that all broadcast messages are sent to
fcondbc instead of to fbc. Since fcondbc behaves exactly like fbc as long b = 1 is returned from
the first call, we have that in this case the output of π and π′ is identical. Furthermore, π′ is
easily simulated by first invoking the adversary A′ for π′ and obtaining the corrupted parties’
inputs to fcondbc in the first call. If any 0 bit is sent, then the simulator S ′ for π′ sends abort to
the trusted party, outputs whatever A′ outputs and halts. Otherwise, it invokes the simulator
S that is guaranteed to exist for π on the residual adversary A that is obtained by running A′

until the end of the first call to fcondbc (including A′ receiving the corrupted parties’ output bits
from this call). Then, S ′ sends whatever S wishes to send to the trusted party, and outputs
whatever S outputs. Since fcondbc behaves exactly like fbc when b = 1 in the first phase, we have
that the output distribution generated by S ′ is identical to that of S when b = 1. Furthermore,
when b = 0, it is clear that the simulation is perfect. �

3.3.2 Fairness with Identifiable Abort Implies Guaranteed Output Delivery

Before proceeding to prove that fairness implies guaranteed output delivery in a model with a
broadcast channel, we first show that fairness with identifiable abort implies guaranteed output
delivery. Recall that a protocol securely computes a functionality f with identifiable abort,
if when the adversary causes an abort all honest parties receive ⊥ as output along with the
identity of a corrupted party. If a protocol securely computes f with fairness and identifiable
abort, then it is guaranteed that if the adversary aborts, it learns nothing about the output
and all honest parties learn an identity of a corrupted party. In this situation, the parties can
eliminate the identified corrupted party and execute the protocol again, where an arbitrary
party emulates the operations of the eliminated party using a default input. Since nothing was
learned by the adversary when an abort occurs, the parties can rerun the protocol from scratch
(without the identified corrupted party) and nothing more than a single output will be revealed
to the adversary. Specifically, given a protocol π that computes f with fairness and identifiable
abort, we can construct a new protocol π′ that computes f with guaranteed output delivery. In
the protocol π′, the parties iteratively execute π, where in each iteration, either the adversary
does not abort and all honest parties receive consistent output, or the adversary aborts without
learning anything and the parties identify a corrupted party, who is eliminated from the next
iteration.

Theorem 3.3.2. Let f be an n-party functionality and let t ≤ n. If f can be t-securely computed
with fairness and identifiable abort, then f can be t-securely computed with guaranteed output
delivery.

Proof. We prove the theorem by constructing a protocol π that t-securely computes f with
guaranteed output delivery in the (f, id-fair)-hybrid model. For every party Pi, we assign a
default input value x̃i and construct the protocol π as follows:

43

Protocol 3.3.3. (id-fairness to full security)

1. Let P1 = {1, . . . , n} denote the set of indices of all participating parties.

2. For i = 1, . . . , t+ 1

(a) All parties in Pi send their inputs to the trusted party computing f , where the party
with the lowest index in Pi simulates all parties in P1 \Pi, using their predetermined
default input values.
For each j ∈ Pi, denote the output of Pj from f by yj.

(b) For every j ∈ Pi, party Pj checks whether yj is a valid output, if so Pj outputs yj
and halts. Otherwise, all parties received (⊥, i∗) as output, where i∗ is an index of a
corrupted party. If i∗ /∈ Pi (and so i∗ is a previously identified corrupted party), then
all parties set i∗ to be the party with the lowest index in Pi.

(c) Set Pi+1 = Pi \ {i∗}.
. .

First note that there are at most t+1 iterations; therefore, π terminates in polynomial time.
Let A be an adversary attacking π and let I be the set of corrupted parties. We construct a
simulator S for the ideal model with f and guaranteed output delivery, as follows. S invokes
A and receives its inputs to f in every iteration. If an iteration contains an abort, then S
simulates sending the response (⊥, i∗) to all parties, and proceeds to the next iteration. In the
first iteration in which no abort is sent (and such an iteration must exist since there are t + 1
iterations and in every iteration except for the last one corrupted party is removed), S sends
the inputs of the corrupted parties that A sent to the trusted party computing f . In addition,
S sends the values for any corrupted parties that were identified in previous iterations: if the
lowest index remaining is honest, then S sets these values to be the default values; else, it sets
these values to be the values sent by A for these parties. Upon receiving the output from its
trusted party, S hands it to A as if it were the output of the corrupted parties in the iteration
of π, and outputs whatever A outputs.

The simulation in the (f, id-fair)-hybrid model is perfect since S can perfectly simulate the
trusted party for all iterations in which an abort is sent. Furthermore, in the first iteration for
which an abort is not sent, S sends f the exact inputs upon which the function f is computed
in the protocol. Thus, the view of A and the output of the honest parties in the simulation with
S are identical to their view and output in an execution of π in the (f, id-fair)-hybrid model. �

3.3.3 Fairness with Broadcast Implies Guaranteed Output Delivery

In Section 3.3.2, we saw that if a functionality can be securely computed with fairness and
identifiable abort, then it can be securely computed with guaranteed output delivery. In this
section, we show that assuming the existence of a broadcast channel, there is a protocol compiler
that given a protocol computing a functionality f with fairness, outputs a protocol computing f
with fairness and identifiable abort. Therefore, assuming broadcast, fairness implies guaranteed
output delivery.

The protocol compiler we present is a modification of the GMW compiler, which relies on
the code of the underlying fair protocol and requires non-black-box access to the protocol.
(Therefore, this result does not contradict the proof in Section 3.4 that black-box access to an

44

ideal functionality that computes f with fairness does not help to achieve guaranteed output
delivery.) The underlying idea is to use the GMW compiler [53, 51]. However, instead of en-
forcing semi-honest behaviour, the compiler is used in order to achieve security with identifiable
abort. This is accomplished by tweaking the GMW compiler so that first only public-coin zero-
knowledge proofs are used, and second if an honest party detects dishonest behaviour—i.e., if
some party does not send a message or fails to provide a zero-knowledge proof for a message it
sent—the honest parties record the identity i∗ of the cheating party. We stress that the parties
do not abort the protocol at this point, but rather continue until the end to see if they received
⊥ or not. If they received ⊥, then they output (⊥, i∗) and halt. Else, if they received proper
output, then they output it. Note that if the parties were to halt as soon as they detected a
cheating party, then this would not be secure since it is possible that some of the corrupted
parties already received output by that point. Thus, they conclude the protocol to determine
whether they should abort or not.

The soundness of this method holds because in the GMW compiler with public-coin zero-
knowledge proofs, a corrupted party cannot make an honest party fail, and all parties can verify
if the zero-knowledge proof was successful or not. A brief description of the GMW compiler
appears in Section 3.6.1. We prove the following:

Theorem 3.3.4. Assume the existence of one-way functions and let t ≤ n. If a functionality f
can be t-securely computed with fairness in the broadcast model (where all the communication is
over the broadcast channel), then f can be t-securely computed with guaranteed output delivery.

Proof. We begin by proving that fairness with a broadcast channel implies fairness with iden-
tifiable abort.

Lemma 3.3.5. Assume the existence of one-way functions and let t ≤ n. Then, there exists a
polynomial-time protocol compiler that receives any protocol π, running over a broadcast channel,
and outputs a protocol π′, such that if π t-securely computes a functionality f with fairness then
π′ t-securely computes f with fairness and identifiable abort.

Proof sketch. Since the protocol is run over a single broadcasts channel, if at any point a party
does not broadcast a message when it is supposed to, then all the parties detect it and can
identify this party as corrupted.

We consider a tweaked version of the GMW compiler. The input-commitment phase and
the coin-generation phase are kept the same, with the sole exception that if a party is identified
as corrupted at this stage (e.g., if it does not send any value) then all the parties hard-wire
to the function the default input value corresponding to this party. In the protocol-emulation
phase, when a sender transmits a message to a receiver, they execute a strong zero-knowledge
proof of knowledge with perfect completeness, in which the sender acts as the prover and the
receiver as the verifier. The statement is that the message was constructed by the next-message
function, based on the sender’s input, random coins and the history of all the messages the
sender received in the protocol. However, if the prover fails to prove the statement, unlike
in the GMW compiler, the verifier does not immediately broadcast the verification coins, but
stores the verification coins along with the identity of the sender in memory, and resumes the
protocol.

At the end of the protocol emulation, each party checks whether it received an output, if
so it outputs it and halts. If a party did not receive an output and it received a message for

45

which the corresponding zero-knowledge proof failed, it broadcasts the verification coins it used
during the zero-knowledge proof. In this case, the other parties verify whether this is a justified
reject, and if so they output ⊥ along with the identity of the prover. If the reject is not justified,
the parties output ⊥ along with the identity of the party that sent the false verification coins.

Since the zero-knowledge proof has perfect completeness, a corrupted party cannot produce
verification coins that will falsely reject an honest party. Hence, only parties that deviate from
the protocol can be identified as corrupted.

It case each honest party finishes the execution of the compiled protocol with some output,
the compiled protocol remains secure, based on the security of the underlying protocol and of
the zero-knowledge proof.

In case one of the honest parties did not get an output, there must be at least one message
that does not meet the protocol’s specification, hence at least one honest party received a
message without a valid proof. Therefore, all the honest parties output ⊥ along with an identity
of a corrupted party. However, in this situation, the adversary does not learn anything about the
output, since otherwise there exists an attack violating the fairness of the underlying protocol
π. Hence, the compiled protocol retains fairness. �

Applying Theorem 3.3.2 to Lemma 3.3.5 we have that f can be t-securely computed with
guaranteed output delivery, completing the proof of the theorem. �

3.4 Black-Box Fairness does not Help for Guaranteed Output
Delivery

In this section, we show that the ability to securely compute a functionality with complete
fairness does not assist in computing the functionality with guaranteed output delivery, at
least in a black-box manner. More precisely, a functionality f can be securely computed with
guaranteed output delivery in the (f, fair)-hybrid model if and only if f can be securely computed
with guaranteed output delivery in the plain model.

The idea is simply that any protocol that provides guaranteed output delivery in the (f, fair)-
hybrid model has to work even if the output of every call to the trusted party computing f

fairly concludes with an abort. This is because a corrupted party can always send abort to the
trusted party in every such call.

Proposition 3.4.1. Let f be an n-party functionality and let t ≤ n. Then, f can be t-securely
computed in the (f, fair)-hybrid model with guaranteed output delivery if and only if f can be
t-securely computed in the real model with guaranteed output delivery.

Proof sketch. If f can be t-securely computed in the real model with guaranteed output delivery,
then clearly it can be t-securely computed in the (f, fair)-hybrid model with guaranteed output
delivery by simply not sending anything to the trusted party.

For the other direction, let π be a protocol that t-securely computes f in the (f, fair)-hybrid
model with guaranteed output delivery. We construct a protocol π′ in the real model which
operates exactly like π, except that whenever there is a call in π to the ideal functionality f ,
the parties in π′ emulate receiving ⊥ as output. It is immediate that for every adversary A′ for

46

π′, there exists an adversary A for π so that the output distributions of the two executions are
identical (A just sends abort to every ideal call in π, and otherwise sends the same messages
that A′ sends). By the assumption that π is secure, there exists a simulator S for the ideal
model for f with guaranteed output delivery. This implies that S is also a good simulator for
A′ in π′, and so π′ t-securely computes f with guaranteed output delivery in the real model. �

3.5 Additional Results

In this section, we prove two additional results. First, there exist functionalities for which
identifiable abort cannot be achieved (irrespective of fairness), and fairness and guaranteed
output delivery are equivalent for fail-stop adversaries.

3.5.1 Broadcast is Necessary for Identifiable Abort

We show that security with identifiable abort cannot be achieved in general without assuming
a broadcast channel.

Proposition 3.5.1. Assume the existence of one-way functions and let t ≥ n/3. There exist
functionalities that cannot be t-securely computed with identifiable abort, in the point-to-point
network model.

Proof sketch. Assume by contradiction that the PKI setup functionality defined by

fPKI(λ, . . . , λ) = ((~pk, sk1), . . . , (~pk, skn)),

can be t-securely computed with identifiable abort for t = n/3, where ~pk = (pk1, . . . , pkn) and
each (pki, ski) are a public/private key pair for a secure digital-signature scheme (that exists
if one-way function exists). Then, we can t-securely compute fbc by running the protocol π
that is assumed to exist for fPKI, where π is t-secure with identifiable abort. As in the proof of
Theorem 3.3.2, if π ends with abort, then the party who is identified as corrupted is removed.
This continues iteratively until the π terminates without abort, in which case a valid PKI is
established between all remaining parties. Given this PKI, the parties can run authenticated
broadcast in order to securely compute fbc. Since fbc cannot be securely computed for t = n/3,
we have a contradiction. �

3.5.2 Fairness Implies Guaranteed Output Delivery for Fail-Stop Adversaries

In the presence of malicious adversaries, fairness and guaranteed output delivery are different
notions, since there exist functionalities that can be computed with complete fairness but cannot
be computed with guaranteed output delivery. In the presence of semi-honest adversaries, it is
immediate that both notions are equivalent, since the adversary cannot abort. In this section, we
show that in the presence of the fail-stop adversaries, i.e., when the corrupted parties follow the
protocol with the exception that the adversary is allowed to abort, fairness implies guaranteed
output delivery.

47

The underlying idea is that if a corrupted party does not send a message to an honest party
during the execution of a fair protocol, the honest party can inform all parties that it identified
a corrupted party. Since the adversary is fail-stop, corrupted parties cannot lie and falsely
incriminate an honest party. Similarly to the proof of Theorem 3.3.4, the parties do not halt if
a party is detected cheating (i.e., halting early). Rather, the parties continue to the end of the
protocol: if the protocol ended with output, then they take the output and halt; otherwise, they
remove the cheating party and begin again. Since the original protocol is fair, this guarantees
that nothing is learned by any party if anyone receives abort; thus, they can safely run the
protocol again. As in the proof of Theorem 3.3.2, this process is repeated iteratively until no
abort is received. We conclude that:

Theorem 3.5.2. Let f be an n-party functionality and let t ≤ n. Then, f can be t-securely
computed with fairness in the presence of fail-stop adversaries, if and only if f can be t-securely
computed with guaranteed output delivery in the presence of fail-stop adversaries.

3.6 Overview of Related Protocols

In this section, we present a high-level overview of the protocols that were used above.

3.6.1 The GMW Compiler

The GMW compiler [53] consists of a pre-compiler and an authenticated-computation compiler:

• The pre-compiler produces a protocol that behaves as the original protocol, but instead
of using a point-to-point network, all the communication is sent over a single broadcast
channel. Each party generates a pair of keys for a public-key encryption scheme and
broadcasts the encryption key. Next, every message is encrypted under the public key of
the receiver and sent over the broadcast channel.

• The authenticated-computation compiler produces a protocol which may abort, but oth-
erwise is enforced to behave as the input protocol. This compiler consists of an input-
commitment phase, a coin-generation phase and a protocol-emulation phase.

1. In the input-commitment phase, every party commits to its input towards all other
parties.

2. In the coin-generation phase, the parties jointly generate random tapes for each party.
Each party receives its random tape and commitments for the random tapes of all
other parties.

3. In the protocol-emulation phase, the parties emulate the input protocol, where for
each message, the sending party and the receiving party execute a zero-knowledge
proof, proving that the message is produced by the next-message function based on
the input, random tape and all prior messages.
Note that a malicious party may abort the execution during this phase by not sending
a message or by providing an invalid proof. However, when using a public-coin proof,

48

all parties can publicly verify if the proof is valid or not, and a corrupted party cannot
cause an honest prover to fail.

The first part of the GMW compiler transforms any protocol running over a point-to-point
communication network into a protocol running over a single broadcast channel, under the
assumption that collections of trapdoor permutations exist (in order to obtain public-key en-
cryption). Since we begin with a protocol that works over a broadcast channel, we can ignore
this step.

3.6.2 The Detectable Broadcast Protocol of Fitzi et al.

Fitzi et al. [47] constructed protocols for detectable broadcast, i.e., protocols in which either all
parties abort and no one receives output, or all parties receive and agree upon the broadcasted
value. Two protocols are provided in [47]: the first protocol is in the computational setting,
where the channels are authenticated, and is secure facing polynomial-time adversaries, assum-
ing the existence of one-way functions. The second protocol is in the information-theoretic
setting, where the channels are ideally secure, and is secure facing computationally unbounded
adversaries. Both protocols can tolerate an arbitrary number of corruptions.

More precisely, the protocols in [47] provide detectable precomputation for broadcast, i.e.,
they compute correlated randomness that can later be used for authenticated broadcast proto-
cols. We will describe the protocol in the computational setting, which computes a public-key
infrastructure (PKI).

Initially, every party Pi generates a pair of signing and verification keys of a digital signature
scheme and sends the verification key to all the parties. Each party echoes all the verification
keys it received to all other parties and locally assigns a grade gj for each party Pj : 1 if all
verification keys it received for Pj are consistent with each other and 0 otherwise. Next, each
party computes the logical AND of the grades and invokes an authenticated broadcast protocol
(e.g., the protocol from [39]) to distribute its result (the verification keys from the first round
are used as the PKI for the authenticated broadcast). Finally, each party computes the logical
AND of all n values that were received by the authenticated broadcast protocols. If the result
is 0, it aborts, and if the result is 1, it outputs all n verification keys along with its signing key.

If the protocol successfully completes, then the parties establish a PKI that can be used
within any MPC protocol to replace broadcast calls with authenticated broadcast protocols,
whereas if the protocol aborts then clearly fairness is retained, since the computation is inde-
pendent of the inputs to the MPC protocols.

3.6.3 The Protocols of Gordon and Katz

Gordon and Katz [56] constructed two fair protocols in the broadcast model, tolerating any
number of corruptions, assuming that oblivious transfer exists.

Multiparty Boolean OR. Initially, every party commits to its input bit and broadcasts
the commitment; if some party did not broadcast, then all parties output 1. Next, the parties
iteratively compute the committed OR functionality (described below) with identifiable abort
and eliminate identified corrupted party (or parties) in each iteration until a binary output is
obtained.

49

The committed OR functionality receives from each party its input bit, decommitment in-
formation and the vector of commitments from the first round. If all parties provided consistent
commitments and valid decommitments, then the functionality computes the Boolean OR on
all the input bits and outputs the result. Otherwise, the functionality outputs to each party Pi
the set of parties that are not consistent with him, where a party is not consistent with Pi if it
provided a different vector of commitments or if it did not provide a valid decommitment.

Correctness follows since all honest parties are always consistent with each other and so will
always proceed together to the next iteration in case the committed OR functionality outputs
to each party the (local) set of non-consistent parties. Privacy follows since if the adversary
learned the value of the committed OR functionality and decided to abort, then it learns useful
information about honest parties’ inputs only if all corrupted parties use input 0 (indeed if some
corrupted party uses input 1 the output will always be 1).

Three-party majority. On input x1, x2, x3 ∈ {0, 1} for the parties, the protocol consists of a
share-generation phase followed by m = ω(log κ) rounds. Initially, all the parties compute with
abort the share-generation functionality that selects a number i∗ from the geometric distribution
(with parameter 1/5) and prepares 3(m+ 1) values as follows. For 0 ≤ i < i∗ and j ∈ {1.2.3},
select a random bit x̃j and compute bi,j = fmaj(xj−1, x̃j , xj+1), and for i∗ ≤ i ≤ m, compute
bi,j = fmaj(x1, x2, x3). Next, the functionality prepares authenticated 3-out-of-3 secret shares
(b1i,j , b2i,j , b3i,j) for each value bi,j , and outputs bj

′

i,j to party Pj′ . In addition, output bj0,j to parties
Pj−1 and Pj+1.

In case this phase aborts and a corrupted party is identified, the remaining pair compute
the Boolean OR of their inputs using the protocol from [57]. Otherwise, the parties run m

iterations, where in iteration i each party Pj broadcasts bji,j (and bjm,1 in the m’th iteration). If
Pj aborts in iteration i then parties Pj−1 and Pj+1 exchange bj−1

i−1,j and bj+1
i−1,j and reconstruct

(using the value bji−1,j) and output the value bi−1,j . If two parties abort, the remaining party
outputs its own input value. If all iterations completed successfully, the parties reconstruct bm,1
and output it.

The key observation used in the proof is that the adversary can either determine the output
by choosing identical inputs for two corrupted parties (in which case it does not learn anything
about the honest party’s input) or learn the honest party’s input by choosing opposite inputs
for the corrupted parties (in which case it cannot determine the output).

50

Chapter 4

Characterization of Secure Multiparty
Computation without Broadcast

In this chapter we present the characterization of public-output functionalities in the point-
to-point model. We start in Section 4.1 by presenting an attack on consistent protocols. In
Section 4.2 we use this attack to show impossibility results on secure protocols, and in Section 4.3
we present matching upper bounds, showing that the results are tight.

4.1 Attacking Consistent Protocols

In this section, we present a lower bound for secure protocols in the secure-channels point-to-
point model. Protocols in consideration are only assumed to have a very mild security property
(discussing the more standard notion of security is deferred to Section 4.2). Specifically, we only
require the protocol to be consistent – all honest parties output the same value. We emphasize
that in a consistent protocol, a party may output the special error symbol ⊥ (i.e., abort), but
it can only do so if all honest parties output ⊥ as well.

Definition 4.1.1 (consistent protocols). A protocol π is (δ, t)-consistent against C-class (e.g.,
polynomial-time, expected polynomial-time) adversaries, if the following holds. Consider an
execution of π with any vector of inputs of length κ for the parties, in which a C-class adversary
controls at most t parties. Then with probability at least δ(κ), all honest parties output the same
value, where the probability is taken over the random coins of the adversary and of the honest
parties.

In Section 4.1.1 we present an attack on consistent protocols whose round complexity is
strictly bounded, and in Section 4.1.2 we extend the attack to consistent protocols with a
bound on their expected number of rounds.

4.1.1 Protocols of Strict Running-Time Guarantee

Lemma 4.1.2 (restating Lemma 1.2.6). Let n ≥ 3, let t ≥ n/3, and let s = n − 2t if t < n/2
and s = 1 otherwise. Let π be an n-party, T -time, q-round protocol in the secure-channels
point-to-point model that is (1 − δ, t)-consistent against (TA = 2nqT)-time adversaries. Then,

51

there exists a TA-time adversary A such that given t control over any s-size subset I of parties,
the following holds: on security parameter κ, A first outputs a value y∗ = y∗(I). Next, A
interacts with the remaining honest parties of π on arbitrary inputs of length κ unknown to A,
and except for probability at most

(
3
2 · q(κ) + 1

)
· δ(κ), the output of every honest party in this

execution is y∗.

