Adaptively secure MPC in sublinear communication

Ran Cohen BU & Northeastern Daniel Wichs Northeastern

abhi shelat Northeastern

Static corruptions

Adv picks corrupted parties before protocol begins.

Static corruptions

Adv picks corrupted parties before protocol begins.

Adv can corrupt ALL parties AFTER end.

///

Adv can corrupt ALL parties AFTER end.

Protocol finished

Adaptive corruptions (without erasures)

Adv can corrupt ALL parties AFTER end.

Simulator S must produce transcript T without knowing inputs or outputs.

After corruption, S learns inputs and outputs.

S must explain transcript T by producing random tapes for each party!

At what cost adaptive security?

UD'1/.	NJ1)/16	CC'10 / DI'10	0 \\/\\/
NK 14		UJ IO / DL IO	QUVUU IO
ounds	2 rounds, comm	2 rounds	2 rounds
NIZK, CRS	LWE, NIZK, CRS	OT, CRS	comm & online
			Adaptive-LWE,

	CLOS'02 O(d) rounds OT, CRS		DKR'15 / CGP'15 O(1) rounds iO, OT, <mark>RefStr</mark>	GP'15 2 rounds, o(C) comm iO,DenEnc,O(C) Ref	CPV'17 O(1) rounds OT, CRS	BLPV'18 2 rounds OT, CRS
GMW'87BMR'90O(d) roundsO(1) roundsOTOT	nds	AJLTVW'12 2 rounds, comm LWE, NIZK, Threshold-PKI	GGHR'14 2 rounds iO, NIZK, CRS	MW'16 2 rounds, comm LWE, NIZK, CRS	GS'18 / BL'18 2 rounds OT, CRS	QWW'18 2 rounds comm & online Adaptive-LWE,

<mark>e work</mark> NIZK, CRS

DKR'15 / CO D(1) rounds O, OT, <mark>RefS</mark>	GP'15 tr	GP'15 2 rounds, o(C) comm iO,DenEnc,O(C) Ref	CPV'17 O(1) rounds OT, CRS	BLPV'18 2 rounds, OT, CRS
HR'14 ounds NIZK, CRS		MW'16 2 rounds, comm LWE, NIZK, CRS	GS'18 / BL'18 2 rounds OT, CRS	QWW'18 2 rounds comm & online Adaptive-LWE,
	GLS'15 2 rounds LWE, NIZ Thresho	S, <mark>COMM</mark> ZK, Jld-PKI	ACGJ'18 3 rounds PKE, Zaps	

<mark>e work</mark> NIZK, CRS

DKR'15 / CG D(1) rounds O, OT, <mark>RefSt</mark>	P'15 GP'15 2 rounds, o r iO,DenEnc,	CPV'1 O(C) comm O(1) r O(C) Ref OT, CF	7 ounds RS	BLPV'18 2 rounds, OT, CRS
HR'14 bunds NIZK, CRS	MW'16 2 rounds, C LWE, NIZK, GLS'15 2 rounds, Comm LWE, NIZK, Threshold-PKI	GS'18 2 rou CRS OT, C A 3 P	3 / BL'18 nds RS RS CGJ'18 rounds KE, Zaps	QWW'18 2 rounds comm & online Adaptive-LWE,
	DPI 3 rc LWI PKI	R'16 ounds, o(C) <mark>comm</mark> E, NIZK, Threshold-	_	

<mark>e work</mark> NIZK, CRS

 $c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i; r)$

 $c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i; r)$

(receive c1,...,cn from everyone)

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$ $d_i \leftarrow \text{Dec}_{sk_i}(y)$

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$ $d_i \leftarrow \text{Dec}_{sk_i}(y)$ d_i

(receive d1,...,dn from everyone)

$$y \leftarrow \operatorname{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$$
$$d_i \leftarrow \operatorname{Dec}_{sk_i}(y) \qquad \qquad d_i$$

(receive d1,...,dn from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

Adaptive Secure FHE (sk, pk) <--- Gen(1^k) Enc, Dec, Eval as usual

 $\mathsf{Ideal}_{\mathcal{A},\mathcal{S}}(k)$ $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k);$ $(m_1,\ldots,m_\ell,\tau) \leftarrow \mathcal{A}_1(1^k);$ $sk \leftarrow S_2(s, m_1, \ldots, m_\ell);$ $b \leftarrow \mathcal{A}_2(\tau, pk, c_1, \ldots, c_\ell, sk);$ Return b.