For a polynomial-time protocol that is (1 − neg, t)-consistent against ppt adversaries and
assuming an honest majority, Lemma 4.1.2 yields a ppt adversary that by controlling n − 2t
of the parties can manipulate the outputs of the honest parties (i.e., forcing them all to be
y∗) with all but a negligible probability. If an honest majority is not assumed, the adversary
can manipulate the outputs of the honest parties, by controlling any single party, except for a
negligible probability. We remark that we would get slightly better parameters using an attack
in which at least one honest party (but not necessarily all) outputs y∗.

We start by proving the lemma for three-party protocols, and later prove the multiparty
case using a reduction to the three-party case. We actually prove a stronger statement for
the three-party case, where the value y∗ is independent of the set of corrupted parties. In the
following lemma, we denote by T the combined running-time of the parties. As opposed to
T -time 3-party protocols, this more general measure captures asymmetry between the running
time of the parties, and will turn out to be useful for proving Lemma 4.1.2.

Lemma 4.1.3 (attack on three-party protocols). Let π be a three-party, q-round protocol in
the secure-channels point-to-point model, and let T be the combined running-time of all three
parties. If π is (1 − δ, 1)-consistent against (TA = 2qT)-time adversaries, then there exists a
TA-time adversary A such that the following holds. On security parameter κ, A first outputs a
value y∗. Next, given control over any non-empty set of parties, A interacts with the remaining
honest parties of π on arbitrary inputs of length κ unknown to A, and except for probability at
most 3

2 · q(κ) · δ(κ), the output of every honest party in this execution is y∗.

Proof. We fix the input-length parameter κ and omit it from the notation when its value is clear
from the context. Let π = (A,B,C) and let m = q (assume for ease of notation that m is even).
Consider, without loss of generality, that a single party is corrupted (the case of two corrupted
parties follows by letting the adversary simulate an honest party) and assume for concreteness
that the corrupted party is C.

Consider the following 3q-party protocol R = (A1,B1,C1, . . . ,Am,Bm,Cm), in which the
parties are connected in a ring network such that each two consecutive parties, as well as the
first and last, are connected via a secure channel, and party Pj , for P ∈ {A,B,C}, has the code
of P. Let v = κ + T (κ), and consider an execution of R with arbitrary inputs and uniformly
distributed random coins for the parties being w = (w1

A, w
1
B, w

1
C, . . . , w

m
A , w

m
B , w

m
C) ∈ ({0, 1}v)3m

(i.e., party Pi has input wiP, containing its actual input and random coins).
A key observation is that the point of view of the party Aj , for instance, in such an execution,

is a valid view of the party A on input wjA in an execution of π in which B acts honestly on
input wjB. It is also a valid view of A, on input wjA, in an execution of π in which C acts honestly
on input wj−1 (mod m)

C . This observation yields the following consistency property of R.

Claim 4.1.4. Consider an execution of R on joint input w ∈ ({0, 1}v)3m, where the parties’
coins in w are chosen uniformly at random, and the parties’ (actual) inputs are chosen arbitrar-
ily. Then parties of distance d in R, measured by the (minimal) number of communication links

52

between them, as well as all d− 1 parties between them, output the same value with probability
at least 1− dδ.

Proof. Consider the pair of neighboring parties
{

Aj ,Bj
}

in the ring R (an analogous argument
holds for any two neighboring parties). Let A be an adversary, controlling the party C of π that
interacts with {A,B} by emulating an execution of R on w (apart from the roles of

{
Aj ,Bj

}
),

and let {A,B} take (without knowing that) the roles of
{

Aj ,Bj
}

in this execution. The joint
view of {A,B} in this emulation has the same distribution as the joint view of

{
Aj ,Bj

}
in an

execution of R. Hence, the (1− δ)-consistency of π yields that Aj and Bj output the same value
in an execution of R on w with probability at least 1− δ. The proof follows by a union bound.
This concludes the proof of Claim 4.1.4. �

The adversary A first selects a value for w ∈ ({0, 1}v)3m, consisting of arbitrary input values
(e.g., zeros) and uniformly distributed random coins, and sets y∗ to be the output of P∗ = Am/2
in the execution of R on w. To interact with {A,B} in π, the adversary A emulates an execution
of R in which all but

{
A1,B1} have their inputs according to w, and {A,B} take the roles of{

A1,B1}. The key observation is that the view of party P∗ in the emulation induced by the
above attack, is the same as its view in the execution of R on w (regardless of the inputs of
{A,B}). This is true since the execution of R ends after at most m communication rounds.
Thus, the actions of {A,B} have no effect on the view of P∗, and therefore the output of P∗ is
y∗ also in the emulated execution of R. Finally, since all the parties in the emulated execution
of R have uniformly distributed random coins, and since the distance between P∗ and {A,B} is
(less than) 3m

2 , Claim 4.1.4 yields that with probability at least 1− 3m
2 · δ, the output of {A,B}

under the above attack is y∗.
Note that the value y∗ does not depend on the identity of the corrupted party, since in the

first step y∗ is set independently of C, and in the second step the attack follows without any
change when the honest parties play the roles of

{
B1,C1} if A is corrupted or

{
A2,C1} if B is

corrupted. �

We now proceed to prove Lemma 4.1.2 in the multiparty case.

Proof. Let π = (P1, . . . ,Pn) be a T -time, q-round, n-party protocol that is (1− δ, t)-consistent
against 2nqT -time adversaries. We will show an adversary that by controlling any s corrupted
parties, manipulates all honest parties to output a predetermined value. We separately handle
the case that n/3 ≤ t < n/2 and the case that n/2 ≤ t < n.

Case n/3 ≤ t < n/2. Let I ⊆ [n] be a subset of size s = n − 2t, representing the indices
of the corrupted parties in π. Consider the three-party protocol π′ = (A′,B′,C′), defined by
partitioning the set [n] into three subsets {IA′ , IB′ , I}, where IA′ and IB′ are each of size t, and
letting party A′ run the parties {Pi}i∈IA′

, party B′ run the parties {Pi}i∈IB′
and party C′ run

the parties {Pi}i∈I . Each of the parties in π′ waits until all the virtual parties it is running
halt, arbitrarily selects one of them and outputs the virtual party’s output value.

Since the subsets IA′ , IB′ , I are of size at most t, the q-round, three-party protocol π′ is
(1 − δ, 1)-consistent against 2nqT -adversaries (otherwise there exists a 2nqT -time adversary
against the consistency of π, corrupting at most t parties). In addition, since the combined
time complexity of all three parties is nT , by Lemma 4.1.3 there exists a 2nqT -time adversary

53

A′ that first determines a value y∗, and later, given control over any party in π′ (in particular
C′), can force the two honest parties to output y∗ with probability at least 1− 3qδ

2 .
The attacker A for π, controlling the parties indexed by I, is defined as follows: In the first

step, A runs A′ and outputs the value y∗ that A′ outputs. In the second step, A interacts with
the honest parties in π by simulating the parties {A′,B′} to A′, i.e., A runs A′ and sends every
message it receives from A′ to the corresponding honest party in π, and similarly, whenever A
receives a message from an honest party in π it forwards it to A′. It is immediate that there
exists i ∈ IA′ such that Pi outputs y∗ in the execution of π with the same probability that A′
outputs y∗ in the execution of π′, i.e., with probability at least 1 − 3qδ

2 . From the consistency
property of π, all honest parties output the same value with probability at least 1−δ, and using
the union bound we conclude that the output of all honest parties in π under the above attack
is y∗ with probability at least 1− (3qδ

2 + δ).

Case n/2 ≤ t < n. Let i∗ ∈ [n] be the index of the corrupted party in π and consider
the three-party protocol π′ = (A′,B′,C′) defined by partitioning the set [n] into three subsets
{IA′ , IB′ , {i∗}}, for |IA′ | =

⌈
n−1

2

⌉
and |IB′ | =

⌊
n−1

2

⌋
. As in the previous case, the size of each

subset IA′ , IB′ , {i∗} is at most t, and the proof proceeds as above. �

4.1.2 Protocols of Expected Running-Time Guarantee

In this section, we extend the attack presented above to consistent protocols with bound on
their expected number of rounds.

Lemma 4.1.5. Let n ≥ 3, let t ≥ n/3, let s = n − 2t if t < n/2 and s = 1 otherwise, and
let z = z(κ) be an integer function. Let π be an n-party protocol of expected running time T
and expected round complexity q in the secure-channels point-to-point model, that is (1 − δ, t)-
consistent against adversaries with expected running time TA = 2n(z+ 1)qT . Then, there exists
an adversary A with expected running-time TA such that given control over any s-size subset
I of parties, the following holds: on security parameter κ, A first outputs a value y∗ = y∗(I).
Next, A interacts with the remaining honest parties of π on arbitrary inputs of length κ unknown
to A, and except for probability at most 2 ·(3 · q(κ) + 1) ·δ(κ)+2−z(κ), the output of every honest
party in this execution is y∗.

Proof. We prove the lemma for the three-party case, the proof for the general case is similar to
the proof of Lemma 4.1.2. We fix the input-length parameter κ and omit it from the notation
when clear from the context.

Let π = (A,B,C) and let m = 2q. Similarly to the proof of Lemma 4.1.3, we consider the
(now double size) ring R = (A1,B1,C1, . . . ,Am,Bm,Cm). The attacker A follows in similar lines
to those used in the proof of Lemma 4.1.3. The main difference is that in order to select y∗, the
adversary A iterates the following for z times. In each iteration, A emulates an execution of
the ring R on arbitrary inputs and uniformly distributed random coins,25 for m communication
rounds. If during one of these iterations party P∗ = Am/2 halts, A sets y∗ to be its output in
this iteration. Otherwise, in case the value y∗ was not set during all z iterations, A outputs ⊥
and aborts. The attack continues as in the proof of Lemma 4.1.3.

25Note that now we have no a priori bound on the number of random coins used by the parties. Yet, the
emulation can be done in expected time nmT .

54

To analyze the above attack, we first present an upper bound on the probability that A
aborts.

Claim 4.1.6. Pr [A aborts] ≤ 2−z.

Proof. By Markov bound, the probability that in a single iteration of A the party P∗ does not
halt within m = 2q rounds is at most 1/2. Therefore, the probability that y∗ is not set in all z
iterations is at most 2−z. �

Since P∗ halts in the iteration that produced y∗ within m rounds, its view in the emulated
execution of R induced by the attack is the same as in this selected iteration (this holds even
though some parties might run for more rounds in the emulated execution). In particular, P∗
outputs y∗ also in the emulated execution. The proof continues as in the proof of Lemma 4.1.3,
where the only additional subtlety is that it is no longer true that the random coins of the
parties in the emulated execution induced by the attack are uniformly distributed. Indeed, we
have selected a value for w that causes P∗ to halt within m rounds. Yet, since in a random
execution of R, party P∗ halts within m rounds with probability at least 1/2, the method used
to sample w at most doubles the probability of inconsistency in the ring. It follows that the
attacked parties {A,B} output y∗ with probability at least 1− 2 · 3qδ times the probability that
A does not abort, and the proof of the lemma follows. �

4.2 Impossibility Results for Secure Computation

In this section, we present implications of the attack presented in Section 4.1 to secure multiparty
computations in the secure-channels point-to-point model (note that a lower bound in the
secure-channels model is stronger than in the authenticated-channels model). In Section 4.2.1,
we show that the only public-output functionalities that can be securely realized, according
to the real/ideal paradigm, in the presence of n/3 ≤ t < n/2 corrupted parties (i.e., honest
majority), are (n − 2t)-dominated functionalities. The only public-output functionalities that
can be securely realized in the presence of n/2 ≤ t < n corrupted parties (i.e., no honest
majority), are 1-dominated functionalities. In Section 4.2.2, we show that for n ≥ 3, non-trivial
n-party coin-flipping protocols, in which the honest parties must output a bit, are impossible
when facing t ≥ n/3 corrupted parties.

For concreteness, the focus in this section is on strict polynomial-time protocols secure
against strict polynomial-time adversaries, but all the results readily extend to the expected
polynomial-time regime.

4.2.1 Public-Output Functionalities

4.2.1.1 Dominated Functionalities

A special class of public-output functionalities are those with the property that every subset
of a certain size can fully determine the output. For example, the multiparty Boolean AND
and OR functionalities both have the property that every individual party can determine the
output (for the AND functionality any party can always force the output to be 0, and for the

55

OR functionality any party can always force the output to be 1). We distinguish between the
case where there exists a single value for which every large enough subset can force the output
and the case where different subsets can force the output to be different values. Looking ahead,
we will focus on the first variant where a unique output value can be forced by every subset.
In Section 4.2.1.2, we will show that every function that can be computed without broadcast
is in fact k-dominated (where the value of k depends on the maximal number of tolerable
corruptions), and in Section 4.3, we will show that dominated functions can be computed
without broadcast, where the unique value (that can be forced by every large enough subset)
is used as a default output value by the honest parties in case they identify some misbehaviour
in the protocol.

Definition 4.2.1 (dominated functionalities). A public-output n-party functionality f is weakly
k-dominated, if for every k-size subset I ⊆ [n] there exists a value y∗I , for which there exist
inputs {xi}i∈I , such that f(x1, . . . , xn) = y∗I for any complementing subset of inputs {xj}j /∈I .
The functionality f is k-dominated, if there exists a value y∗ such that for every k-size subset
I ⊆ [n] there exist inputs {xi}i∈I , for which f(x1, . . . , xn) = y∗ for any subset of inputs {xj}j /∈I .

Example 4.2.2. The function f(x1, x2, x3, x4) = (x1∧x2)∨(x3∧x4) is an example of a 4-party
function that is weakly 2-dominated but not 2-dominated. Every pair of input variables can be set
to determine the output value. However, there is no single output value that can be determined
by all pairs, for example, {x1, x2} can force the output to be 1 (by setting x1 = x2 = 1) whereas
{x1, x3} can force the output to be 0 (by setting x1 = x3 = 0). The function

f2-of-4(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4)

is 2-dominated with value y∗ = 1.

Note that in fact, 1-dominated functionalities are default-output functionalities with public
output (cf. Definition 3.2.1).

Claim 4.2.3. Let f be an n-party functionality and let m ≤ n/3. If f is weakly m-dominated,
then it is m-dominated.

Proof. Let I1, I2 ⊆ [n] be two subsets of size m. Denote by {xi}i∈I1 (resp., {xi}i∈I2) the input
values for I1 (resp., I2) that force the output to be y∗I1 (resp., y∗I2). In case I1 and I2 are disjoint,
fix an arbitrary complementing subset of inputs {xj}j /∈I1∪I2 . On the one hand it holds that
f(x1, . . . , xn) = y∗I1 and on the other hand it holds that f(x1, . . . , xn) = y∗I2 , hence y∗I1 = y∗I2 .

In case I1 and I2 are not disjoint, it holds that |I1 ∪ I2| < 2m ≤ 2n
3 and since m ≤ n/3,

there exists a subset I3 ⊆ [n] \ (I1 ∪ I2) of size m. Denote by y∗I3 the output value that can
be determined by the input variables {xi}i∈I3 (y∗I3 is guaranteed to exist since f is weakly
m-dominated). I3 is disjoint from I1 and from I2, so it follows from the argument above that
y∗I1 = y∗I3 and y∗I2 = y∗I3 , therefore y∗I1 = y∗I2 . �

4.2.1.2 The Lower Bound

Lemma 4.2.4 (restating Corollary 1.2.7). Let n ≥ 3, let t ≥ n/3, and let f be a public-output
n-party functionality that can be t-securely computed in the secure-channels point-to-point model
with computational security.

56

1. If n/3 ≤ t < n/2, then f is (n− 2t)-dominated.

2. If n/2 ≤ t < n, then f is 1-dominated.

Proof. Assume that n/3 ≤ t < n/2 (the proof for n/2 ≤ t < n is similar). Let π be a protocol
that t-securely computes f in the point-to-point model with secure channels. Since f is public-
output, all honest parties output the same value (except for a negligible probability), hence
π is (1 − neg, t)-consistent; let A be the ppt adversary guaranteed from Lemma 4.1.2 and let
I ⊆ [n] be any subset of size n − 2t. It follows that given control over {Pi}i∈I , the adversary
A can first fix a value y∗I , and later force the output of the honest parties to be y∗I (except
for a negligible probability). Since π is a protocol that t-securely computes f and n − 2t ≤ t,
there exists an ideal-model adversary S that upon corrupting {Pi}i∈I can force the output of
the honest parties in the ideal-model computation to be y∗I . All S can do is to select the input
values of the corrupted parties, hence, there must exist input values {xi}i∈I that determine the
output of the honest parties to be y∗I , i.e., f is weakly (n− 2t)-dominated. Since n− 2t ≤ n/3
and following Claim 4.2.3 we conclude that f is (n− 2t)-dominated. �

4.2.2 Coin-Flipping Protocols

A coin-flipping protocol [15] allows the honest parties to jointly flip an unbiased coin, where even
a coalition of (efficient) cheating parties cannot bias the outcome of the protocol by much. Our
focus is on coin flipping, where the honest parties must output a bit. Although Lemma 4.2.4
immediately shows that coin flipping cannot be securely computed according to the real/ideal
paradigm, we present a stronger impossibility result by considering weaker security require-
ments. For simplicity, we consider coin-flipping protocols with perfect consistency, however, our
negative result readily extends to protocols where consistency is only guaranteed to hold with
high probability.

Definition 4.2.5 (coin-flipping protocol). A polynomial-time n-party protocol π is a (γ, t)-bias
coin-flipping protocol, if the following holds.

1. π is (1, t)-consistent against ppt adversaries.

2. When interacting on security parameter κ with a ppt adversary controlling at most t
corrupted parties, the common output of the honest parties is γ(κ)-close to being a uniform
bit. (In particular, the honest parties are allowed to output ⊥, or values other than {0, 1},
with probability at most γ.)

The following is a straightforward application of Lemma 4.1.2.

Lemma 4.2.6 (restating Corollary 1.2.10). In the secure-channels point-to-point model, for
n ≥ 3 and γ(κ) < 1/2− 2−κ, there exists no n-party, (γ, dn/3e)-bias coin-flipping protocol.

Proof. Let π be a point-to-point n-party (γ, dn/3e)-bias coin-flipping protocol. Let A be the
ppt adversary that is guaranteed by Lemma 4.1.2 (since π is (1, dn/3e)-consistent against ppt
adversaries). Consider some fixed set of dn/3e corrupted parties of π and let Y (κ) denote the
random variable of A(κ)’s output in the first step of the attack. Without loss of generality, for
infinitely many values of κ it holds that Pr [Y (κ) = 0] ≤ 1/2. Consider the adversary A′ that on
security parameter κ, repeats the first step of A(κ) until the resulting value of y∗ is non-zero or

57

κ failed attempts have been reached, where if the latter happens A′ aborts. Next, A′ continues
the non-zero execution of A to make the honest parties of π output y∗. It is immediate that for
infinitely many values of κ, the common output of the honest parties under the above attack is
0 with probability at most 2−κ, and hence the common output of the honest parties is 1/2−2−κ

far from uniform. Thus, π is not a (γ, dn/3e)-bias coin-flipping protocol. �

4.3 Characterizing Secure Computation without Broadcast

In this section, we show that the lower bounds presented in Lemma 4.2.4 are tight. We treat
separately the case where an honest majority is assumed and the case where no honest majority
is assumed.

4.3.1 No Honest Majority

Theorem 3.2.2 states that, assuming the existence of one-way functions, any 1-dominated func-
tionality that can be t-securely computed in the broadcast model with authenticated channels,
can also be t-securely computed in the point-to-point model with authenticated channels.26

Combining with Lemma 4.2.4, we establish the following result.

Theorem 4.3.1 (restating second part of Theorem 1.2.9). Let n ≥ 3, let n/2 ≤ t < n and
assume that one-way functions exist. A public-output n-party functionality can be t-securely
computed in the authenticated-channels point-to-point model, if and only if it is 1-dominated
and can be t-securely computed in the authenticated-channels broadcast model.

Proof. Immediately by Lemma 4.2.4 and Theorem 3.2.2. �

4.3.2 Honest Majority

To prove the matching upper bound in the honest-majority setting (Proposition 4.3.5 below)
we use the two-threshold multiparty protocol of Fitzi et al. [48, Thm. 6]. This protocol with
parameters t1, t2 runs in the point-to-point model with secure channels, and whenever t1 ≤ t2
and t1 + 2t2 < n, the following holds. Let I be the set of parties that the (computationally
unbounded) adversary corrupts. If |I| ≤ t1, then the protocol computes f with full security. If
t1 < |I| ≤ t2, then the protocol securely computes f with fairness (i.e., the adversary may force
all honest parties to output ⊥, provided that it learns no new information). In Section 4.3.2.1,
we formally define the notion of two-threshold security that captures the security achieved by
the protocol of Fitzi et al. [48]. In Section 4.3.2.2, we present the fully secure protocol for
(n− 2t)-dominated functionalities.

Theorem 4.3.2 ([48, Thm. 6]). Let n ≥ 3, let t1, t2 be parameters such that t1 ≤ t2 and
t1 + 2t2 < n, and let f be an n-party functionality. Then, f can be (t1, t2)-securely computed in
the secure-channels point-to-point model with information-theoretic security.

26The result in Theorem 3.2.2 is based on the computationally secure protocol in [47, Thm. 2]. In the
authenticated-channels point-to-point model, this protocol requires one-way functions for constructing a con-
sistent public-key infrastructure between the parties, to be used for authenticated broadcast.

58

4.3.2.1 Defining Two-Threshold Security

We present a weaker variant of the ideal model that allows for a premature (and fair) abort, in
case sufficiently many parties are corrupted. Next, we define two-threshold security of protocols.

Threshold ideal-model execution. A t-threshold ideal computation of an n-party func-
tionality f on input x = (x1, . . . , xn) for parties (P1, . . . ,Pn), in the presence of an ideal-model
adversary A controlling the parties indexed by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the trusted party.
The adversary may send to the trusted party arbitrary inputs for the corrupted parties.
If |I| > t, then the adversary may send a special abort command to the trusted party. Let
x′i be the value actually sent as the input of party Pi.

Trusted party answers the parties: In case the adversary sends the special abort command
(specifically, |I| > t), then the trusted party sends ⊥ to all the parties. Otherwise, if x′i
is outside of the domain for Pi, for some index i, or if no input is sent for Pi, then the
trusted party sets x′i to be some predetermined default value. Next, the trusted party
computes f(x′1, . . . , x′n) = (y1, . . . , yn) and sends yi to party Pi for every i.

Outputs: Honest parties always output the message received from the trusted party and the
corrupted parties output nothing. The adversary A outputs an arbitrary function of the
initial inputs {xi}i∈I , the messages received by the corrupted parties from the trusted
party {yi}i∈I and its auxiliary input.

Definition 4.3.3 (Threshold ideal-model computation). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party functionality and let I ⊆ [n]. The joint execution of f under (A, I) in the t-threshold
ideal model, on input vector x = (x1, . . . , xn), auxiliary input z to A and security parameter
κ, denoted IDEALtf,I,A(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and A(z) resulting
from the above-described ideal process.

Definition 4.3.4. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, and let π be a
probabilistic polynomial-time protocol computing f . The protocol π (t1, t2)-securely computes f
(with information-theoretic security), if for every real-model adversary A, there exists an adver-
sary S for the t1-threshold ideal model, whose running time is polynomial in the running time
of A, such that for every I ⊆ [n] of size at most t2{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALt1f,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N
.

4.3.2.2 Full Security with an Honest Majority

Proposition 4.3.5. Let n ≥ 3, let n/3 ≤ t < n/2, and let f be a public-output n-party
functionality. If f is (n − 2t)-dominated, then it can be t-securely computed in the secure-
channels point-to-point model with information-theoretic security.

Proof. Let f be an (n−2t)-dominated functionality with default-output value y∗. If n−2t = 1,
then f is 1-dominated, and since t < n/2, f can be t-securely computed with information-

59

theoretic security in the secure-channels broadcast model (e.g., using Rabin and Ben-Or [81]).
Hence, the proposition follows from Theorem 3.2.2.27

For n − 2t ≥ 2, set t1 = n − 2t − 1 and t2 = t, and let π′ be the n-party protocol,
guaranteed to exist by Theorem 4.3.2, that (t1, t2)-securely computes f . We define π to be the
following n-party protocol for computing f in the point-to-point model with secure channels
(Protocol 4.3.6).

Protocol 4.3.6 (full security for (n− 2t)-dominated functionalities).

1. The parties run the protocol π′. Let yi be the output of Pi at the end of the execution.

2. If yi 6= ⊥, party Pi outputs yi, otherwise it outputs y∗.
. .

Let A be an adversary attacking the execution of π and let I ⊆ [n] be a subset of size at
most t. It follows from Theorem 4.3.2 that there exists a (possibly aborting) adversary S ′ for
A in the t1-threshold ideal model such that{

REALπ′,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALt1f,I,S′(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N
.

Using S ′, we construct the following non-aborting adversary S for the full-security ideal
model. On inputs {xi}i∈I and auxiliary input z, S starts by emulating S ′ on these inputs,
playing the role of the trusted party (in the t1-threshold ideal model). If S ′ sends an abort
command, it is guaranteed that |I| ≥ n−2t and since f is (n−2t)-dominated, there exist input
values {x′i}i∈I that determine the output of f to be y∗. So in this case, S sends these {x′i}i∈I
to the trusted party (in the full-security ideal model) and returns ⊥ to S ′. Otherwise, S ′ does
not abort and S forwards the message from S ′ to the trusted party and the answer from the
trusted party back to S ′. In both cases S outputs whatever S ′ outputs and halts.

A main observation is that the views of the adversary A in an execution of π and in an
execution of π′ (with the same inputs and random coins) are identical. This holds since the
only difference between π and π′ is in the second step of π that does not involve any interaction.
It follows that in case the output of the parties in Step 1 of π is not ⊥, the joint distribution
of the honest parties’ output and the output of A in π is statistically close to the output of the
honest parties and of S in the full-security ideal model (since the latter is exactly the output
of the honest parties and of S ′ in the t1-threshold ideal model). If the output in Step 1 of π is
⊥, then all honest parties in π output y∗. In this case S ′ sends abort (except for a negligible
probability) and since S sends to the trusted party the input values {x′i}i∈I that determine
the output of f to be y∗, the honest parties’ output is y∗ also in the ideal computation. We
conclude that{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALfull
f,I,S(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

�

27When an honest majority is assumed, the result in Theorem 3.2.2 can be adjusted to use the information-
theoretically secure protocol of Fitzi et al. [47, Thm. 3]. In the secure-channels point-to-point model, this
protocol uses information-theoretically pseudo-signatures [79] for computing a setup, to be used for authenticated
broadcast.

60

Theorem 4.3.7 (restating the first part of Theorem 1.2.9). Let n ≥ 3 and n/3 ≤ t < n/2. A
public-output n-party functionality can be t-securely computed in the secure-channels point-to-
point model, if and only if it is (n− 2t)-dominated.

Proof. Immediately follows by Lemma 4.2.4 and Proposition 4.3.5. �

61

62

Part II

Round-Efficient MPC
with Full Security

63

Chapter 5

Preliminaries

5.1 The UC Framework

In this section, we describe the universal composition framework, for more details see [20].

5.1.1 The Real Model

An execution of a protocol π in the real model consists of n ppt interactive Turing machines
(ITMs) P1, . . . ,Pn representing the parties, along with two additional ITMs, an adversary A,
describing the behavior of the corrupted parties and an environment Z, representing the external
network environment in which the protocol operates. The environment gives inputs to the honest
parties, receives their outputs, and can communicate with the adversary at any point during
the execution. The adversary controls the operations of the corrupted parties and the delivery
of messages between the parties.

In more details, each ITM is initialized with the security parameter κ and random coins,
where the environment may receive an additional auxiliary input. The protocol proceeds by
a sequence of activations, where the environment is activated first and at each point a single
ITM is active. When the environment is activated it can read the output tapes of all honest
parties and of the adversary, and it can activate one of the parties or the adversary by writing
on its input tape. Once a party is activated it can perform a local computation, write on its
output tape or send messages to other parties by writing on its outgoing communication tapes.
After the party completes its operations the control is returned to the environment. Once the
adversary is activated it can send messages on behalf of the corrupted parties or send a message
to the environment by writing on its output tape. In addition, A controls the communication
between the parties, and so it can read the contents of the messages on outgoing tapes of honest
parties and write messages on their incoming tapes. We assume that only messages that were
sent in the past by some party can be delivered, and each message can be delivered at most
once. The adversary A is adaptive, and so it can also corrupt an honest party, gain access to all
its tapes and control all its actions. Whenever a party is corrupted the environment is notified.
If A wrote on the incoming tape of an honest party, this party is activated next, otherwise
the environment is activated. The protocol completes once Z stops activating other parties and
outputs a single bit. We consider malicious adversaries, that may instruct the corrupted parties

65

to deviate from the protocol arbitrarily.
Let REALπ,A,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after in-

teracting with adversary A and parties P1, . . . ,Pn running protocol π with random tapes
r = (r1, . . . , rn, rA, rZ) as described above. Let REALπ,A,Z(κ, z) denote the random variable
REALπ,A,Z(κ, z, r), when the vector r is uniformly chosen.

5.1.2 The Ideal Model

A computation in the ideal model consists of n dummy parties P1, . . . ,Pn, an ideal-process
adversary (simulator) S, an environment Z, and an ideal functionality F. As in the real model,
the environment gives inputs to the honest (dummy) parties, receives their outputs, and can
communicate with the ideal-process adversary at any point during the execution. The dummy
parties act as channels between the environment and the ideal functionality, meaning that they
send the inputs received from Z to F and vice-versa. The ideal functionality F defines the
desired behaviour of the computation. F receives the inputs from the dummy parties, executes
the desired computation and sends the output to the parties. The ideal-process adversary does
not see the communication between the parties and the ideal functionality, however, S can
communicate with F.

Hiding the communication between the ideal functionality and the parties from the adversary
may be too restrictive, and indeed, in the standard UC framework the adversary is often given
the power to determine when a party will receive the message. We say that the ideal functionality
F sends a delayed output v to a party P if F first sends to the adversary a message that it is
ready to generate an output to P. In case the output is public F sends v to the adversary.
When the adversary replies to the message, F outputs the value v to P.28

Let IDEALF,S,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after inter-
acting with ideal-process adversary S and dummy parties P1, . . . ,Pn that interact with ideal
functionality F using random tapes r = (rS , rZ) as described above. Let IDEALF,S,Z(κ, z)
denote the random variable IDEALF,S,Z(κ, z, r), when the vector r is uniformly chosen.

Definition 5.1.1. We say that a protocol π UC-realizes an ideal functionality F with perfect
security in the presence of adaptive malicious adversaries, if for any adaptive malicious adver-
sary A and any environment Z, there exists an ideal-process adversary S, whose running time
is polynomial in the running time of A, such that the following two distribution ensembles are
computationally indistinguishable

{REALπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗ ≡ {IDEALF,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

Canetti [20, Claim 10] provided a simplification of the above definition, and showed that
instead of quantifying over all adversaries, it is sufficient to prove security facing the dummy
adversary, which acts as a channel between the environment and the protocol. Namely, the

28The ideal-process adversary may never release messages from the ideal functionality to the dummy parties
and so termination of the computation is not guaranteed. In order to rule out trivial protocols that never
produce output, Canetti et al. [23] defined non-trivial protocols that have the following property: if the real-
model adversary delivers all messages and does not corrupt any parties, then the ideal-process adversary also
delivers all messages and does not corrupt any parties. We note that using techniques from [68] guaranteed
termination can be enforced.

66

dummy adversary forwards any information it gathers directly to the environment, and forwards
any instruction it receives from the environment to the corresponding corrupted party.

Claim 5.1.2. A protocol π UC-realizes a functionality F according to Definition 5.1.1 if and
only if π UC-realizes F with respect to the dummy adversary.

5.1.3 The Hybrid Model

The F-hybrid model is a combination of the real and ideal models, it extends the real model with
an ideal functionality F. The parties communicate with each other in exactly the same way as
in the real model described above, however, they can interact with F as in the ideal model. An
important property of the UC framework is that the ideal functionality F in a F-hybrid model
can be replaced with a protocol that UC-realizes F.

Let the global output HYBRIDFπ,A,Z(κ, z) denote Z’s output on input z and security parameter
κ, after interacting in a F-hybrid model with adversary A and parties P1, . . . ,Pn with uniformly
distributed random tapes r = (r1, . . . , rn, rA, rZ) running protocol π.

Theorem 5.1.3 (Canetti [20]). Let F be an ideal functionality and let ρ be a protocol that
UC-realizes F in the presence of adaptive malicious adversaries, and let π be a protocol that
UC-realizes G in the F-hybrid model in the presence of adaptive malicious adversaries. Then for
any adaptive malicious real-model adversary A and any environment Z, there exists an adaptive
malicious adversary S in the F-hybrid model such that

{REALπρ,A,Z (κ, z)}κ∈N,z∈{0,1}∗ ≡
{

HYBRIDFπ,S,Z (κ, z)
}
κ∈N,z∈{0,1}∗

.

5.2 Synchronous Communication in the UC Framework

The UC framework as described in Section 5.1 is inherently asynchronous, since the adversary
has full control over the delivery of messages between honest parties. It follows that full security
cannot be defined in the UC framework, since guaranteed termination can never be enforced.
Several definition of synchronous communication over the UC framework have been proposed,
e.g., [20, 21, 71, 68]. We follow that model of Katz et al. [68], which ensures guaranteed
termination, and can be used to define full security over the UC framework. However, we
note that the remainder of Part II also applies to the synchronous setting without guaranteed
termination.

Concretely, Katz et al. [68] introduced a framework for universally composable synchronous
computation. For self-containment we describe here the basics of the model and introduce some
terminology that simplifies the description of corresponding functionalities.

Synchronous protocols can be cast as UC protocols which have access to a special clock
functionality Fclock, which allows them to coordinate round switches as described below, and
communicate over bounded-delay channels.29 In a nutshell, the clock-functionality works as
follows: It stores a bit b which is initially set to 0 and it accepts from each party two types

29As argued in [68], bounded-delay channels are essential as they allow parties to detect whether or not a
message was sent within a round.

67

of messages: clock-update and clock-read. The response to clock-read is the value of
the bit b to the requestor. Each clock-update is forwarded to the adversary, but it is also
recorded, and upon receiving such a clock-update message from all honest parties, the clock
functionality updates b to b ⊕ 1. It then keeps working as above, until it receives again a
clock-update message from all honest parties, in which case it resets b to b⊕ 1 and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the
clock indicator b. At the beginning of the protocol execution this variable is 0 for all parties.
In every round, every party uses all its activations (i.e., messages it receives) to complete all
its current-round instructions and only then sends clock-update to the clock signaling to the
clock that it has completed its round; following clock-update, all future activations result in
the party sending clock-read to the clock until its bit b is flipped; once the party observes
that the bit b has flipped, it starts its next round. For clarity, we refrain from writing this clock
functionality in our theorem statement; however, all our results assume access to such a clock
functionality.

In the communication network of [68], parties have access to bounded-delay secure channels.
These channels work in a so-called “fetch” mode, i.e., in order to receive his output the receiver
issues a fetch-output command. This allows to capture the property of a channel between a
sender Ps and a receiver Pr, delaying the delivery of a message by an amount δ: as soon as
the sender Ps submits an input y (message to be sent to the receiver) the channel functionality
starts counting how many times the receiver requests it.30 The first δ − 1 such fetch-output
requests (plus all such requests that are sent before the sender submits input) are ignored (and
the adversary is notified about them); the δ’th fetch-output request following a submitted
input y from the sender results in the channel sending (output, y) to Pr. In this work we take
an alternative approach and model secure channels as special simple SFE-like functionalities31

that take as input from the sender the message he wishes to send (and a default input from
other parties) and deliver the output to the receiver in a fetch mode.32 Such a simple secure-
channel SFE can be realized in a straightforward manner from bounded-delay channels and a
clock Fclock.

As is common in the synchronous protocols literature, throughout this work we will as-
sume that protocols have the following structure: In each round every party sends/receives a
(potentially empty) message to all parties and hybrid functionalities. Such a protocol can be
described in UC in a regular form using the methodology from [68] as follows: Let µ ∈ N denote
the maximum number of messages that any party Pi might send to all its hybrids during some
round.33 Every party in the protocol uses exactly µ activations in each round. That is, once
a party Pi observes that the round has changed, i.e., the indicator-bit b of the clock has being
flipped, Pi starts its next round as described above. However, this round finishes only after

30Following the simplifying approach of [68], we assume that communication channels are single use, thus, each
message transmission uses an independent instance of the channel.

31In Chapter 6 we introduce a more liberal variant of the UC SFE functionality that we call canonical syn-
chronous functionality (in short, CSF) that allows us to abstract several (even more complicated) tasks such as
Byzantine agreement.

32In fact, for simplicity we assume that they deliver output on the first “fetch”.
33In the simple case where the parties only use point-to-point channels, µ = 2(n − 1), since each party uses

n− 1 channels as sender and n− 1 as receiver to exchange his messages for each round with all other n parties.

68

Pi receives µ additional activations. Note that Pi uses these activations to execute his current
round instructions; since µ is a bound on the number of hybrids used in any round by any party,
µ activations are enough for the party to complete its round, (If Pi finishes the round early,
i.e., in less than µ activations, it simply “does nothing” until the µ activations are received, i.e.,
forward the activation from the environment to its hybrid functionalities.) Once µ activations
are received in the current round, Pi sends clock-update to the clock and then keeps sending
clock-read message, as described above, until it observes a flip of b indicating that Pi can go
to the next round.

In addition to the regular form of protocol execution, Katz et al. [68] described a way of
capturing in UC the property that a protocol is guaranteed to terminate in a given number
of rounds.34 The idea is that a synchronous protocol in regular form which terminates after r
rounds realizes the following functionality F. The functionality F keeps track of the number
of times every honest party sends µ activations/messages and delivers output as soon as this
has happened r times. More concretely, imitating an r-round synchronous protocol with µ

activations per party per round, upon being instantiated, F initiates a global round-counter
λ = 0 and an indicator variable λi := 0 for each Pi ∈ P; as soon as some party Pi sends µ
messages to F, while the round-counter λ is the same, F sets λi := 1 and does the following
check:35 if λi = 1 for all honest Pi then increase λ := λ+ 1 and reset λi = 0 for all Pi ∈ P. As
soon as λ = r, F enters a “delivery” mode. In this mode, whenever a message fetch-output
is received by some party Pi, the functionality F outputs to Pi its output. (If F has no output
to Pi is outputs ⊥.)

We refer to a functionality that has the above structure, i.e., which keeps track of the
current round λ by counting how many times every honest party has sent a certain number µ of
messages, as a synchronous functionality. To simplify the description of our functionalities, we
introduce the following terminology. We say that a synchronous functionality F is in round ρ

if the current value of the above internal counter in F is λ = ρ. All synchronous functionalities
considered in this work have the following format: They can receive any message as input
from the parties, however, they ignore all messages until the first message of the special form
(input, ·); as soon as an honest party sends its input message, any future message by this party
is treated as a (fetch-output, ·) message. Without loss of generality, whenever clear from the
context we will describe functionalities for µ = 1, i.e., once a functionality receives a message
from every party it proceeds to the simulation of the next protocol round. We stress that this
is done to simplify the description, and in an actual evaluation, as in the synchronous setting
of [68], in order to give the simulator sufficiently many activations to perform its simulation,
functionalities typically have to wait for µ > 1 messages from each party where the last µ − 1
of these messages are typically “dummy” activations (usually of the type (fetch-output, ·)).

We note that protocols in the synchronous model of [68] enjoy the strong composition
properties of the UC framework. However, in order to have protocols being executed in a lock-
step mode, i.e., where all protocols complete their round within the same clock-tick, Katz et al.
[68] make use of the composition with joint-state (JUC) [22]. The idea is the parties use an
Fclock-hybrid protocol π̂ that emulates towards each of the protocols, subclocks and assigns

34The wrappers presented in this work generalize the notion of guaranteed termination to capture randomized
number of rounds. Concretely, one can view the functionality for SFE with guarantee termination from [68] as a
wrapped version of the standard SFE functionality with our wrapper with a deterministic round distribution.

35To make sure that the simulator can keep track of the round index, F notifies S about each received input,
unless it has reached its delivery state defined below.

69

to each subclock a unique sub-session ID (ssid). Each of these subclocks is local to its calling
protocol, but π̂ makes sure that it gives a clock-update to the actual (joint) clock functionality
Fclock, only when all subclocks have received such a clock-update message. This ensures
that all clocks will switch their internal bits at the same time with the bigger clock, which means
that the protocols using them will be mutually synchronized. This property can be formally
proved by direct application of the JUC theorem. For further details the interested reader is
referred to [68, 22].

A final delicate point that needs to be addressed is with respect to whether/when parties
can stop sending messages to their functionalities. Concretely, since the parties do not a priori
know the termination round, a party cannot halt as soon as it produces output, since some other
party might still need several rounds to produce its own output. Rather, every protocol in our
setting continues sending (dummy) messages to all its hybrids even after having generated its
output—as long as it keeps being activated by the environment—to enable also the other (slower)
parties compute their outputs. Note that this is a straightforward adaptation of classical UC
protocols—instead of the protocol ignoring messages after it has produced output, it enters a
special dummy stage. Most importantly, it does not yield inefficient protocols, as the input
of a UC protocol consists of the concatenation of its inputs, and, therefore, as long as the
environment provides new inputs/activations the protocol can continue executing dummy steps.
(The UC experiment finishes when the environment decides to stop and make its guess.)

5.3 On Parallel (In)Composability of Protocols with Probabilis-
tic Termination

Ben-Or and El-Yaniv [11] observed that when executing randomized protocols with probabilistic
termination in parallel, then, in general, the expected running time of the composed protocol
(i.e., the rounds its takes for all protocols to give output to all parties) is not preserved. We prove
a formal example where this is the case. Concretely, consider a protocol realizing a particular
ideal functionality such that the probability that all parties have completed the protocol by
round k is pk for some 0 < p < 1. Then, the expected running time of the protocol is 1/p
rounds, i.e., constant. (This is essentially the case in most randomized BA protocols starting
with Feldman and Micali [42].) However, as implied by the following lemma, if m instances of
the protocol are run in parallel, in a straightforward manner, the resulting protocol will have
an expected running time of Θ(logm), which is no longer constant.

In particular, running m parallel copies of the protocol of Feldman and Micali [42] results
in a protocol that in expectation takes Θ(logm) phases (and thus rounds) to complete.

Lemma 5.3.1. Let X1, . . . , Xm be independent, identically distributed (IID) geometric random
variables, such that for every i ∈ [m] it holds that Pr[Xi = 1] = p for some 0 < p < 1. Then,

E

[
max

1≤i≤m
Xi

]
= Θ(logm).

Proof. As shown in Eisenberg [41], the expected value of the maximum of the random variables

70

is
1

− log(1− p)

m∑
k=1

1
k
≤ E

[
max

1≤i≤m
Xi

]
≤ 1 + 1

− log(1− p)

m∑
k=1

1
k
.

The lemma follows immediately from the properties of the Harmonic numbers Hm =
∑m
k=1

1
k .

In particular, denote um = Hm − logm, then the series (um)m converges to Euler’s constant γ,
implying that

Hm = Θ(logm).

�

71

72

Chapter 6

Secure Computation with Probabilistic
Termination

The work of Katz et al. [68] addresses (synchronous) cryptographic protocols that terminate in
a fixed number of rounds for all honest parties. However, as mentioned in Chapter 1, Ben-Or
[10] and Rabin [80] showed that in some cases, great asymptotic improvements on the expected
termination of protocols can be achieved through the use of randomization. Recall, for example,
that in the case of BA, even though a lower bound of t + 1 rounds of any deterministic BA
protocol tolerating t corruptions exists [43, 39], Rabin’s global-coin technique (fully realized
later on in [42]) yields an expected constant round protocol. This speedup, however, comes
at a price, namely, of relinquishing both fixed and simultaneous termination [40]: the round
complexity of the corresponding protocols may depend on random choices made during the
execution, and parties may obtain output from the protocol in different rounds.

In this section, we show how to capture protocols with such probabilistic termination (PT),
i.e., without fixed and without simultaneous termination, within the UC framework. To capture
probabilistic termination, we first introduce a functionality template Fcsf called a canonical
synchronous functionality (CSF). Fcsf is a simple two-round functionality with explicit (one-
round) input and (one-round) output phases. Computation with probabilistic termination is
then defined by wrapping Fcsf with an appropriate functionality wrapper that enables non-fixed,
non-simultaneous termination.

6.1 Canonical Synchronous Functionalities

At a high level, Fcsf corresponds to a generalization of the UC-secure function evaluation
(SFE) functionality to allow for potential leakage on the inputs to the adversary and potential
adversarial influence on the outputs.36 In more detail, Fcsf has two parameters: (1) a (possibly)
randomized function f that receives n+ 1 inputs (n inputs from the parties and one additional
input from the adversary) and (2) a leakage function l that leaks some information about the
input values to the adversary.

36Looking ahead, this adversarial influence will allow us to describe BA-like functionalities as simple and
intuitive CSFs.

73

Fcsf proceeds in two rounds: in the first round all the parties hand Fcsf their input values,
and in the second round each party receives its output. This is very similar to the standard
(UC) SFE functionality; the difference here is that whenever some input is submitted to Fcsf,
the adversary is handed some leakage function of this input—similarly, for example, to how
UC-secure channels leak the message length to the adversary. The adversary can use this
leakage when deciding the inputs of corrupted parties. Additionally, he is allowed to input an
extra message, which—depending on the function f—might affect the output(s). The detailed
description of Fcsf is given in Figure 6.1.

Functionality Ff,lcsf(P)

Fcsf proceeds as follows, parametrized by a function f : ({0, 1}∗ ∪ {⊥})n+1 → ({0, 1}∗)n and a
leakage function l : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗, and running with parties P = {P1, . . . ,Pn} and an
adversary S.

• Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn, and the adversary’s value
a to ⊥.

• In round ρ = 1:

– Upon receiving (adv-input, sid, v) from the adversary, set a← v.
– Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi ← v and send

(leakage, sid,Pi, l(x1, . . . , xn)) to the adversary.

• In round ρ = 2:

– Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn = ⊥, set a ← v.
Otherwise, discard the message.

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1 = . . . = yn = ⊥ compute
(y1, . . . , yn) = f(x1, . . . , xn, a). Next, send (output, sid, yi) to Pi and (fetch-output, sid,Pi)
to the adversary.

Figure 6.1: The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fcsf. Following the
simplifications from Section 5.2, Fcsf advances its round as soon as it receives µ = 1 message
from each honest party. This ensures that the adversary cannot make the functionality stall
indefinitely. Thus, formally speaking, the functionality Fcsf is not well-formed (cf. [23]), as its
behavior depends on the identities of the corrupted parties.37 We emphasize that the non-well-
formedness relates only to advancing the rounds, and is unavoidable if we want to restrict the
adversary not to block the evaluation indefinitely (cf. [68]).

Once an honest party sends its input, the adversary receives a leakage from the functionality,
and based on this information can corrupt the party, replace its input value, and send an
additional input message to the functionality. Note that the functionality will consider the
latest input value received by a party in order to allow the adversary such a behavior.

We point out that as a generalization of the SFE functionality, CSFs are powerful enough
to capture any deterministic well-formed functionality. In fact, all the basic (unwrapped) func-
tionalities considered in this work will be CSFs. We now describe how standard functionalities
from the MPC literature can be cast as CSFs:

37This is, in fact, also the case for the standard UC SFE functionality.

74

Secure Message Transmission (aka Secure Channel). In the secure message
transmission (SMT) functionality, a sender Pi with input xi sends its input to Pj . Since
Fcsf is an n-party functionality and involves receiving input messages from all n par-
ties, we define the two-party task using an n-party function. The function to compute is
f i,jsmt(x1, . . . , xn, a) = (λ, . . . , xi, . . . , λ) (where xi is the value of the j’th coordinate) and the
leakage function is li,jsmt(x1, . . . , xn) = y, where y = |xi| in case Pj is honest and y = xi in
case Pj is corrupted. We denote by F i,jsmt the functionality Fcsf when parametrized with the
above functions f i,jsmt and li,jsmt, for sender Pi and receiver Pj .
Broadcast. In the (standard) broadcast functionality, a sender Pi with input xi dis-
tributes its input to all the parties, i.e., the function to compute is f ibc(x1, . . . , xn, a) =
(xi, . . . , xi). The adversary only learns the length of the message xi before its distribution,
i.e., the leakage function is libc(x1, . . . , xn) = |xi|. This means that the adversary does not
gain new information about the input of an honest sender before the output value for all
the parties is determined, and in particular, the adversary cannot corrupt an honest sender
and change its input after learning the input message. We denote by F ibc the functionality
Fcsf when parametrized with the above functions f ibc and libc, for sender Pi.
Secure Function Evaluation. In the secure function evaluation functionality, the
set of parties compute a randomized function g(x1, . . . , xn), i.e., the function to compute
is fgsfe(x1, . . . , xn, a) = g(x1, . . . , xn). The adversary learns the length of the input values
via the leakage function, i.e., the leakage function is lsfe(x1, . . . , xn) = (|x1| , . . . , |xn|). We
denote by Fgsfe the functionality Fcsf when parametrized with the above functions fgsfe and
lsfe, for computing the n-party function g.
Byzantine Agreement (aka Consensus). In the Byzantine agreement functionality,
defined for the set V , each party Pi has input xi ∈ V . The common output is computed
such that if n − t of the input values are the same, this will be the output; otherwise the
adversary gets to decide on the output. The adversary is allowed to learn the content of
each input value from the leakage (and so it can corrupt parties and change their inputs
based on this information). The function to compute is fba(x1, . . . , xn, a) = (y, . . . , y) such
that y = x if there exists a value x such that x = xi for at least n − t input values xi;
otherwise y = a. The leakage function is lba(x1, . . . , xn) = (x1, . . . , xn). We denote by FVba
the functionality Fcsf when parametrized with the above functions fba and lba, defined for
the set V .

6.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with probabilistic
termination. This is achieved by defining the notion of an output-round randomizing wrapper.
Such a wrapper is parametrized by an efficient probabilistic algorithm D, termed the round
sampler, that may depend on a specific protocol implementing the functionality. The round
sampler D samples a round number ρterm by which all parties are guaranteed to receive their
outputs no matter what the adversary strategy is. Moreover, since there are protocols in which
all parties terminate in the same round and protocols in which they do not, we consider two
wrappers: the first, denotedWstrict, ensures in a strict manner that all (honest) parties terminate

75

in the same round, whereas the second, denotedWflex, is more flexible and allows the adversary
to deliver outputs to individual parties at any time before round ρterm.

A delicate issue that needs to be addressed is the following: While an ideal functionality can
be used to abstractly describe a protocol’s task, it cannot hide the protocol’s round complexity.
This phenomenon is inherent in the synchronous communication model: any environment can
observe how many rounds the execution of a protocol takes, and, therefore, the execution of the
corresponding ideal functionality must take the same number of rounds.38

As an illustration of this issue, let F be an arbitrary functionality realized by some protocol
π. If F is to provide guaranteed termination (whether probabilistic or not), it must enforce
an upper bound on the number of rounds that elapse until all parties receive their outputs. If
the termination round of π is not fixed (but may depend on random choices made during its
execution), this upper bound must be chosen according to the distribution induced by π.

Thus, in order to simulate correctly, the functionality F and π’s simulator S must coordinate
the termination round, and therefore, F must pass the upper bound it samples to S. However, it
is not sufficient to simply inform the simulator about the guaranteed-termination upper bound
ρterm. Intuitively, the reason is that protocol π may make probabilistic choices as to the order in
which it calls its hybrids (and, even worse, these hybrids may even have probabilistic termination
themselves). Thus, F needs to sample the upper bound based on π and the protocols realizing
the hybrids called by π. As S needs to emulate the entire protocol execution, it is now left with
the task of trying to sample the protocol’s choices conditioned on the upper bound it receives
from F. In general, however, it is unclear whether such a reverse sampling can be performed in
(strict) polynomial time.

To avoid this issue and allow for an efficient simulation, we have F output all the coins that
were used for sampling round ρterm to S. Because S knows the round sampler algorithm, it can
reproduce the entire computation of the sampler and use it in its simulation. In fact, as we
discuss below, it suffices for our proofs to have F output a trace of its choices to the simulator
instead of all the coins that were used to sample this trace. In the remainder of this section, we
motivate and formally describe our formulation of such traces. The formal description of the
wrappers, which in particular sample traces, can then be found at the end of this section.

Execution traces. As mentioned above, in the synchronous communication model, the ex-
ecution of the ideal functionality must take the same number of rounds as the protocol. For
example, suppose that the functionality F in our illustration above is used as a hybrid by a
higher-level protocol π′. The functionality G realized by π′ must, similarly to F, choose an
upper bound on the number of rounds that elapse before parties obtain their outputs. However,
this upper bound now depends not only on π′ itself but also on π (in particular, when π is a
probabilistic-termination protocol).

Given the above, the round sampler of a functionality needs to keep track of how the
functionality was realized. This can be achieved via the notion of trace. A trace basically
records which hybrids were called by a protocol, and in a recursive way, for each hybrid, which
hybrids would have been called by a protocol realizing that hybrid. The recursion ends with
the hybrids that are “assumed” by the model, called atomic functionalities.39

38In particular, this means that most CSFs are not realizable, since they always guarantee output after two
rounds.

39In this work, atomic functionalities are always parallel SMT CSFs Fpsmt, defined in Section 7.3.

76

Building on our running illustration above, suppose protocol π′ (realizing G) makes ideal
hybrid calls to F and to some atomic functionality H. Assume that in an example execution,
π′ happens to make (sequential) calls to instances of H and F in the following order: F, then
H, and finally F again. Moreover, assume that F is replaced by protocol π (realizing F) and
that π happens to make two (sequential) calls to H upon the first invocation by π′, and three
(sequential) calls to H the second time (we assume that both π and π′ call exactly one hybrid
in every round). Then, this would result in the trace depicted in Figure 6.2.

G

F H F

H H H H
π

π′

π

H

Figure 6.2: Example of an execution trace

Assume that π is a probabilistic-termination protocol and π′ a deterministic-termination
protocol. Consequently, this means that F is in fact a flexibly wrapped functionality of some
CSF F ′, i.e., F = WDF

flex (F ′), where the distribution DF samples (from a distribution induced
by π) depth-1 traces with root WDF

flex (F ′) and leaves H.40 Similarly, G is a strictly wrapped
functionality of some CSF G′, i.e., G = WDG

strict(G′), where the distribution DG first samples
(from a distribution induced by π′) a depth-1 trace with root WDG

strict(G′) and leaves WDF
flex (F ′)

as well as H. Then, each leaf node WDF
flex (F′) is replaced by a trace (independently) sampled

from DF . Thus, the example trace from Figure 6.2 would look as in Figure 6.3.

WDG
strict(G′)

H

H H H H
π

π′

π

H

WDF
flex(F ′) WDF

flex(F ′)

Figure 6.3: An execution trace with probabilistic-termination and deterministic-termination
protocols

Formally, a trace is defined as follows:

Definition 6.2.1 (traces). A trace is a rooted tree of depth at least 1, in which all nodes are
labeled by functionalities and where every node’s children are ordered. The root and all internal
nodes are labeled by wrapped CSFs (by either of the two wrappers), and the leaves are labeled by
unwrapped CSFs. The trace complexity of a trace T , denoted ctr(T), is the number of leaves in
T . Moreover, denote by flextr(T) the number of flexibly wrapped CSFs in T .

40Note that the root node of the trace sampled from DF is merely labeled by WDF
flex (F ′), i.e., this is not a

circular definition.

77

Remark. The actual protocol trace encodes its round complexity and the access pattern to
its hybrids (i.e., when is each hybrid used). Clearly, this pattern might depend on the inputs of
the parties and/or the adversary. For example, in the Byzantine agreement protocol of Feldman
and Micali [42], if all honest parties start with the same input, then they get their output faster.
For simplicity, in this work, the class of trace-distributions we define, and which our wrappers
sample from, considers traces that are sampled independently of the honest parties’ inputs or
adversary. Nonetheless, our wrappers give the simulator the power to influence the simulated
access-pattern and/or termination round. This allows us to use this simplified trace-distribution
class to devise functionalities which, as we show, are implemented by known protocols with
probabilistic termination.

Strict wrapper functionality. We now proceed to give the formal descriptions of the wrap-
pers. The strict wrapper functionality, defined in Figure 6.4, is parametrized by (a sampler
that induces) a distribution D over traces, and internally runs a copy of a CSF functionality F.
Initially, a trace T is sampled from D; this trace is given to the adversary once the first honest
party provides its input. The trace T is used by the wrapper to define the termination round
ρterm ← ctr(T). In the first round, the wrapper forwards all the messages from the parties and
the adversary to (and from) the functionality F. Next, the wrapper essentially waits until round
ρterm, with the exception that the adversary is allowed to send (adv-input, sid, ·) messages and
change its input to the function computed by the CSF. Finally, when round ρterm arrives, the
wrapper provides the output generated by F to all parties.

Wrapper Functionality WD
strict(F)

Wstrict, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send
(trace, sid, T) to the adversary.a

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition,
forward (leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed
as follows:

– If ρ = ρterm, forward the message to F, and the response (output, sid, yi) to Pi.
– Else, send (fetch-output, sid,Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 6.4: The strict-wrapper functionality

Flexible-wrapper functionality. The flexible-wrapper functionality, defined in Figure 6.5,
follows in similar lines to the strict wrapper. The difference is that the adversary is allowed to
instruct the wrapper to deliver the output to each party at any round. In order to accomplish
this, the wrapper assigns a termination indicator termi, initially set to 0, to each party. Once

78

the wrapper receives an early-output request from the adversary for Pi, it sets termi ← 1.
Now, when a party Pi sends a fetch-output request, the wrapper checks if termi = 1, and lets
the party receive its output in this case (by forwarding the fetch-output request to F). When
the guaranteed-termination round ρterm arrives, the wrapper provides the output to all parties
that did not receive it yet.

Wrapper Functionality WD
flex(F)

Wflex, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send
(trace, sid, T) to the adversary.a In addition, initialize termination indicators term1, . . . , termn ←
0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition,
forward (leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1:

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:
∗ If termi = 1 or ρ = ρterm (and Pi did not receive output yet), forward the message to F, and

the output (output, sid, yi) to Pi.
∗ Else, send (fetch-output, sid,Pi) to the adversary.

– Upon receiving (early-output, sid,Pi) from the adversary, set termi ← 1.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 6.5: The flexible-wrapper functionality

79

80

Chapter 7

(Fast) Composition of
Probabilistic-Termination Protocols

Canonical synchronous functionalities that are wrapped using the flexible wrapper (cf. Sec-
tion 6.2), i.e., functionalities that correspond to protocols with non-simultaneous termination,
are cumbersome to be used as hybrid functionalities for protocols. The reason is that the ad-
versary can cause parties to finish in different rounds, and, as a result, after the execution of
the first such functionality, the parties might be out of sync.

This “slack” can be reduced, however, only to a difference of one round, unless one is willing
to pay a linear blowup (in the number of parties) in round complexity [43, 39]. Hence, all
protocols must be modified to deal with a non-simultaneous start of (at least) one round, and
protocols that introduce slack must be followed by a slack-reduction procedure. In this section,
we provide general transformations to reduce the desired tasks to the simpler task of designing
protocols in a “stand-alone” setting, where all parties remain synchronized throughout the
protocol (and no slack and round-complexity issues arise), and all the hybrids are (unachievable)
CSFs that are called in a strictly sequential manner.

Definition 7.0.1 (SNF). Let F1, . . . ,Fm be canonical synchronous functionalities. A syn-
chronous protocol π in the (F1, . . . ,Fm)-hybrid model is in synchronous normal form (SNF)
if in every round exactly one ideal functionality Fi is invoked by all honest parties, and in
addition, no honest party hands inputs to other CSFs before this instance halts.

Clearly, designing and proving the security of SNF protocols, which only make calls to simple
two-round CSFs is a much simpler task than dealing with protocols that invoke more complicated
hybrids, potentially with probabilistic termination (see Chapter 8 for concrete examples).

SNF protocols are designed as an intermediate step, since the hybrid functionalities Fi are
two-round CSFs, and, in general, cannot be realized by real-world protocols. To that end, we
define a protocol compiler that transforms SNF protocols into (non-SNF) protocols making
calls to wrapped CSFs that can be realized in the real world, while maintaining their security
and asymptotic (expected) round complexity. At the same time, the compiler takes care of any
potential slack that is introduced by the protocol and ensures that the protocol can be executed
even if the parties do not start the protocol simultaneously.

In Section 7.1 we apply this approach to deterministic-termination protocols, and in Sec-
tion 7.2 generalize it to the probabilistic-termination setting. Section 7.3 covers the base case

81

of realizing the wrapped parallel secure message transmission Fpsmt using only (non-parallel)
secure message transmission Fsmt.

7.1 Composition with Deterministic Termination

We start by defining a slack-tolerant variant of the strict wrapper (cf. Section 6.2), which can be
used even when parties operate with a (known) slack. Then, we show how to compile an SNF
protocol π realizing a strictly wrapped CSF F into a (non-SNF) protocol π′ realizing a version
of F wrapped with the slack-tolerant strict wrapper and making calls to wrapped hybrids.

Slack-tolerant strict wrapper. The slack-tolerant strict wrapper WD,c
sl-strict, formally defined

in Figure 7.1, is parametrized by an integer c ≥ 0, which denotes the amount of slack tolerance
that is added, and a distribution D over traces. The wrapper Wsl-strict is similar to Wstrict
but allows parties to provide input within a window of 2c + 1 rounds and ensures that they
obtain output with the same slack they started with. The wrapper essentially increases the
termination round by a factor of Bc = 3c+1, which is due to the slack-tolerance technique used
to implement the wrapped version of the atomic parallel SMT functionality (cf. Section 7.3).41

Wrapper Functionality WD,c
sl-strict(F)

Wsl-strict, parametrized by an efficiently sampleable distribution D and a non-negative integer c,
internally runs a copy of F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc · ctr(T), where
Bc = 3c+ 1. Send (trace, sid, T) to the adversary.a Initialize slack counters c1, . . . , cn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c + 1: Upon receiving a message from some party Pi ∈ P, proceed as
follows:

– If the message is (input, sid, ·), forward it to F, forward the (leakage, sid, ·) message F sub-
sequently outputs to the adversary, and set Pi’s local slack ci ← ρ− 1.

– Else, send (fetch-output, sid,Pi) to the adversary.

• In rounds ρ > 2c + 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P,
proceed as follows:

– If ρ = ρterm + ci, send the message to F, and the output (output, sid, yi) to Pi.
– Else, send (fetch-output, sid,Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 7.1: The slack-tolerant strict wrapper functionality
41We note that the insufficiency of the blowup factor 2c + 1 rounds does not correspond to any particular

attack, but it is merely a technicality of the wrapped-CSF definition, see Section 7.3.

82

Deterministic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous func-
tionalities, and let π an SNF protocol that UC-realizes the strictly wrapped functionality
WD

strict(F), for some depth-1 distribution D, in the (F1, . . . ,Fm)-hybrid model, assuming that
all honest parties receive their inputs at the same round. We define a compiler Compcdt,
parametrized with a slack parameter c ≥ 0, that receives as input the protocol π and distribu-
tions D1, . . . , Dm over traces and replaces every call to a CSF Fi with a call to the wrapped
CSF WDi,c

sl-strict(Fi). We denote the output of the compiler by π′ = Compcdt(π,D1, . . . , Dm).42

As shown below, π′ realizes WDfull,c
sl-strict(F), for a suitably adapted distribution Dfull, assuming

all parties start within c + 1 consecutive rounds. Consequently, the compiled protocol π′ can
handle a slack of up to c rounds while using hybrids that are realizable themselves.

Calling the wrapped CSFs instead of the CSFs (F1, . . . ,Fm) affects the trace corresponding
to F. The new trace Dfull = full-trace(D,D1, . . . , Dm) is obtained as follows:

1. Sample a trace T ← D, which is a depth-1 tree with a root label WD
strict(F) and leaves

from the set {F1, . . . ,Fm}.

2. Construct a new trace T ′ with a root label WDfull
strict(F).

3. For each leaf node F ′ = Fi, for some i ∈ [m], sample a trace Ti ← Di and append the
trace Ti to the first layer in T ′ (i.e., replace the node F′ with Ti).

4. Output the resulting trace T ′.

The following theorem states that the compiled protocol π′ UC-realizes the wrapped func-
tionality WDfull,c

sl-strict(F).

Theorem 7.1.1. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/3, and
let π an SNF protocol that UC-realizes the functionality WD

strict(F) with perfect security in the
(F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, in the presence of an adaptive, ma-
licious t-adversary, and assuming that all honest parties receive their inputs at the same round.
Let D1, . . . , Dm be arbitrary distributions over traces, let Dfull = full-trace(D,D1, . . . , Dm), and
c ≥ 0.

Then, the compiled protocol π′ = Compcdt(π,D1, . . . , Dm) UC-realizes WDfull,c
sl-strict(F) with per-

fect security in the (WD1,c
sl-strict(F1), . . . ,WDm,c

sl-strict(Fm))-hybrid model, in the presence of an adap-
tive, malicious t-adversary, assuming that all honest parties receive their inputs within c + 1
consecutive rounds.

The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blowup factor.

We start by giving the intuition for the proof of Theorem 7.1.1. Loosely speaking, the
main differences between the SNF protocol π implementing the functionalityWD

strict(F) and the
42The distributions Di depend on the protocols realizing the strictly wrapped functionalities WDi,c

sl-strict(Fi).
Note, however, that the composition theorems in Sections 7.1 and 7.2 actually work for arbitrary distributions
Di.

83

compiled protocol π′ implementing WDfull,c
sl-strict(F) is that π uses CSF as hybrids, whereas π′ uses

wrapped CSFs, and in addition, parties might not start at the same round, but with a slack of
c rounds. In order to ensure that any potential overlap between concurrent calls to different
wrapped hybrids remain secure, the wrappers expand each round to 3c+ 1 rounds.

Now, given a simulator S for the dummy adversary and the SNF protocol π, we construct
a simulator S ′ for the dummy adversary and the compiled protocol π′. The new simulator
acts as a proxy between S on the one hand and the environment and the ideal functionality
on the other, with the exception that it must “synchronize” the round counters between them.
Therefore, S ′ stores a local round counter ρi for every hybrid Hi, and a “slack counter” cj for
every party Pj to ensure that its messages are delivered with the same initial slack it started
the protocol.

Proof. Let S be the simulator for protocol π running with the dummy adversary.43 Consider
the following simulator S ′ for π′, that internally runs a copy of S. Initially, S ′ sets slack counters
c1, . . . , cn ← 0 and proceeds as follows.

• At any round forward (adv-input, sid, ·) messages from S to WDfull,c
sl-strict(F).

• In rounds ρ = 1, . . . , 2c+ 1, upon receiving (leakage, sid,Pj , ·) from WDfull,c
sl-strict(F), forward

the message to S and in addition record the slack for party Pj as cj ← ρ− 1.

Along with the very first such message, S ′ receives a trace T full from WDfull,c
sl-strict(F). S ′

constructs a new trace T with the root WD
strict(F), where the leaves are set as follows:

Each node in the first layer of T full is a root for a subtree labeled with WDi
strict(Fi) (for

some i ∈ [m]); S ′ adds the leaf Fi to the first layer in T . Finally, S ′ passes T to S.

• Simulate the execution of every wrapped hybrid Hi =WDj ,c
sl-strict(Fj) (for some j ∈ [m]) in

the order they appear in the first layer in T full as follows44 (the first such hybrid must be
simulated as early as in round ρ = 1. Note that if there is actual slack among the parties,
the simulations of consecutive hybrids overlap):

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding

subtree in T full.

– In any round ρi forward the messages (adv-input, sid, ·) (that are directed to Hi)
from the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S
and pass it to the environment;45 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, forward the messages (fetch-output, sid, ·) from WDfull,c
sl-strict(F)

to the environment (to simulate the advancement of Hi).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

Let Z ′ be an environment that can distinguish between an execution of protocol π′ in the
(WD1,c

sl-strict(F1), . . . ,WDm,c
sl-strict(Fm))-hybrid model with the dummy adversary and the execution

43Recall that proving security with respect to the dummy adversary is sufficient (cf. Claim 5.1.2).
44Recall that the children at each node in a trace are ordered.
45S can be advanced by suitably sending it (fetch-output, sid, ·) messages.

84

in the ideal model with WDfull,c
sl-strict(F) and S ′. We construct the following environment Z distin-

guishing between an execution of π in the (F1, . . . ,Fm)-hybrid model with the dummy adversary
and the ideal model with WD

strict(F) and S:

• Z internally runs a copy of Z ′, emulating the parties and the adversary (either in a real
execution of π or an ideal execution ofWD

strict(F)). Initialize slack counters c1, . . . , cn ← 0
and a simulated round counter ρ (for Z ′).

• Whenever Z ′ sends a message (input, sid, ·) to Pj in rounds ρ = 1, . . . , 2c+ 1, Z forwards
the message to Pj and records slack cj ← ρ− 1.

• For each executed (resp. simulated) two-round CSF hybrid Fi, proceed as follows to
simulate an execution (resp. simulation) of WDi,c

sl-strict(Fi) to Z ′ (the first such simulation
takes place as early as in round ρ = 1. Note that if there is actual slack among the parties,
the simulations of consecutive hybrids overlap):

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.

– For every party Pj , in round ρi = cj+1, obtain the leakage for Pj from the adversary
and pass it to Z ′;46 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, upon receiving (fetch-output, sid, ·) messages from Z ′ for
some party Pj , pass (fetch-output, sid,Pj) to Z (to simulate the advancement of
the execution).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

• At any round, forward (output, sid, ·) messages from a party to Z ′.

• Output whatever decision bit Z ′ outputs.

It can be seen by inspection that:

• When Z interacts with a real-world execution of π with hybrids Fi, the view of Z ′ is
exactly the view it would have when interacting with a real-world execution of π′ with
hybrids WDi,c

sl-strict(Fi), and

• When Z interacts with an ideal-world execution of WD
strict(F) with simulator S, the view

of Z ′ is exactly the view it would have when interacting with an ideal-world execution of
WDfull,c

sl-strict(F) with simulator S ′.

The expected round complexity follows by linearity of expectation and by noting that the
expected number of times a hybrid Fi is called in π and the expected trace complexity of Di are
independent random variables. Indeed, the trace complexity needed to implement WDi

strict(Fi)
is independent of the protocol π, and the number of calls to Fi in π depends on the CSF
representation of Fi, and not on its wrapped version. �

46The execution Z interacts with can be advanced by suitably sending (fetch-output, sid, ·) messages to the
parties.

85

7.2 Composition with Probabilistic Termination

The composition theorem in Section 7.1 does not work if the protocol π itself introduces slack
(e.g., the fast broadcast protocol by Feldman and Micali [42]) or if one of the hybrids needs to
be replaced by a slack-introducing protocol (e.g., instantiating the broadcast hybrids with fast
broadcast protocols in BGW [12]).

As in Section 7.1, we start by adjusting the flexible wrapper (cf. Section 6.2) to be slack-
tolerant. In addition, the slack-tolerant flexible wrapper ensures that all parties will obtain
their outputs within two consecutive rounds. Then, we show how to compile an SNF protocol
π realizing a CSF F, wrapped with the flexible wrapper, into a (non-SNF) protocol π′ realizing
a version of F wrapped with slack-tolerant flexible wrapper. The case where π implements
a strictly wrapped CSF, but some of the hybrids are wrapped with the slack-tolerant flexible
wrapper follows along similar lines.

Slack-tolerant flexible wrapper. The slack-tolerant flexible wrapper WD,c
sl-flex, formally de-

fined in Figure 7.2, is parametrized by an integer c ≥ 0, which denotes the amount of slack
tolerance that is added, and a distribution D over traces. The wrapper Wsl-flex is similar to
Wflex but allows parties to provide input within a window of 2c+ 1 rounds and ensures that all
honest parties will receive their output within two consecutive rounds. The wrapper essentially
increases the termination round to

ρterm = Bc · ctr(T) + 2 · flextr(T) + c,

where the blowup factor Bc is as explained in Section 7.1, and the additional factor of 2 results
from the termination protocol described below for every flexibly wrapped CSF, which increases
the round complexity by at most two additional rounds (recall that flextr(T) denotes the number
of such CSFs), and c is due to the potential slack. Wsl-flex allows the adversary to deliver output
at any round prior to ρterm but ensures that all parties obtain output with a slack of at most
one round. Moreover, it allows the adversary to obtain the output using the (get-output, sid)
command, which is necessary in order to simulate the termination protocol.

Probabilistic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous func-
tionalities, and let π be an SNF protocol that UC-realizes the flexibly wrapped functionality
WD

flex(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, assuming all par-
ties start at the same round. Define the following compiler Compcptr, parametrized by a slack
parameter c ≥ 0. The compiler receives as input the protocol π, distributions D1, . . . , Dm over
traces, and a subset I ⊆ [m] indexing which CSFs Fi are to be wrapped with Wsl-flex and which
withWsl-strict; every call in π to a CSF Fi is replaced with a call to the wrapped CSFWDi,c

sl-flex(Fi)
if i ∈ I or to WDi,c

sl-strict(Fi) if i /∈ I.
In addition, the compiler adds the following termination procedure, based on an approach

originally suggested by Bracha [16], which ensures all honest parties will terminate within two
consecutive rounds:

• As soon as a party is ready to output a value y (according to the prescribed protocol) or

86

upon receiving at least t+1 messages (end, sid, y) for the same value y (whichever happens
first), it sends (end, sid, y) to all parties.

• Upon receiving n− t messages (end, sid, y) for the same value y, a party outputs y as the
result of the computation and halts.

Observe that this technique only works for public-output functionalities, and, therefore, only
CSFs with public output can be wrapped by Wsl-flex. We denote the output of the compiler by
π′ = Compcptr(π,D1, . . . , Dm, I).

The following theorem states that the compiled protocol π′ UC-realizes the wrapped func-
tionality WDfull,c

sl-flex (F), for the adapted distribution Dfull = full-trace(D,D1, . . . , Dm). Conse-
quently, the compiled protocol π′ can handle a slack of up to c rounds, while using hybrids that
are realizable themselves, and ensuring that the output slack is at most one round (as opposed
to π). Calling the wrapped hybrids instead of the CSFs affects the trace corresponding to F in
exactly the same way as in the case with deterministic termination (cf. Section 7.1).47

Wrapper Functionality WD,c
sl-flex(F)

Wsl-flex, parametrized by an efficiently sampleable distribution D and a non-negative integer c,
internally runs a copy of (the public-output functionality) F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc ·ctr(T)+2·flextr(T)+c,
where Bc = 3c + 1. Send (trace, sid, T) to the adversary.a Initialize termination indicators
term1, . . . , termn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c + 1: Upon receiving a message from some party Pi ∈ P, proceed as
follows:

– If the message is (input, sid, ·), send it to F and forward the (leakage, sid, ·) message F
subsequently outputs to the adversary.

– Else, send (fetch-output, sid,Pi) to the adversary.

• In rounds ρ > 2c+ 1:

– Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed as follows:
∗ If termi = 1 or ρ = ρterm, forward the message to F, and the output (output, sid, y) to Pi.

Record the output value y.
∗ Else, output (fetch-output, sid,Pi) to the adversary.

– Upon receiving (get-output, sid) from the adversary, if the output value y was not recorded
yet, send (fetch-output, sid) to F on behalf of some party Pi. Next, send (output, sid, y) to
the adversary.

– Upon receiving (early-output, sid,Pi) from the adversary, set termi ← 1 and ρterm ←
min{ρterm, ρ+ 1}.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 7.2: The slack-tolerant flexible wrapper functionality
47Of course, the root of the trace T sampled from D is a flexibly wrapped functionality WD

flex(F) in the
probabilistic-termination case.

87

Theorem 7.2.1. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/3, and
let π an SNF protocol that UC-realizes WD

flex(F) with perfect security in the (F1, . . . ,Fm)-hybrid
model, for some depth-1 distribution D, in the presence of an adaptive, malicious t-adversary,
and assuming that all honest parties receive their inputs at the same round. Let I ⊆ [m] be the
subset (of indices) of functionalities to be wrapped using the flexible wrapper, let D1, . . . , Dm

be arbitrary distributions over traces, denote Dfull = full-trace(D,D1, . . . , Dm) and let c ≥ 0.
Assume that F and Fi, for every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcptr(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F) with

perfect security in the (W(F1), . . . ,W(Fm))-hybrid model, where W(Fi) = WDi,c
sl-flex(Fi) in case

i ∈ I and W(Fi) = WDi,c
sl-strict(Fi) otherwise, in the presence of an adaptive, malicious t-

adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.
The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)] + 2,

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blowup factor.

The intuition for proving Theorem 7.2.1 is similar to that of proving Theorem 7.1.1. In
addition to simply synchronizing between the simulator S and the ideal functionality and envi-
ronment, S ′ must also address the following issues. First, some CSFs (Fi for i ∈ I) are wrapped
using the flexible wrapper, whereas others (Fi for i /∈ I) are wrapped using the strict wrapper.
Second, S ′ must simulate the termination procedure at the end of every flexibly wrapped CSF
and at the end of the simulation.

Proof. Let S be the simulator for protocol π running with the dummy adversary.48 Consider
the following simulator S ′ for π′, that internally runs a copy of S. Initially, S ′ sets slack counters
c1, . . . , cn ← 0 and proceeds as follows.

• At any round forward (adv-input, sid, ·) messages from S to WDfull,c
sl-flex (F).

• In rounds ρ = 1, . . . , 2c + 1, upon receiving (leakage, sid,Pj , ·) from WDfull,c
sl-flex (F), forward

the message to S and in addition record the slack for party Pj as cj ← ρ− 1.

Along with the very first such message, S ′ receives a trace T full from WDfull,c
sl-flex (F). S ′

constructs a new trace T with the rootWD
flex(F), where the leaves are set as follows: Each

node in the first layer of T full is a root for a subtree labeled with WDi
strict(Fi) or WDi

flex(Fi)
(for some i ∈ [m]); S ′ adds the leaf Fi to the first layer in T . Finally, S ′ passes T to S.

• Simulate the execution of all wrapped hybrids Hi in the order they appear in T full (the
first such hybrid must be simulated as early as in round ρ = 1. Note that if there is actual
slack among the parties, the simulations of consecutive hybrids overlap). If the hybrid Hi

is of the form WDj ,c
sl-strict(Fj) (for some j ∈ [m]), i.e., if j /∈ I, proceed as follows:

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding

subtree in T full.
48Recall that proving security with respect to the dummy adversary is sufficient, see Claim 5.1.2.

88

– In any round ρi forward the messages (adv-input, sid, ·) (that are directed to Hi)
from the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S
and pass it to the environment;49 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, forward the messages (fetch-output, sid, ·) from WDfull,c
sl-flex (F)

to the environment (to simulate the advancement of Hi’ execution).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

If the hybrid Hi is of the form WDj ,c
sl-flex(Fj) (for some j ∈ [m]), i.e., if j ∈ I, proceed as

follows:

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding

subtree in T full. Set ρterm ← Bc · ctr(T full) + 2 · flextr(T full) + c.

– In any round ρi, forward the messages (adv-input, sid, ·) (that are directed to Hi)
from the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S
and pass it to the environment;50 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, forward the messages (fetch-output, sid, ·) from WDfull,c
sl-flex (F)

to the environment (to simulate the advancement of Hi’ execution).

– If the environment issues (early-output, sid, ·) commands, before round ρterm, for
certain parties Pj ∈ P, set cj ← 0 for these parties and cj ← 1 for the others and
end the simulation of Hi one round later. If the environment does not issue such a
command for any party, set cj ← 0 for all parties and end the simulation of Hi in
round ρterm.

• When S wants to output (early-output, sid,Pj) to WDfull,c
sl-flex (F), proceed as follows:

– Pass (get-output, sid) to WDfull,c
sl-flex (F), obtain (output, sid, y), and record y (the first

time).

– Simulate Pj sending (end, sid, y) to all parties.

– For every party Pj , keep track of how many simulated (end, sid, ·) messages have been
received by Pj (including those sent by corrupted parties).

∗ When a party receives t+1 messages (end, sid, y) (for the same value y), simulate
that party’s sending of such a message of its own (unless already done so).
∗ When a party Pj receives n− t messages (end, sid, y) (for the same value y), send

(early-output, sid,Pj) to WDfull
pt (F).

Let Z ′ be an environment distinguishing between an execution of π′ in the (W(F1), . . . ,W(Fm))-
hybrid model and the ideal model with WDfull,c

sl-flex (F) and S ′. We construct the following envi-
ronment Z distinguishing between an execution of π in the (F1, . . . ,Fm)-hybrid model and the
ideal model with WD

flex(F) and S:
49S can be advanced by suitably sending it (fetch-output, sid, ·) messages.
50S can be advanced by suitably sending it (fetch-output, sid, ·) messages.

89

• Z internally runs a copy of Z ′ and emulates the parties and the adversary (either in a real
execution of π or an ideal execution of WD

flex(F)). Initialize slack counters c1, . . . , cn ← 0
and a simulated round counter ρ (for Z ′).

• When Z ′ sends a message (input, sid, ·) for Pj in rounds ρ = 1, . . . , 2c+ 1, Z forwards the
message to Pj and records slack cj ← ρ− 1.

• For each executed (resp. simulated) two-round CSF hybrid Fi, simulate an execution
(resp. simulation) of WDi,c

sl-flex(Fi) or WDi,c
sl-strict(Fi) to Z ′ (the first such simulation takes

place as early as in round ρ = 1. Note that if there is actual slack among the parties, the
simulations of consecutive hybrids overlap). If i /∈ I, i.e., if the hybrid functionality is of
the form Hi =WDi,c

sl-strict(Fi), proceed as follows:

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.
– For every party Pj , in round ρi = cj+1, obtain the leakage for Pj from the adversary

and pass it to Z ′;51 add (trace, sid, T full
i) to the first such message.

– In all other rounds ρi, upon receiving (fetch-output, sid, ·) messages from Z ′ for
some party Pj , pass (fetch-output, sid,Pj) to Z (to simulate the advancement of
the execution).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

If i ∈ O, i.e., if the hybrid is of the form Hi =WDi,c
sl-flex(Fi), proceed as follows:

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di. Set

ρterm ← Bc · ctr(T full
i) + 2 · flextr(T full

i) + c.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.
– For every party Pj , in round ρi = cj+1, obtain the leakage for Pj from the adversary

and pass it to Z ′;52 add (trace, sid, T full
i) to the first such message.

– In all other rounds ρi, upon receiving (fetch-output, sid) messages from Z ′ for
some party Pj , pass (fetch-output, sid,Pj) to Z (to simulate the advancement of
the execution).

– If Z ′ issues (early-output, sid, ·) commands for certain parties Pj ∈ P before round
ρterm, set cj ← 0 for these parties and cj ← 1 for the others, and end the simulation
of Hi one round later. If Z ′ did not issue such a command to any party by round
ρterm, set cj ← 0 for all parties and end the simulation of Hi in round ρterm.

• When a party wants to output (output, sid, y), proceed as follows:

– Pass (get-output, sid) to WDfull,c
sl-flex (F), obtain (output, sid, y), and record y (only at

the first time).
51The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the

parties.
52The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the

parties.

90

– Simulate (to Z ′) Pj sending (end, sid, y) to all parties.

– For every party Pj , keep track of how many simulated (end, sid, ·) messages it has
received (including those sent by corrupted parties).

∗ When a party receives t+1 messages (end, sid, y) (for the same y), simulate that
party’s sending such a message of its own (unless already done so).
∗ When a party Pj receives n − t messages (end, sid, y) (for the same y), pass

(output, sid, y) to Z ′ on behalf of Pj .

• Output whatever decision bit Z ′ outputs.

It can be seen by inspection that:

• When Z interacts with a real-world execution of π with hybrids Fi, the view of Z ′ is
exactly the view it would have when interacting with a real-world execution of π′ with
hybrids W(Fi) and the dummy adversary.

• When Z interacts with an ideal-world execution of WD
flex(F) with simulator S, the view

of Z ′ is exactly the view it would have when interacting with an ideal-world execution of
WDfull,c

sl-flex (F) with simulator S ′.

The expected round complexity follows by similar arguments as in Theorem 7.1.1. �

Consider now the scenario where an SNF protocol π realizes a strictly wrapped functionality,
yet some of the CSF hybrids are to be wrapped by flexible wrappers. The corresponding compiler
Comppt works as Compptr with the exception that the slack-reduction protocol is not performed
at the end. The proof of the following theorem follows that of Theorem 7.2.1.

Theorem 7.2.2. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/3, and
let π an SNF protocol that UC-realizesWD

strict(F) with perfect security in the (F1, . . . ,Fm)-hybrid
model, for some depth-1 distribution D, in the presence of an adaptive, malicious t-adversary,
and assuming that all honest parties receive their inputs at the same round. Let I ⊆ [m] be the
subset (of indices) of functionalities to be wrapped using the flexible wrapper, let D1, . . . , Dm

be arbitrary distributions over traces, denote Dfull = full-trace(D,D1, . . . , Dm) and let c ≥ 0.
Assume that F and Fi, for every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcpt(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F) with per-

fect security in the (W(F1), . . . ,W(Fm))-hybrid model, whereW(Fi) =WDi,c
sl-flex(Fi) in case i ∈ I

and W(Fi) =WDi,c
sl-strict(Fi) otherwise, in the presence of an adaptive, malicious t-adversary, as-

suming that all honest parties receive their inputs within c+ 1 consecutive rounds.
The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blowup factor.

91

7.3 Wrapping Secure Channels

The basis of the top-down, inductive approach taken in this work consists of providing protocols
realizing wrapped atomic functionalities, using merely secure channels, i.e., Fsmt. Due to the
restrictions to SNF protocols, which may only call a single CSF hybrid in any given round, a
parallel variant Fpsmt of Fsmt (defined below) is used as an atomic functionality. This ensures
that in SNF protocols parties can securely send messages to each other simultaneously.

Parallel SMT. The parallel secure message transmission functionality Fpsmt is a CSF for the
following functions fpsmt and lpsmt Each party Pi has a vector of input values (xi1, . . . , xin) such
that xij is sent from Pi to Pj . That is, the function to compute is

fpsmt((x1
1, . . . , x

1
n), . . . , (xn1 , . . . , xnn), a) = ((x1

1, . . . , x
n
1), . . . , (x1

n, . . . , x
n
n)).

As we consider rushing adversaries, that can determine the messages sent by the corrupted
parties after receiving the messages sent by the honest parties, the leakage function should leak
the messages that are to be delivered from honest parties to corrupted parties. Therefore, the
leakage function is lpsmt((x1

1, . . . , x
1
n), . . . , (xn1 , . . . , xnn)) = (y1

1, y
1
2, . . . , y

n
n−1, y

n
n), where yij = |xij |

in case Pj is honest and yij = xij in case Pj is corrupted.

Realizing wrapped parallel SMT. The remainder of this section deals with securely realiz-
ing WD,c

sl-strict(Fpsmt) in the Fsmt-hybrid model, for a particular distribution D and an arbitrary
non-negative integer c. Note that the corresponding protocol πpsmt is not an SNF protocol
since it makes n2 parallel calls to Fsmt in each round; this is of no concern since it directly
realizes a wrapped functionality and therefore need not be compiled. There is a straightforward
(non-SNF) protocol realizing Fpsmt in the Fsmt-hybrid model, and therefore (due to the UC
composition theorem) it suffices to describe protocol πpsmt in the Fpsmt-hybrid model.

A standard solution to overcome asynchrony by a constant number of rounds c ≥ 0, intro-
duced by Lindell et al. [74] and used by Katz and Koo [65], is to expand each communication
round to 2c+ 1 rounds. Each party listens for messages throughout all 2c+ 1 rounds, and sends
its own messages in round c + 1. It is straightforward to verify that if the slack is c, i.e., the
parties start within c + 1 rounds from each other, round r-messages (in the original protocol,
without round expansion) are sent, and delivered, before round (r+1)-messages and after round
(r − 1)-messages.

The solution described above does not immediately apply to our case, due to the nature
of canonical synchronous functionalities. Recall that in a CSF the adversary can send an
adv-input message (and affect the output) only before any honest party has received an output
from the functionality. If only 2c + 1 rounds are used a subtle problem arises: Assume for
simplicity that c = 1 and say that P1 is a fast party and P2 is a slow party. Initially, P1 listens
for one round. In the second round P2 listens and P1 send its messages to all the parties. In the
third round P2 sends its messages and P1 receives its message, produces output, and completes
the round. Now, P2 listens for an additional round, and the adversary can send it messages on
behalf of corrupted parties. In other words, the adversary can choose the value for P2’s output
after P1 has received its output – such a phenomena cannot be modeled using CSFs. For this

92

reason we add an additional round where each party is idle; if P1 waits one more round (without
listening) before it produces its output, then P2 will receive all the messages that determine its
output, and so once P1 produces output and completes, the adversary cannot affect the output
of P2.

As a result, in the protocol presented in Figure 7.3, each round is expanded to 3c+1 rounds,
where during the final c rounds, parties are simply idle and ignore any messages they receive.

Denote by Dpsmt the deterministic distribution that outputs a depth-1 trace consisting of a
root WDpsmt

strict (Fpsmt) and 3c+ 1 leaves Fpsmt.

Lemma 7.3.1. Let c ≥ 0 and t < n/3. Protocol πpsmt UC-realizes WDpsmt,c
sl-strict(Fpsmt) with

perfect security in the Fpsmt-hybrid model, in the presence of an adaptive, malicious t-adversary,
assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

Protocol πpsmt (realizing wrapped Fpsmt)

Each party Pi ∈ P = {P1, . . . ,Pn} proceeds as follows:

• Initially, obtain input (input, (x(i)
1 , . . . , x

(i)
n)) from the environment. Set y1, . . . , yn ← ⊥.

• In every round ρ = 1, . . . , c:a Send (input,⊥) to (a fresh instance of) Fpsmt. Obtain output
(output, (u1, . . . , un)) from Fpsmt with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set
yi ← ui.

• In round ρ = c+1: Send the message (input, (x(i)
1 , . . . , x

(i)
n)) to Fpsmt, and obtain the output

(output, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = c + 2, . . . , 2c + 1: Send (input,⊥) to Fpsmt, and obtain the output
(output, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = 2c+ 2, . . . , 3c: Do nothing.

• In round ρ = 3c+ 1: Output (output, sid, (y1, . . . , yn)).

aNote that ρ is the local round counter of party Pi.

Figure 7.3: The wrapped parallel SMT protocol, in the Fpsmt-hybrid model

Proof. For simplicity, denote by W(Fpsmt) the wrapped functionality WDpsmt,c
sl-strict(Fpsmt). We

construct the following simulator S running withW(Fpsmt), simulating the dummy adversary.53

Let Z be an environment. The main idea is to simulate each of the 3c + 1 instances of Fpsmt
ro Z. Initially, S receives the message (trace, sid, T), where T is a depth-1 trace consisting of
3c+ 1 leaves Fpsmt. Next, S simulates 3c+ 1 sequential instances of Fpsmt, by interacting with
Z and W(Fpsmt). In the first 2c+ 1 instances of Fpsmt, the simulator S proceeds as follows for
every instance of Fpsmt:

• In the first (“input”) round of this Fpsmt instance, upon receiving an input message
(input, sid, xi) from Z, where xi 6= ⊥ is a vector of messages to be sent by a corrupted
Pi, the simulator S forwards the message to W(Fpsmt).

• If S receives a leakage message (leakage, sid,Pi, li) fromW(Fpsmt), where li is a length-n
vector, consisting of the messages sent by Pi to each corrupted party (and the length of

53Recall that proving security with respect to the dummy adversary is sufficient (cf. Claim 5.1.2).

93

messages Pi sends to honest parties), S forwards the message to Z. If no leakage message
arrived during this round, S sends the message (leakage, sid,Pi,⊥) to Z, on behalf of
every party.

• In the second (“output”) round of this Fpsmt instance, S sends (output, sid, yi) to Z for
every corrupted Pi, where yi is a vector consisting of the messages sent to Pi in the “input”
round (if some party did not send a message to Pi the value λ is used).

In the last c instances of Fpsmt, the simulator S does not forward the input messages from Z
to W(Fpsmt), and outputs (output, sid, λ) for every corrupted party.

Since the view of every party in the protocol πpsmt is simply the messages sent and received
to fpsmt, and no random coins are used, upon a corruption request of a party Pi, the simulator
simply hands the internal state of Pi to Z, and resumes the simulation as above.

By inspection, it can be seen that the view of Z is identically distributed when interacting
with S in an ideal computation of W(Fpsmt), or when interacting with the dummy adversary
in an execution of πpsmt. �

The corollary follows since Fpsmt can be realized in the Fsmt-hybrid model in a straightfor-
ward way, by calling Fsmt in parallel n2 times.

Corollary 7.3.2. Let c ≥ 0 and t < n/3. The functionality WDpsmt,c
sl-strict(Fpsmt) can be UC-

realized with perfect security in the Fsmt-hybrid model, in the presence of an adaptive, malicious
t-adversary, assuming that all honest parties receive their inputs within c+1 consecutive rounds.

94

Chapter 8

Applications of Our Fast Composition
Theorem

In this section, we demonstrate the power of our framework by providing some concrete appli-
cations. All of the protocols we present in this section enjoy perfect security facing adaptive
adversaries corrupting less than a third of the parties. We start in Section 8.1 by presenting
expected-constant-round protocols for Byzantine agreement. Next, in Section 8.2 we present
an expected-constant-round protocol for parallel broadcast. Finally, in Section 8.3 we present
a secure function evaluation protocol whose round complexity is O(d) in expectation, where d
is the depth of the circuit representing the function.

8.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agreement protocols
(the definition of Fba appears in Section 6.1). These protocols are based on techniques due to
Feldman and Micali [42] (which are in turn based on Ben-Or [10] and Rabin [80]) and Turpin
and Coan [82], with modifications to work in the UC framework. We provide simulation-based
proofs for these protocols.

A binary Byzantine agreement protocol. We now describe a UC protocol for randomized
binary Byzantine agreement, that is based on the protocol of Feldman and Micali [42]. For
simplicity, we work in a hybrid model, where parties have access to the oblivious common coin
functionality; we first present this functionality as a canonical synchronous functionality.

Oblivious common coin. In the oblivious common coin ideal functionality (introduced
in [42]) every honest party Pi outputs a bit yi ∈ {0, 1} such that the following holds: with
probability p > 0 all honest parties will agree on a uniformly distributed bit, and with proba-
bility 1 − p the output for each honest party is determined by the adversary. The meaning of
obliviousness here is that the parties are unaware of whether agreement on the coin is achieved
or not.

In more detail, each honest party Pi sends an empty string xi = λ as input, and the leakage
function is loc(x1, . . . , xn) = ⊥. The function to compute, foc(x1, . . . , xn, a) = (y1, . . . , yn),

95

is parametrized by an efficiently sampleable distribution D over {0, 1}, that outputs 1 with
probability p and 0 with probability 1− p, and works as follows:

• Initially, sample a “fairness bit” b← D.

• If b = 1 or if a = ⊥ (i.e., if the adversary did not send an adv-input message) sample a
uniformly distributed bit y ← {0, 1} and set yi ← y for every i ∈ [n].

• If b = 0 and a 6= ⊥, parse the adversarial input a as a vector of n values (a1, . . . , an), and
set yi ← ai for every i ∈ [n].

We denote by Foc the CSF functionality parametrized with the above functions foc and loc.
Feldman and Micali [42, Thm. 3] showed a constant-round oblivious common coin protocol for
p = 0.35. Denote by Doc the deterministic distribution that outputs a depth-1 trace consisting
of a root WDoc

strict(Foc) and 32 leaves Fpsmt.

Theorem 8.1.1 ([42]). Let t < n/3, then, assuming all honest parties receive their inputs at the
same round, WDoc

strict(Foc) can be UC-realized in the Fpsmt-hybrid model, with perfect security,
in the presence of an adaptive malicious t-adversary.

Overview of the protocol. The binary BA functionality, realized by the protocol, is the
wrapped functionalityWDrba

flex (F{0,1}ba) (the distribution Drba is formally defined in Lemma 8.1.2),
denoted Frba for short. The protocol πrba, described in Figure 8.1, is based on the protocol
from [42] modified using the “best-of-both-worlds” technique due to Goldreich and Petrank [52].
Recall that following Chapter 7, it is sufficient to describe the protocol using CSFs as hybrids
rather than wrapped CSFs (even though such a description might be overly ideal, and cannot
be instantiated in the real world), and the same level of security is automatically achieved in a
compiled protocol (that can be instantiated) where the underlying CSFs are properly wrapped.
Therefore, the protocol is defined in the (Fpsmt,Foc,F{0,1}ba)-hybrid model.

At first sight, it may seem odd that the binary Byzantine agreement functionality F{0,1}ba
is used in order to implement the randomized binary Byzantine agreement functionality Frba.
However, the functionality F{0,1}ba will only be invoked in the event (which occurs with a negligi-
ble probability) that the protocol does not terminate within a poly-log number of rounds. Once
the protocol is compiled, the CSF functionality F{0,1}ba will be wrapped using a strict wrapper,
such that the wrapped functionality Wstrict(F{0,1}ba) can be instantiated using any linear-round
deterministic Byzantine agreement protocol (e.g., the protocol in [61]).

At a high level, protocol πrba proceeds as follows. Initially, each party sends its input to
all other parties over a point-to-pint channel using Fpsmt, and sets its vote to be its input bit.
Next, the parties proceed in phases, where each phase consists of invoking the functionality
Foc followed by a voting process consisting of three rounds of sending messages via Fpsmt.
The voting ensures that (1) if all honest parties agree on their votes at the beginning of the
phase, they will terminate at the end of the phase, (2) in each phase, all honest parties will
agree on their votes at the end of each phase with probability at least p, and (3) if an honest
party terminates in some phase then all honest parties will terminate with the same value by
the end of the next phase. In the negligible event that the parties do not terminate after
τ = log1.5(κ) + 1 phases, the parties use the Byzantine agreement functionality F{0,1}ba in order
to ensure termination.

96

To avoid confusion in πrba between the different calls to Foc, the α’th invocation will use
the session identifier sidα = sid ◦ α, obtained by concatenating α to sid.

Denote by Drba the distribution that outputs a depth-1 trace, with root is WDrba
flex (F{0,1}ba),

and leaves that are set as follows: initially sample an integer r from the geometric distribution
with parameter p = 0.35 and support {1 . . . , τ + 1} (representing the phase where Foc samples
a fairness bit 1, plus the option that Foc samples 0 in all τ phases). The first leaf in the trace
is Fpsmt, followed by min(r, τ) sequences of (Foc,Fpsmt,Fpsmt,Fpsmt). Finally, if r ≥ τ add the
leaf F{0,1}ba to the trace.

Protocol πrba

Each party Pi ∈ P = {P1, . . . ,Pn} proceeds as follows:

• Initially, Pi sets the phase counter α ← 0 and the termination indicator term ← 0. For every
other party Pj ∈ P set a value Bj ← 0 for storing the last bit value received from Pj . In addition,
denote τ = log1.5(κ) + 1.

• In the first round, upon receiving (input, sid, v) with v ∈ {0, 1} from the environment, party Pi
sets bi ← v (note that the value bi will change during the protocol) and sends (sid, bi) to all the
parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with bj ∈ {0, 1}, set Bj ← bj . If
no message was received from Pj , set bj ← Bj .

• While term = 0 and α ≤ τ , do the following:

1. Set α ← α + 1 and send (input, sidα, λ) to Foc. Let (output, sidα, β), with β ∈ {0, 1}, be
the output received from Foc.

2. Compute c←
∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← β; If 2n/3 ≤ c ≤ n set bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

3. Compute c←
∑n
j=1 bj .

If c < n/3 set bi ← 0 and term ← α; If n/3 ≤ c < 2n/3 set bi ← 0; If 2n/3 ≤ c ≤ n set
bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

4. Compute c←
∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← 1; If 2n/3 ≤ c ≤ n set bi ← 1 and
term← α.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

• If 0 < term < τ , then output (output, sid, bi) and halt.

• Else (i.e., if term = 0 or term = τ), send (input, sid, bi) to F{0,1}ba (note that bi is the value
that was set in phase τ). Upon receving (output, sid, b), with b ∈ {0, 1}, if term = 0 output
(output, sid, b) and halt. Else, if term = τ , output (output, sid, bi) and halt.

Figure 8.1: The binary randomized BA protocol, in the (Fpsmt,Foc,F{0,1}ba)-hybrid model

Lemma 8.1.2. Let t < n/3, then, assuming all honest parties receive their inputs at the
same round, protocol πrba UC-realizes Frba =WDrba

flex (F{0,1}ba), in the (Fpsmt,Foc,F{0,1}ba)-hybrid
model, with perfect security, in the presence of an adaptive malicious t-adversary.

97

Proof. We first claim correctness, i.e., that all honest parties output the same value and that
if n − t of the inputs are the same, this value will be the common output. The protocol πrba
consists of two parts, the first is running (up to) τ phases of the Feldman-Micali protocol, and
the second (which only occurs if there exists an honest party that did not receive output, i.e.,
has value term = 0, in the first part, or if there exists an honest party that received output
in phase τ , i.e., has value term = τ) consists of calling a BA functionality. As shown in [42,
Thm. 4], the Feldman-Micali protocol satisfies the consistency and validity properties in the
property-based definition of Byzantine agreement. In addition, if some honest party received
output b in some phase α (i.e., if it sets term = α), then the value bi of every honest party Pi
equals b at the end of phase α. It follows that:

• In case n− t honest parties (in particular if all honest parties) start with the same input,
they will agree on this value as their output and terminate in the first phase. (In all other
cases it remains only to show that all honest parties agree on the output.)

• In case the first honest party received output in phase α < τ − 1, it holds that by phase
α+ 1 < τ all honest parties will receive the same output (i.e., 0 < term < τ for all honest
parties), and so correctness follows from [42].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest
parties), all honest parties send their internal values to F{0,1}ba and output the result,
hence, correctness follows from the F{0,1}ba functionality.

• In case all honest parties receive their outputs in phase τ (i.e., term = τ for all honest
parties), then by [42] they receive the same value. In this case, this is the value they will
output after calling F{0,1}ba and so correctness is satisfied.

• In case some honest parties receive their outputs in phase τ (i.e., term = τ) and the other
honest parties do not (i.e., term = 0), then it holds that all honest parties send the same
value to F{0,1}ba , and correctness is satisfied.

• In case some honest parties receive their outputs in phase τ−1 (i.e., term = τ−1), they do
not send any input to F{0,1}ba . However, the remaining honest parties will receive the same
output in phase τ (i.e., term = τ), and will output this value, regardless of the output
they receive from F{0,1}ba . Therefore, correctness is satisfied.

Regarding termination, [42, Claim T4-4] showed that for any positive integer m, if all honest
parties agree on the same bit at the beginning of the m’th phase, then they will all terminate
at the end of the phase with probability at least p. It follows that in case all honest parties
start with the same input value, they will terminate within the first iteration. Otherwise, the
probability distribution of terminating in less than τ = log1.5(κ) + 1 phases is geometric with
parameter p. In the negligible probability that the parties did not receive output in less than τ
phases, termination is guaranteed by F{0,1}ba .

We now prove that πrba UC-realizes Frba. We construct a simulator S for the dummy
adversary A that simulates the honest parties in πrba and the ideal functionalities Fpsmt,Foc
and F{0,1}ba . Let Z be an environment

• S forwards all messages from the environment to A (and vice versa).

98

• S simulates every honest party by independently sampling random coins for the party
and running the protocol according to the protocol’s specification. Note that S learns the
input for each honest party Pi as soon as Pi sends it to Frba by receiving the message
(leakage, sid,Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol by receiv-
ing the message (trace, sid, T) from Frba, and can derive the terminating phase rout by
counting the number of sequences (Foc,Fpsmt,Fpsmt,Fpsmt) in T (and setting rout ← τ+1
if the last leaf is F{0,1}ba).

• Whenever A sends a message (sid, bj) on behalf of a corrupted party Pj to some honest
party during the first round, S sends (input, sid, bj) to Frba on behalf of Pj .

• Whenever A requests to corrupt some party Pi ∈ P, S corrupts Pi and sends the simulated
internal state of Pi (consisting of Pi’s input, randomness and incoming messages) to A.
Recall that in case A corrupts a party Pi after it sent its input to some corrupted party,
during the first round, A may instruct Pi to send a different value as its input to all other
parties. In this case, S sends (input, sid, bi) to Frba on behalf of Pi.

• When simulating Foc in the first rout − 1 phases, instead of sampling the fairness bit, S
acts as if b = 0, i.e., it allows A to decide on the output values of the parties. In case some
subset of simulated honest parties P ′ terminate in a phase r (prior to phase rout) with
value y ∈ {0, 1}, S sends (adv-input, sid, y) to Frba followed by (early-output, sid,Pi)
for every Pi ∈ P ′. In addition, S proceeds based on the following cases:

– In case r < τ , S sends (early-output, sid,Pi) for every Pi ∈ P\P ′ in the next phase,
ensuring that all honest parties will terminate appropriately.

– In case r = τ , then the honest parties in P \ P ′ proceed to the invocation of F{0,1}ba ,
S simulates all honest parties in P \ P ′ sending y as their input and receives input
values from the adversary. Next, S computes the output just like F{0,1}ba would, and
sends to the adversary the output values. (Recall that the output value from F{0,1}ba
is not being used by the honest parties.)

– Note that the case r = τ + 1 can never happen.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , S samples a random bit y ∈ {0, 1} in the rout’th phase, sends
(adv-input, sid, y) to Frba, and simulates the next invocation of Foc by setting the
fairness bit b = 1 and with output y, i.e., ensuring that the honest parties will receive
output y in the simulated protocol. Recall that if rout < τ then indeed all honest
parties will terminate in the simulated protocol, however, if rout = τ the simulator
must simulate F{0,1}ba toA. Note thatA cannot affect the output value in this scenario
(as all honest parties participate with input value y); S simulates all honest parties
sending y as their input, and responds with y as the output for all corrupted parties.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates
the functionality F{0,1}ba to the adversary. Initially, S simulates all honest parties
sending their local intermediate value as their input to F{0,1}ba , and receives the input
values from the adversary on behalf of the corrupted parties. (Recall that the adver-
sary may dynamically corrupt honest parties and change their input message.) Next,

99

S computes the result as in F{0,1}ba , i.e., it checks whether there exists at least n− t
input values that all equal to some value y, and if so sets it as the output; otherwise,
it sets the output based on the (adv-input, sid, ·) message sent by the adversary.

It follows using a standard hybrid argument that the view of the environment Z is identically
distributed when interacting with a real-world execution of πrba in the (Fpsmt,Foc,F{0,1}ba)-
hybrid model and the dummy adversary, and when interacting with the simulator S and the
ideal model computation of Frba, i.e.,

REALπrba,A,Z ≡ IDEALFrba,S,Z .

�

We now use Theorem 7.2.1 to derive the main result of this section.

Theorem 8.1.3 (restating Theorem 1.3.1). Let c ≥ 0 and t < n/3. There exists an efficiently
sampleable distribution D such that the functionality WD,c

sl-flex(F{0,1}ba) has an expected constant
round complexity, and can be UC-realized in the Fsmt-hybrid model, with perfect security, in
the presence of an adaptive malicious t-adversary, assuming that all honest parties receive their
inputs within c+ 1 consecutive rounds.

Proof sketch. Denote by Dba the deterministic distribution that outputs a depth-1 trace consist-
ing of a rootWDba

strict(F
{0,1}
ba) and t+1 leaves Fpsmt. Let Dfull

rba = full-trace(Drba, Doc, Dpsmt, Dba).
For simplicity, denote the functionalities Fpt

ba = WDfull
rba,c

sl-flex (F{0,1}ba), Fdt
psmt = WDpsmt,c

sl-strict(Fpsmt),
Fdt

oc =WDoc,c
sl-strict(Foc) and Fdt

ba =WDba,c
sl-strict(F

{0,1}
ba). In addition, denote D1 = Dpsmt, D2 = Doc,

D3 = Dba and I = ∅.
From Lemma 8.1.2, πrba UC-realizes WDrba

flex (F{0,1}ba), in the (Fpsmt,Foc,F{0,1}ba)-hybrid
model, in an expected constant number of rounds, assuming all parties receive their inputs at
the same round. Following Theorem 7.2.1, the compiled protocol Compcptr(πrba, D1, D2, D3, I)
UC-realizes Fpt

ba , in the (Fdt
psmt,Fdt

oc ,Fdt
ba)-hybrid model, in an expected constant number of

rounds, assuming all parties receive their inputs within c+ 1 consecutive rounds.
The proof follows since each of the functionalities (Fdt

psmt,Fdt
oc ,Fdt

ba) can be UC-realized
in the Fsmt-hybrid model. This follows from Lemma 7.3.1, Theorem 8.1.1, and the protocol
from [61]. �

Multi-valued Byzantine agreement protocol. As presented above, πrba is a binary BA
protocol. Using a transformation due to Turpin and Coan [82], the decision domain can be ex-
tended without increasing the expected running time. Given a set V ⊆ {0, 1}∗, denote by Dmv-ba
the deterministic distribution that outputs a depth-1 trace consisting of a root WDmv-ba

strict (FVba)
and three leaves (Fpsmt,Fpsmt,F{0,1}ba).

Lemma 8.1.4. Let t < n/3 and V ⊆ {0, 1}∗. Then, assuming all honest parties receive their
inputs at the same round, the protocol πmv-ba UC-realizes WDmv-ba

strict (FVba), in the (Fpsmt,F{0,1}ba)-
hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary.

The proof of the Lemma is straightforward.

100

Theorem 8.1.5. Let c ≥ 0, t < n/3 and V ⊆ {0, 1}∗. There exists an efficiently sampleable
distribution D such that the functionality WD,c

sl-flex(FVba) has an expected constant round complex-
ity, and can be UC-realized in the Fsmt-hybrid model, with perfect security, in the presence of
an adaptive malicious t-adversary, assuming that all honest parties receive their inputs within
c+ 1 consecutive rounds.

Proof sketch. Let Dfull
mv-ba = full-trace(Dmv-ba, Dpsmt, D

full
rba). For simplicity, denote Fpt,v

ba =
WDfull

mv-ba,c
sl-flex (FVba), D1 = Dpsmt, D2 = Dfull

rba and I = {2}.
From Lemma 8.1.4, πmv-ba UC-realizes WDmv-ba

strict (FVba), in the (Fpsmt,F{0,1}ba)-hybrid model,
in three rounds, assuming all parties receive their inputs at the same round. Following
Theorem 7.2.2, the compiled protocol Compcpt(πmv-ba, D1, D2, I) UC-realizes Fpt,v

ba , in the
(Fdt

psmt,Fpt
ba)-hybrid model, in an expected constant number of rounds, assuming all parties

receive their inputs within c+ 1 consecutive rounds.
The proof follows since, following Lemma 7.3.1 and Theorem 8.1.3 the functionalities Fdt

psmt
and Fpt

ba can be UC-realized in the Fsmt-hybrid model, using expected-constant-round protocols.
�

8.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Chapter 1 (and Section 5.3), composing protocols with probabilistic termination
näıvely does not retain expected round complexity. Ben-Or and El-Yaniv [11] constructed
an elegant protocol for probabilistic-termination parallel broadcast54 with a constant round
complexity in expectation, albeit under a property-based security definition. In this section,
we adapt the [11] protocol to the UC framework and show that it does not realize the parallel
broadcast functionality, but rather a weaker variant which we call unfair parallel broadcast.
Next, we show how to use unfair parallel broadcast in order to compute (fair) parallel broadcast
in constant excepted number of rounds.

8.2.1 Unfair Parallel Broadcast

In a standard broadcast functionality (cf. Section 6.1), the sender provides a message to the
functionality which delivers it to the parties. Hirt and Zikas [61] defined the unfair version
of the broadcast functionality, in which the functionality informs the adversary which message
it received, and allows the adversary, based on this information, to corrupt the sender and
replace the message. Following the spirit of [61], we now define the unfair parallel broadcast
functionality, using the language of CSF.

Unfair Parallel Broadcast. In the unfair parallel broadcast functionality, each party
Pi with input xi distributes its input to all the parties. The adversary is allowed to learn
the content of each input value from the leakage function (and so it can corrupt parties
and change their messages prior to their distribution, based on this information). The
function to compute is fupbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)), and the leakage

54In [11] the problem is referred to as “interactive consistency.”

101

function is lupbc(x1, . . . , xn) = (x1, . . . , xn). We denote by Fupbc the functionality Fcsf when
parametrized with the above functions fupbc and lupbc.

8.2.1.1 The Unfair Parallel Broadcast Protocol

In this section, we adjust the interactive-consistency protocol of Ben-Or and El-Yaniv [11] (with
minor adjustments) to the UC framework. The protocol πupbc (see Figure 8.2 for a detailed
description) is parametrized by two integers d and m. Initially, each party distributes its input
to all other parties. The underlying idea of the protocol is to run n · m instances of the BA
protocol πrba in parallel, such that for each Pi, a class of m instances of πrba are executed on
the input of Pi. However, in order to avoid the blowup in the number of rounds, the parallel
execution of the protocols is truncated after d phases. Once the first step concludes, each party
checks for each of the n classes if it received output in at least one of the executions. If so, it
arbitrarily selects one output for each class and distributes the vector of output values to all
the parties.

Next, the parties run a leader-election protocol and once some party Pk is elected to be the
leader, all parties run a BA protocol on the output vector that was distributed by the leader Pk
earlier (which might be null). Each party checks whether the agreed output corresponds to the
output values it received in the first step and sets a termination indicator accordingly. Finally,
the parties run another BA protocol on the termination indicators and terminate in case the
output is 1; otherwise another iteration is executed.

Ben-Or and El-Yaniv [11] showed that consistency and validity properties are satisfied, and
furthermore, if m = log(n) and d is such that at least 5 phases of the truncated randomized
BA protocol are executed, then the protocol will terminate in a constant expected number of
rounds.

We analyze this protocol in a hybrid model, where parties have access to a leader-election
functionality Fle and a Byzantine agreement functionality Fba. We actually require two types of
BA functionalities, the first is a standard BA functionality, whereas the second is a “truncated”
BA, which runs for a specific number of rounds and halts even if no output is specified. We
now describe these ideal functionalities as CSFs.

Leader election. In the leader-election functionality, the parties agree on a random value
k ∈R [n]. This functionality can be cast as a special case of secure function evaluation (as
defined in Section 6.1), where the parties compute the function gle(λ, . . . , λ) = (k, . . . , k). We
denote by Fle the functionality Fgle

sfe.
Ben-Or and El-Yaniv [11] showed how to implement the leader-election functionality by first

using the oblivious common coin protocol from [42] to compute an oblivious leader election,
and next run a (multi-valued) Byzantine agreement protocol on the result. The oblivious
leader election functionality Fole is defined in a similar way to the oblivious common coin
functionality (Foc, Section 8.1), with the exception that output value y is not a bit, but a
uniformly distributed element in [n]. Denote by Dle the deterministic distribution that outputs
a depth-1 trace consisting of a root WDle

strict(Fle) and 2 leaves (Fole,F [n]
ba).

Lemma 8.2.1 ([11]). Let t < n/3. Then, assuming all honest parties receive their inputs at the
same round, WDle

strict(Fle), in the (Fole,F [n]
ba)-hybrid model, with perfect security, in the presence

of an adaptive malicious t-adversary.

102

Truncated Byzantine agreement. The truncated Byzantine agreement functionality, is a
CSF whose function is parametrized by a set V , an efficiently sampleable distribution D, and
a non-negative integer d. Each party Pi has input xi ∈ V , and receives two output values
(yi1, yi2). The adversary is allowed to learn all the input values as the honest parties send
them, i.e., the leakage function is lt-rba(x1, . . . , xn) = (x1, . . . , xn). The function to compute is
ft-rba(x1, . . . , xn, a) = ((yi1, yi2), . . . , (yi1, yi2)), which operates as follows:

• If there exists a value y such that y = xi for at least n − t input values xi, then set
(yi1, yi2)← (y,⊥) for every i ∈ [n].

• Else, sample a number r ← D. The adversarial input a is parsed as a vector of n + 1
integer values (a0, a1 . . . , an). The first coordinate a0 represents the output value, i.e., set
y ← a0. Next, for each party Pi, set a value di ← min(ai, r). Finally, the output values
for each party Pi is defined as follows:

– If di < d then set (yi1, yi2)← (y,⊥).
– If di = d then set (yi1, yi2)← (⊥, y).
– If di > d then set (yi1, yi2)← (⊥,⊥).

In fact, in the protocol πupbc, a parallel version (of s instances, for some s) of the above described
functionality is required. That is, each party Pi has a vector of input values xi = (xi1, . . . , xis),
and receives a vector of s output values (yi1, . . . , yis) where each yij is a pair of values as above.
The leakage function reveals all the input values to the adversary, and the function to compute
is essentially s instances of the above function f , where for each instance the value r is sampled
from D using independent random coins. In addition, the adversarial input a is parsed as a
vector of s(n + 1) integer values, where for each instance, the adversary specifies a different
vector (a0, a1 . . . , an). Note, however, that the value d is the same in all s instances.

We denote by Ft-rba the functionality Fcsf describing the parallel version of truncated
randomized BA, as described above.

The protocol. We first describe a version of the protocol by [11] augmented with (a simpler
version of) the technique from [52], where all hybrids used are CSFs;55 using Theorem 7.2.1 we
then obtain our result. Recall that the unfair parallel broadcast functionality Fupbc is defined
in Section 8.2.

Let d ≥ 5 , let m = log(n), and let τ = log1.5(κ)+1. Denote by D the geometric distribution
with parameter 2q/3 and support {1 . . . , τ + 1}, where q is the probability that when indepen-
dently sampling nm “terminating phases” (r1, . . . , rnm) from the distribution Drba, then for
every j ∈ [n] it holds that at least one of the values (r(j−1)m+1, . . . , r(j−1)m+m) is smaller than
d. (The distribution D outputs the phase in which the event where Fle returned a party that
was honest before the Fle invocation and received output in each BA occurs, plus the option
that this event did not occur in all τ phases.)

Denote by Dupbc the distribution that outputs a depth-1 trace with a root WDupbc
flex (Fupbc)

and where the leaves are set as follows: initially sample an integer r ← D. The first leaf is
Fpsmt, followed by min(r, τ) sequences of (Ft-rba,Fpsmt,Fle,Fba,Fba). Finally, if r = τ + 1
add the leaf Fupbc.

55Note that although the hybrids are CSFs, and all honest parties terminate at the same round, the protocol
has probabilistic termination.

103

Lemma 8.2.2. Let t < n/3, and assume that all honest parties receive their inputs at
the same round. Then, the protocol πupbc UC-realizes Fpt-upbc = WDupbc

flex (Fupbc), in the
(Fpsmt,Fba,Fle,Ft-rba,Fupbc)-hybrid model, with perfect security, in the presence of an adap-
tive malicious t-adversary.

Protocol πupbc

Protocol πupbc, parametrized by positive integers d (number of phases to run the truncated BA
functionality) and m (how many instances of truncated BA to compute for each input value). The
functionality Ft-rba runs nm instances in parallel, and is parametrized by the distribution Drba
and integer d.

1. Initially, Pi sets the phase index α← 0, and the termination indicator term← 0. In addition,
denote τ = log1.5(κ) + 1.

2. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi sends
(sid, xi) to all the parties (via Fpsmt). Denote by xj the value received from Pj .

3. While term = 0 and α ≤ τ , do the following:

(a) Set α← α+1 and send values to Ft-rba, such that the value xj is sent to the m instances
corresponding to the j’th value. Formally, prepare the vector z = (z1, . . . , znm) such
that for every j ∈ [n] and every l ∈ [m] set z(j−1)m+l = xj . Send (input, sidα1 , z) to
Ft-rba.
Let (output, sidα1 ,v) be the output from Ft-rba, where v is a vector of nm pairs
((v1

1 , v
1
2), . . . , (vnm1 , vnm2)) with vj1, v

j
2 ∈ V ∪ {⊥}.

(b) For every j ∈ [n], set Sj1 ← {v
(j−1)m+1
1 , . . . , vjm1 } (corresponding to output values before

phase d) and Sj2 ← {v
(j−1)m+1
2 , . . . , vjm2 } (corresponding to output values at phase d).

(c) If Sj1 6= {⊥} for every j ∈ [n] (i.e., if for every class of BAs there was at least one
output), then for every j ∈ [n] choose cj ∈ Sj1 (arbitrarily), set ci = (c1, . . . , cn) and
send (sid, ci) to all the parties (via Fpsmt).
Denote by cj the tuple received from Pj ; if no message was received, set cj = ∅.

(d) Send (input, sidα2 , λ) to the functionality Fle. Let (output, sidα2 , k), with k ∈ [n], be
the output received from Fle.

(e) Send (input, sidα3 , ck) to Fba, parametrized by the set V n ∪ {∅}. Let (output, sidα3 , c)
be the output received from Fba (with c = (c1, . . . , cn) ∈ V n or c = ∅).

(f) If c 6= ∅ and for every j ∈ [n], cj ∈ Sj1 ∪ S
j
2 then set b← 1; otherwise set b← 0.

(g) Send (input, sidα4 , b) to Fba, parametrized by the set {0, 1}. Let (output, sidα4 , β), with
β ∈ {0, 1}, be the output received from Fba. If β = 1 then set term← 1.

4. If term = 1, then output (output, sid, c) and halt.

5. Else, set the vector xi = (λ, . . . , λ, xi, λ, . . . , λ) (the vector of length n whose ith coordinate
is xi and all other cooridinates are the empty string λ) and send (input, sid,xi) to Fupbc.
Let (output, sid, c) be the output received from Fupbc. Output (output, sid, c) and halt.

Figure 8.2: The unfair parallel broadcast protocol, in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)-hybrid
model

Proof. We first claim correctness. The protocol πupbc consists of two parts, the first is running
(up to) τ phases of the Ben-Or and El-Yaniv [11] protocol, and the second (which only occurs if

104

no output was generated in the first part, i.e., if all honest parties have value term = 0) consists
of calling an unfair parallel broadcast functionality. As shown in [11, Thm. 5], the protocol
satisfies the consistency and validity properties in the property-based definition of interactive
consistency (i.e., parallel Byzantine agreement). In addition, since the last step in each phase is
invoking the BA functionality in order to agree whether all honest parties received output and
can safely terminate, or whether an additional phase should be executed, it follows that if one
honest party has received output in some phase, then so do the rest of the honest parties.

It follows that:

• In case some honest party received output in phase α ≤ τ , then all honest parties also
receive the same output at this phase (i.e., term = 1 for all honest parties), and so
correctness follows from [11].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest
parties), all honest parties send their initial values to Fupbc and output the result; hence,
correctness follows from the Fupbc functionality.

Regarding termination, Ben-Or and El-Yaniv showed that for d ≥ 5 and m = log(n), all
honest parties receive their outputs within a constant number of phases in expectation. In the
negligible probability that the parties did not receive output in less than τ phases, termination
is guaranteed by Fupbc.

We now prove that πupbc UC-realizes Fpt-upbc. We construct a simulator S for the
dummy adversary A that simulates the honest parties in πupbc and the ideal functionalities
Fpsmt,Fba,Fle,Ft-prba and Fupbc, as follows. Let Z be an environment.

• S forwards all messages from the environment to A (and vice versa).

• S simulates every honest party by independently sampling random coins for the party
and running the protocol according to the protocol’s specification. Note that S learns
the input for each honest party Pi as soon as Pi sends it to Fpt-upbc by receiving the
message (leakage, sid,Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol
by receiving the message (trace, sid, T) from Fpt-upbc, and can derive the guaranteed-
termination phase rout by counting the number of sequences (Ft-prba,Fpsmt,Fle,Fba,Fba)
in T (and setting rout ← τ + 1 if the last CSF is Fupbc).

• Whenever A sends a message (sid, xj) on behalf of a corrupted party Pj to some honest
party during the first round, S sends (input, sid, xj) to Fpt-upbc on behalf of Pj . (Note
that xj is in fact a vector.)

• Whenever A requests to corrupt some Pi ∈ P, the simulator S corrupts Pi and sends
the simulated internal state of Pi (consisting of Pi’s input, randomness and incoming
messages) to A. Recall that in case A corrupts a party Pi after it sent its input to some
corrupted party, during the first round, A may instruct Pi to send a different value xi as
its input to all other parties. In this case, S sends (input, sid, xi) to Fpt-upbc on behalf of
Pi.

• In the first rout−1 phases, S simulates Ft-rba according to the behavior of the ideal func-
tionality, i.e., by independently sampling nm values from Drba. Next, when simulating

105

the functionality Fle, instead of sampling a random index k ∈ [n], the simulator S samples
k such that in case Ft-rba was successful (i.e., if the honest parties received output) k is
uniformly distributed conditioned on Pk is corrupted, i.e., S allows A to decide whether
the protocol will successfully terminate or not in this phase. In case A instructs Pk to
follow the protocol, then all honest parties will terminate in this phase (prior to phase rout)
with value c; S sends (adv-input, sid, c) to Fpt-upbc followed by (early-output, sid,Pi)
for every Pi ∈ P.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , when simulating Ft-rba in the rout’th phase, S ensures that hon-
est parties will receive output, and when simulating Fle, S uniformly selects an
index k such that Pk was honest before the simulation of Fle. Next, S sends
(adv-input, sid, ck) to Fpt-upbc, and continues simulating the protocol. Since Pk
was honest when distributing ck, this ensures that the honest parties will receive
output ck in the simulated protocol.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates
the functionality Fupbc to the adversary. Initially, S simulates all honest parties
sending their initial inputs as their input to Fupbc, and receives the input values
from the adversary on behalf of the corrupted parties. (Recall that the adversary
may dynamically corrupt honest parties and change their input message.) Next, S
computes the result as in Fupbc, i.e., it provides the output (x1, . . . , xn) to each party.

It follows using a standard hybrid argument that the view of the environment Z is identically
distributed when interacting with a real-world execution of πupbc and the dummy adversary,
and when interacting with the simulator S and the ideal model computation of Fpt-upbc, i.e.,

REALπupbc,A,Z ≡ IDEALFpt-upbc,S,Z .

�

Using Theorem 7.2.1 we obtain the following as a result.

Theorem 8.2.3. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D

such that the functionalityWD,c
sl-flex(Fupbc) has an expected constant round complexity, and can be

UC-realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive ma-
licious t-adversary, assuming that all honest parties receive their inputs within c+1 consecutive
rounds.

Proof sketch. Denote by Dt-rba the deterministic distribution that outputs a trace consisting
of a root WDt-rba

strict (Ft-rba) and a constant number of leaves Fpsmt (corresponding to d phases
of πrba). Denote by Ddt-upbc the deterministic distribution that outputs a trace consisting of
a root WDdt-upbc

strict (Fupbc) and t + 1 leaves Fpsmt. Denote by Dole the deterministic distribution
that outputs a trace consisting of a root WDole

strict(Fole) and 32 leaves Fpsmt.
Let Dfull

le = full-trace(Dle, Dpsmt, D
full
mv-ba). For simplicity, denote the functionalities Fpt

upbc =
WDfull

upbc,c
sl-flex (Fupbc), Fdt

t-rba = WDt-rba,c
sl-strict (Ft-rba), Fpt

le = WDfull
le ,c

sl-flex (Fle), Fdt
upbc = WDdt-upbc,c

sl-strict (Fupbc).
In addition, denote D1 = Dpsmt, D2 = Dfull

rba, D3 = Dle, D4 = Dt-rba, D5 = Ddt-upbc and
I = {2, 3}.

106

Following Lemma 8.2.2, protocol πupbc UC-realizes the functionality WDupbc
flex (Fupbc), in the

(Fpsmt,Fba,Fle,Ft-rba,Fupbc)–hybrid model, using an expected constant number of rounds,
assuming that all the parties receive their inputs at the same round. By applying Theo-
rem 7.2.1, the compiled protocol Compcptr(πupbc, D1, D2, D3, D4, D5, I) UC-realizes Fpt

upbc, in
the (Fdt

psmt,Fpt
ba ,Fpt

le ,Fdt
t-rba,Fdt

upbc)-hybrid model, in an expected constant number of rounds,
assuming all parties receive their inputs within c+ 1 consecutive rounds.

The proof follows since each of the functionalities {Fdt
psmt,Fpt

ba ,Fpt
le ,Fdt

t-rba,Fdt
upbc} can be

UC-realized in the Fsmt-hybrid model with expected constant round complexity. �

8.2.2 Parallel Broadcast

We now turn to define the (fair) parallel broadcast functionality.
Parallel Broadcast. In the parallel broadcast functionality, each party Pi with in-
put xi distributes its input to all the parties. Unlike the unfair version, the adver-
sary only learns the length of the honest parties’ messages before their distribution,
i.e., the leakage function is lpbc(x1, . . . , xn) = (|x1| , . . . , |xn|). It follows that the ad-
versary cannot use the leaked information in a meaningful way when deciding which
parties to corrupt. The function to compute is identical to the unfair version, i.e.,
fpbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)). We denote by Fpbc the functionality
Fcsf when parametrized with the above functions fpbc and lpbc.

Unfortunately, the unfair parallel broadcast protocol πupbc (cf. Figure 8.2) fails to realize (a
wrapped version of) the standard parallel broadcast functionality Fpbc. The reason is similar
to the argument presented in [61]: in the first round of the protocol, each party distributes its
input, and since we consider a rushing adversary, the adversary learns the messages before the
honest parties do. It follows that the adversary can corrupt a party before the honest parties
receive the message and replace the message to be delivered. This attack cannot be simulated
in the ideal world where the parties interact with Fpbc, since by the time the simulator learns
the broadcast message in the ideal world, the functionality does not allow to change it.

Although protocol πupbc does not realize Fpbc, it can be used in order to construct a protocol
that does. Each party commits to its input value before any party learns any new information,
as follows. Each party, in parallel, first secret shares its input using a (t + 1)-out-of-n secret-
sharing protocol.56 In the second step, every party, in parallel, broadcast a vector with all
the shares he received, by the use of the above unfair parallel broadcast functionality Fupbc,
and each share is reconstructed based on the announced values. The reason this modification
achieves fair broadcast is the following: If a sender Pi is not corrupted until he distributes
his shares, then a t-adversary has no way of modifying the reconstructed output of Pi’s input,
since he can at most affect t < n/3 shares, which can be self-correct by the reconstruction
algorithm (e.g., using Shamir’s scheme). Thus, the only way the adversary can affect any of
the broadcast messages is by corrupting the sender independently of his input, an attack which
is easily simulated. In case a malicious sender generates shares that do not correspond to a
degree t polynomial, all honest parties identify the misbehavior (since all shares are publicly
transmitted over the unfair broadcast channel) and agree on a default value for the sender, e.g.,
zero. We describe this protocol, denoted πpbc, in Figure 8.3.

56In [61] verifiable secret sharing (VSS) is used; however, as we argue, this is not necessary.

107

Protocol πpbc

1. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi secret
shares xi using Shamir’s (t + 1)-out-of-n secret-sharing scheme, denoted by (x1

i , . . . , x
n
i) ←

share(xi). Next, Pi sends for every party Pj its share (sid, xji) (via Fpsmt). Denote by xij the
value received from Pj (replace invalid/missing values by zero).

2. In the second round, Pi broadcasts the values xi = (xi1, . . . , xin) using the unfair parallel
broadcast functionality, i.e., Pi sends (input, sid,xi) to Fupbc. Denote by yj = (yj1, . . . , yjn)
the value received from Pj (replace invalid/missing values by zero). Now, Pi reconstructs all
the input values, i.e., for every j ∈ [n] reconstructs yj = recon(y1

j , . . . , y
n
j) (in case yj = ⊥ set

yj ← 0), and outputs (output, sid, (y1, . . . , yn)).

Figure 8.3: The parallel broadcast protocol, in the (Fpsmt,Fupbc)-hybrid model

Theorem 8.2.4 (restating Theorem 1.3.2). Let c ≥ 0 and t < n/3. There exists an efficiently
sampleable distribution D such that the functionality WD,c

sl-flex(Fpbc) has an expected constant
round complexity, and can be UC-realized in the Fsmt-hybrid model, with perfect security, in
the presence of an adaptive malicious t-adversary, assuming that all honest parties receive their
inputs within c+ 1 consecutive rounds.

Proof sketch. The simulator uses the adversary attacking πpbc in a black-box straight-line
manner. To simulate the first (secret-sharing) round, for honest senders the simulator simply
hands the adversary random shares for all corrupted parties and for corrupted senders he follows
the adversary’s instructions. If during this step the adversary asks to corrupt new senders, the
simulator learns their outputs and can easily complete the sharing to match this output. At
the end of this phase, the simulator interacts with its hybrid until it produces output. Once
this is the case, he uses this output to continue the simulation with its adversary. Clearly, for
any sender Pi who is not corrupted until he distributes his shares, then a t-adversary has no
way of modifying the reconstructed output of Pi’s input, since he can at most affect t < n/3
shares (and Shamir’s scheme can correct up to n/3 erroneous shares). Thus, the only way the
adversary can affect any of the broadcasted message is by corrupting the sender independently
of his input, an attack which is easily simulated. The fact that the running time is constant
(expected) follows trivially from the fact that πpbc executes only one round (namely the sharing
round) more than the unfair protocol which is expected constant round (cf. Theorem 8.2.3). �

8.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure SFE protocol which
computes a given circuit in expected O(d) rounds, independently of the number of parties, in the
point-to-point channels model. The protocol is obtained by taking the protocol from [12],57 de-
noted πbgw. This protocol relies on (parallel) broadcast and (parallel) point-to-point channels,
and therefore it can be described in the (Fpsmt,Fpbc)-hybrid model. It follows from Theo-
rem 7.2.2, that the compiled protocol Compcpt(πbgw, D1, D2, I), for D1 = Dpsmt, D2 = Dfull

pbc
57A full simulation proof of the protocol with a black-box straight-line simulation was recently given by [3]

and [38].

108

and I = {2}, UC-realizes the corresponding wrapped functionality WD,c
sl-flex(Fsfe) (for an appro-

priate distribution D), in the (WDpsmt,c
sl-strict(Fpsmt),WDfull

pbc,c
sl-flex (Fpbc))-hybrid model, resulting in the

following.

Theorem 8.3.1 (restating Theorem 1.3.3). Let f be an n-party function, C an arithmetic cir-
cuit with multiplicative depth d computing f , c ≥ 0 and t < n/3. Then there exists an efficiently
sampleable distribution D such that the functionality WD,c

sl-flex(Ffsfe) has round complexity O(d)
in expectation, and can be UC-realized in the Fsmt-hybrid model, with perfect security, in the
presence of an adaptive malicious t-adversary, assuming that all honest parties receive their
inputs within c+ 1 consecutive rounds.

109

110

Appendix A

Abstracts of Additional Results

In this appendix, we present abstracts of additional and followup work completed/initiated by
the author during graduate studies at Bar-Ilan University.

Round-Preserving Parallel Composition of Probabilistic-Termination Crypto-
graphic Protocols [33]. In Part II, we devised a framework for universal composition of
PT protocols, and provided the first composable parallel-broadcast protocol with a simulation-
based proof. This construction crucially relies on the fact that broadcast is “privacy free,” and
does not generalize to arbitrary protocols in a straightforward way. This raises the question
of whether it is possible to execute arbitrary PT protocols in parallel, without increasing the
round complexity.

In this paper, we tackle this question and provide both feasibility and infeasibility results.
We construct a round-preserving protocol compiler, secure against a dishonest minority of ac-
tively corrupted parties, that compiles arbitrary protocols into a protocol realizing their parallel
composition, while having a black-box access to the underlying protocols. Furthermore, we prove
that the same cannot be achieved, using known techniques, given only black-box access to the
functionalities realized by the protocols, unless merely security against semi-honest corruptions
is required, for which case we provide a protocol.

Joint work with Sandro Coretti, Juan Garay, and Vassilis Zikas.

From Fairness to Full Security in Multiparty Computation [34]. In Theorem 3.3.4,
we showed how to strengthen every fair protocol in the broadcast model to guarantee output
delivery. This transformation, however, requires t invocations of the fair protocol.

In this paper, we present highly efficient transformations, assuming the fraction of honest
parties is constant (e.g., 1% of the parties are honest). Compared to Theorem 3.3.4 that requires
linear invocations (in the number of parties) of the fair computation, the new transformations
require super-logarithmic, and sometimes even super-constant, such invocations. The main idea
is to delegate the computation to chosen random committees that invoke the fair computation.
Apart from the benefit of uplifting security, the reduction in the number of parties is also
useful, since only committee members are required to work, whereas the remaining parties
simply ”listen” to the computation over a broadcast channel.

One application of these transformations is a new δ-bias coin-flipping protocol, whose round
complexity has a super-logarithmic dependency on the number of parties, improving over the

111

protocol of Beimel, Omri, and Orlov [9] that has a linear dependency. A second application is a
new fully secure protocol for computing the Boolean OR function, with a super-constant round
complexity, improving over the protocol of Gordon and Katz [56] whose round complexity is
linear in the number of parties.

Joint work with Iftach Haitner, Eran Omri, and Lior Rotem.

Asynchronous Secure Multiparty Computation in Constant Time [28]. In this dis-
sertation, we focused on MPC over synchronous networks. It is well known that if the com-
munication model is asynchronous, meaning that messages can be arbitrarily delayed by an
unbounded (yet finite) amount of time, secure computation with guaranteed termination is
feasible if and only if at least two-thirds of the parties are honest, as was shown by Ben-Or,
Canetti, and Goldreich [13] and by Ben-Or, Kelmer, and Rabin [14]. The running time and
communication complexity of all currently known protocols depend on the function to evaluate.
In this work, we present the first asynchronous MPC protocol that runs in constant time and
with communication complexity that is independent of the function.

Our starting point is the asynchronous MPC protocol of Hirt, Nielsen, and Przydatek
[62, 63]. We integrate threshold fully homomorphic encryption in order to reduce the com-
munication between the parties, thus completely removing the need for the expensive king-
slaves approach taken by Hirt et al.. Initially, assuming an honest majority, we construct a
constant-time protocol in the asynchronous Byzantine agreement (ABA) hybrid model. Using
a concurrent ABA protocol that runs in constant expected time, we obtain a constant expected
time asynchronous MPC protocol, secure facing static malicious adversaries, assuming t < n/3.

On Adaptively Secure Multiparty Computation with a Short CRS [30]. Recall that a
protocol is adaptively secure if honest parties might get corrupted after the protocol has started.
In TCC 2015, three constant-round adaptively secure protocols were presented [24, 36, 49]. All
three constructions assume that the parties have access to a common reference string (CRS)
whose size depends on the function to compute, even when facing semi-honest adversaries.

In this work, we study adaptively secure protocols which only rely on a short CRS that is
independent on the function to compute. First, we raise a subtle issue relating to the usage
of non-interactive non-committing encryption within security proofs in the UC framework, and
explain how to overcome it. We demonstrate the problem in the security proof of the adaptively
secure oblivious-transfer protocol from [23] and provide a complete proof of this protocol. Next,
we present a new primitive called non-committing indistinguishability obfuscation, and show that
this primitive is complete for constructing adaptively secure protocols with round complexity
independent of the function.

Joint work with Chris Peikert.

112

Bibliography

[1] Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with nearly three-
quarters malicious. In Proceedings of the 14th Theory of Cryptography Conference, TCC
2016-B, part I, pages 307–335, 2016.

[2] Gilad Asharov. Towards Characterizing Complete Fairness in Secure Two-Party Compu-
tation. In Proceedings of the 11th Theory of Cryptography Conference, TCC 2014, pages
291–316, 2014.

[3] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly secure
multiparty computation. Journal of Cryptology, 30(1):58–151, 2017.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty Computation with Low Communication, Computation and
Interaction via Threshold FHE. In Advances in Cryptology – EUROCRYPT 2012, pages
483–501, 2012.

[5] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete Character-
ization of Fairness in Secure Two-Party Computation of Boolean Functions. In Proceedings
of the 12th Theory of Cryptography Conference, TCC 2015, part I, pages 199–228, 2015.

[6] Yonatan Aumann and Yehuda Lindell. Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[7] Donald Beaver. Foundations of Secure Interactive Computing. In Advances in Cryptology
– CRYPTO ’91, pages 377–391, 1991.

[8] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round Complexity of Secure
Protocols (Extended Abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing (STOC), pages 503–513, 1990.

[9] Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for Multiparty Coin Toss with a
Dishonest Majority. Journal of Cryptology, 28(3):551–600, 2015.

[10] Michael Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols (Extended Abstract). In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 27–30, 1983.

[11] Michael Ben-Or and Ran El-Yaniv. Resilient-Optimal Interactive Consistency in Constant
Time. Distributed Computing, 16(4):249–262, 2003.

113

[12] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In Proceed-
ings of the 29th Annual Symposium on Foundations of Computer Science (FOCS), pages
1–10, 1988.

[13] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages
52–61, 1993.

[14] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 183–192, 1994.

[15] Manuel Blum. Coin Flipping by Telephone. In Advances in Cryptology – CRYPTO ’81,
pages 11–15, 1981.

[16] Gabriel Bracha. An Asynchronous [(n−1)/3]-Resilient Consensus Protocol. In Proceedings
of the Third Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 154–162, 1984.

[17] Andrei Z. Broder and Danny Dolev. Flipping Coins in Many Pockets (Byzantine Agree-
ment on Uniformly Random Values). In Proceedings of the 25th Annual Symposium on
Foundations of Computer Science (FOCS), pages 157–170, 1984.

[18] Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping: Tighter
analysis and the many-party case. In Proceedings of the 28th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 2580–2600, 2017.

[19] Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[20] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001.

[21] Ran Canetti. Universally composable signature, certification, and authentication. In 17th
IEEE Computer Security Foundations Workshop, (CSFW-17), pages 219–235, 2004.

[22] Ran Canetti and Tal Rabin. Universal Composition with Joint State. In Advances in
Cryptology – CRYPTO 2003, pages 265–281, 2003.

[23] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Composable
Two-Party and Multi-Party Secure Computation. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 494–503, 2002.

[24] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-party
computation from indistinguishability obfuscation. In Proceedings of the 12th Theory of
Cryptography Conference, TCC 2015, part II, pages 557–585, 2015.

114

[25] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty Unconditionally Secure
Protocols (Extended Abstract). In Proceedings of the 10th Annual ACM Symposium on
Theory of Computing (STOC), pages 11–19, 1988.

[26] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 383–395, 1985.

[27] Richard Cleve. Limits on the Security of Coin Flips When Half the Processors are Faulty.
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC),
pages 364–369, 1986.

[28] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Proceedings
of the 19th International Conference on the Theory and Practice of Public-Key Cryptogra-
phy (PKC), part II, pages 183–207, 2016.

[29] Ran Cohen and Yehuda Lindell. Fairness versus Guaranteed Output Delivery in Secure
Multiparty Computation. In Advances in Cryptology – ASIACRYPT 2014, part II, pages
466–485, 2014.

[30] Ran Cohen and Chris Peikert. On adaptively secure multiparty computation with a short
CRS. In Proceedings of the 10th Conference on Security and Cryptography for Networks
(SCN), pages 129–146, 2016.

[31] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination
and composability of cryptographic protocols. In Advances in Cryptology – CRYPTO 2016,
part III, pages 240–269, 2016.

[32] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of Secure Multi-
party Computation Without Broadcast. In Proceedings of the 13th Theory of Cryptography
Conference, TCC 2016-A, part I, pages 596–616, 2016.

[33] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Round-preserving parallel
composition of probabilistic-termination cryptographic protocols. In Proceedings of the
44th International Colloquium on Automata, Languages, and Programming (ICALP), pages
37:1–37:15, 2017.

[34] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. From fairness to full security in
multiparty computation. In Proceedings of the 11th Conference on Security and Cryptog-
raphy for Networks (SCN), pages 216–234, 2018.

[35] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Effi-
cient Multiparty Computations Secure Against an Adaptive Adversary. In Advances in
Cryptology – EUROCRYPT ’99, pages 311–326, 1999.

[36] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, universally
composable, multiparty computation in constant rounds. In Proceedings of the 12th Theory
of Cryptography Conference, TCC 2015, part II, pages 586–613, 2015.

115

[37] Ivan Damg̊ard and Yuval Ishai. Constant-Round Multiparty Computation Using a Black-
Box Pseudorandom Generator. In Advances in Cryptology – CRYPTO 2005, pages 378–394,
2005.

[38] Ivan Damg̊ard and Jesper Buus Nielsen. Adaptive versus Static Security in the UC Model.
In Proceedings of the Eighth International Conference on Provable Security (ProvSec),
pages 10–28, 2014.

[39] Danny Dolev and H. Raymond Strong. Authenticated Algorithms for Byzantine Agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[40] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early Stopping in Byzantine
Agreement. Journal of the ACM, 37(4):720–741, 1990.

[41] Bennett Eisenberg. On the Expectation of the Maximum of IID Geometric Random Vari-
ables. Statistics & Probability Letters, 78(2):135–143, 2008.

[42] Pesech Feldman and Silvio Micali. An Optimal Probabilistic Protocol for Synchronous
Byzantine Agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[43] Michael J. Fischer and Nancy A. Lynch. A Lower Bound for the Time to Assure Interactive
Consistency. Information Processing Letters, 14(4):183–186, 1982.

[44] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy Impossibility Proofs for
Distributed Consensus Problems. In Proceedings of the Fourth Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 59–70, 1985.

[45] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and dif-
ferential consensus. In Proceedings of the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 211–220, 2003.

[46] Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Unconditional Byzan-
tine Agreement and Multi-party Computation Secure against Dishonest Minorities from
Scratch. In Advances in Cryptology – EUROCRYPT 2002, pages 482–501, 2002.

[47] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam Smith.
Detectable Byzantine Agreement Secure Against Faulty Majorities. In Proceedings of the
21st Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
118–126, 2002.

[48] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-Threshold
Broadcast and Detectable Multi-party Computation. In Advances in Cryptology – EURO-
CRYPT 2003, pages 51–67, 2003.

[49] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from indis-
tinguishability obfuscation. In Proceedings of the 12th Theory of Cryptography Conference,
TCC 2015, part II, pages 614–637, 2015.

[50] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-Round Secure MPC
from Indistinguishability Obfuscation. In Proceedings of the 11th Theory of Cryptography
Conference, TCC 2014, pages 74–94, 2014.

116

[51] Oded Goldreich. Foundations of Cryptography – Volume 2, Basic Applications. Cambridge
University Press, 2004. ISBN 0-521-83084-2.

[52] Oded Goldreich and Erez Petrank. The Best of Both Worlds: Guaranteeing Termination
in Fast Randomized Byzantine Agreement Protocols. Information Processing Letters, 36
(1):45–49, 1990.

[53] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[54] Shafi Goldwasser and Leonid A. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In Advances in Cryptology – CRYPTO ’90, pages 77–93, 1990.

[55] Shafi Goldwasser and Yehuda Lindell. Secure Multi-Party Computation without Agree-
ment. Journal of Cryptology, 18(3):247–287, 2005.

[56] Dov Gordon and Jonathan Katz. Complete Fairness in Multi-party Computation without
an Honest Majority. In Proceedings of the 6th Theory of Cryptography Conference, TCC
2009, pages 19–35, 2009.

[57] Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete Fairness in
Secure Two-Party Computation. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pages 413–422, 2008.

[58] Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-Round MPC with Fairness and
Guarantee of Output Delivery. In Advances in Cryptology – CRYPTO 2015, part II, pages
63–82, 2015.

[59] Ronald L. Graham and Andrew Chi-Chih Yao. On the improbability of reaching byzantine
agreements (preliminary version). In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 467–478, 1989.

[60] Iftach Haitner and Eliad Tsfadia. An Almost-Optimally Fair Three-Party Coin-Flipping
Protocol. In Proceedings of the 46st Annual ACM Symposium on Theory of Computing
(STOC), pages 817–836, 2014.

[61] Martin Hirt and Vassilis Zikas. Adaptively Secure Broadcast. In Advances in Cryptology
– EUROCRYPT 2010, pages 466–485, 2010.

[62] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience (extended abstract). In Advances in Cryp-
tology – EUROCRYPT 2005, pages 322–340, 2005.

[63] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party com-
putation with quadratic communication. In Proceedings of the 35th International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 473–485, 2008.

[64] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding Cryptography on Oblivious
Transfer - Efficiently. In Advances in Cryptology – CRYPTO 2008, pages 572–591, 2008.

117

[65] Jonathan Katz and Chiu-Yuen Koo. On Expected Constant-Round Protocols for Byzantine
Agreement. In Advances in Cryptology – EUROCRYPT 2006, pages 445–462, 2006.

[66] Jonathan Katz and Chiu-Yuen Koo. Round-Efficient Secure Computation in Point-to-Point
Networks. In Advances in Cryptology – EUROCRYPT 2007, pages 311–328, 2007.

[67] Jonathan Katz and Yehuda Lindell. Handling Expected Polynomial-Time Strategies in
Simulation-Based Security Proofs. In Proceedings of the Second Theory of Cryptography
Conference, TCC 2005, pages 128–149, 2005.

[68] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally Composable
Synchronous Computation. In Proceedings of the 10th Theory of Cryptography Conference,
TCC 2013, pages 477–498, 2013.

[69] Joe Kilian. Zero-knowledge with Log-Space Verifiers. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science (FOCS), pages 25–35, 1988.

[70] Joe Kilian. A General Completeness Theorem for Two-Party Games. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing (STOC), pages 553–560, 1991.

[71] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-Theoretically Secure Proto-
cols and Security Under Composition. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC), pages 109–118, 2006.

[72] Leslie Lamport. The Weak Byzantine Generals Problem. Journal of the ACM, 30(3):
668–676, 1983.

[73] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[74] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential Composition of Protocols
Without Simultaneous Termination. In Proceedings of the 21st Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 203–212, 2002.

[75] Silvio Micali and Phillip Rogaway. Secure Computation (Abstract). In Advances in Cryp-
tology – CRYPTO ’91, pages 392–404, 1991.

[76] Tal Moran, Moni Naor, and Gil Segev. An Optimally Fair Coin Toss. In Proceedings of
the 6th Theory of Cryptography Conference, TCC 2009, pages 1–18, 2009.

[77] Pratyay Mukherjee and Daniel Wichs. Two Round Multiparty Computation via Multi-key
FHE. In Advances in Cryptology – EUROCRYPT 2016, part II, pages 735–763, 2016.

[78] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM, 27(2):228–234, 1980.

[79] Birgit Pfitzmann and Michael Waidner. Unconditional Byzantine Agreement for any Num-
ber of Faulty Processors. In Proceedings of the 9th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 339–350, 1992.

[80] Michael O. Rabin. Randomized Byzantine Generals. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science (FOCS), pages 403–409, 1983.

118

[81] Tal Rabin and Michael Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority (Extended Abstract). In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science (FOCS), pages 73–85, 1989.

[82] Russell Turpin and Brian A. Coan. Extending Binary Byzantine Agreement to Multivalued
Byzantine Agreement. Information Processing Letters, 18(2):73–76, 1984.

[83] Andrew C. Yao. Protocols for Secure Computations. In Proceedings of the 23th Annual
Symposium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

[84] Andrew C. Yao. How to Generate and Exchange Secrets. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science (FOCS), pages 162–167, 1986.

119

	Abstract
	Introduction
	Background
	Secure Multiparty Computation
	The Simulation Paradigm
	Adversarial Power
	Feasibility of Secure Computation

	Feasibility of Full Security
	Fairness Versus Guaranteed Output Delivery
	Characterization of Multiparty Computation without Broadcast

	Round-Efficient MPC with Full Security
	Organization

	I Feasibility of Full Security
	Definitions
	Security of Protocols
	Execution in the Real World
	Execution in the Ideal World
	Secure Computation with Guaranteed Output Delivery
	Secure Computation with Complete Fairness
	Secure Computation with Complete Fairness and Identifiable Abort
	Secure Computation with Abort
	Secure Computation with Identifiable Abort

	Security as Emulation of a Real Execution in the Ideal Model
	The Hybrid Model

	Fairness Versus Guaranteed Output Delivery
	Separating Fairness from Guaranteed Output Delivery
	Fairness Implies Guaranteed Output Delivery for Default-Output Functionalities
	The Role of Broadcast
	Fairness is Invariant to Broadcast
	Fairness with Identifiable Abort Implies Guaranteed Output Delivery
	Fairness with Broadcast Implies Guaranteed Output Delivery

	Black-Box Fairness does not Help for Guaranteed Output Delivery
	Additional Results
	Broadcast is Necessary for Identifiable Abort
	Fairness Implies Guaranteed Output Delivery for Fail-Stop Adversaries

	Overview of Related Protocols
	The GMW Compiler
	The Detectable Broadcast Protocol of Fitzi et al.
	The Protocols of Gordon and Katz

	Characterization of Secure Multiparty Computation without Broadcast
	Attacking Consistent Protocols
	Protocols of Strict Running-Time Guarantee
	Protocols of Expected Running-Time Guarantee

	Impossibility Results for Secure Computation
	Public-Output Functionalities
	Coin-Flipping Protocols

	Characterizing Secure Computation without Broadcast
	No Honest Majority
	Honest Majority

	II Round-Efficient MPC with Full Security
	Preliminaries
	The UC Framework
	The Real Model
	The Ideal Model
	The Hybrid Model

	Synchronous Communication in the UC Framework
	On Parallel (In)Composability of Protocols with Probabilistic Termination

	Secure Computation with Probabilistic Termination
	Canonical Synchronous Functionalities
	Probabilistic Termination in UC

	(Fast) Composition of Probabilistic-Termination Protocols
	Composition with Deterministic Termination
	Composition with Probabilistic Termination
	Wrapping Secure Channels

	Applications of Our Fast Composition Theorem
	Fast and Perfectly Secure Byzantine Agreement
	Fast and Perfectly Secure Parallel Broadcast
	Unfair Parallel Broadcast
	Parallel Broadcast

	Fast and Perfectly Secure SFE

	Abstracts of Additional Results