Adaptive Secure FHE Impossible Katz-Thiruvengadam-Zhou

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Adaptive Secure FHE mpossible Katz-Thiruvengadam-Zhou

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, \ldots, m_\ell)$ compute f(m) as:

Adaptive Secure FHE Impossible Katz-Thiruvengadam-Zhou

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, ..., m_\ell)$ compute f(m) as: $sk \leftarrow S_2(s, m_1, \ldots, m_\ell);$

Adaptive Secure FHE mpossible Katz-Thiruvengadam-Zhou

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, \ldots, m_\ell)$ compute f(m) as:

 $sk \leftarrow S_2(s, m_1, \ldots, m_\ell);$ $f(m) \leftarrow \text{Dec}_{ck}(c')$

Adaptive Secure FHE mpossible Katz-Thiruvengadam-Zhou

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, \ldots, m_\ell)$ compute f(m) as:

 $sk \leftarrow S_2(s, m)$ $f(m) \leftarrow \text{Dec}_{sk}(c)$

$$(1,\ldots,m_\ell);$$

Size of circuit computing f is:

Impossibility of adaptive FHE

Erasures don't help

Erase sk_i.

(receive d1,...,dn from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

$c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i)$ Erase random coins.

(receive c1,...,cn from everyone)

Erase sk_i.

(receive d1,...,dn from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

$c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i)$ Erase random coins.
Framework for 2-round sub-ICI MPC

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$ $d_i \leftarrow \text{Dec}_{sk_i}(y)$ Erase sk_i.

(receive d1,...,dn from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

$c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i)$ Erase random coins.

Framework for 2-round sub-|C| MPC

$$y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$$
$$d_i \leftarrow \mathsf{Dec}_{sk_i}(y) \ \mathsf{Erase \ sk_i}.$$
$$d_i$$

(receive d1,...,dn from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

$c_i \leftarrow \text{FHE} \cdot \text{Enc}_{pk}(x_i)$ Erase random coins.

Need new ideas for adaptive+succinct

Succinct But not Adaptive

Adaptive but not Succinct CORT

6

Laconic Function Evaluation (LFE) Quach-Wee-Wichs'18 $\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa},\mathsf{params})$

Laconic Function Evaluation (LFE) Quach-Wee-Wichs'18

 $crs \leftarrow LFE.crsGen(1^{\kappa}, params)$

 $digest_C = LFE.Compress(crs, C; r)$

Laconic Function Evaluation (LFE) Quach-Wee-Wichs'18

 $\operatorname{crs} \leftarrow \operatorname{LFE.crsGen}(1^{\kappa}, \operatorname{params})$

 $digest_C = LFE.Compress(crs, C; r)$

 $\mathsf{ct} \leftarrow \mathsf{LFE}.\mathsf{Enc}(\mathsf{crs},\mathsf{digest}_C,x)$

Laconic Function Evaluation (LFE) Quach-Wee-Wichs'18

 $\operatorname{crs} \leftarrow \operatorname{LFE.crsGen}(1^{\kappa}, \operatorname{params})$

 $digest_C = LFE.Compress(crs, C; r)$

 $\mathsf{ct} \leftarrow \mathsf{LFE}.\mathsf{Enc}(\mathsf{crs}, \mathsf{digest}_C, x)$

 $y = \mathsf{LFE}.\mathsf{Dec}(\mathsf{crs}, C, r, \mathsf{ct})$

LFE Avoids Impossibility $\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa},\mathsf{params})$ $digest_C = LFE.Compress(crs, C; r)$ $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, ..., m_\ell)$ compute f(m) as:

 $sk \leftarrow S_2(s, m_1, \ldots, m_\ell);$ $f(m) \leftarrow \text{Dec}_{sk}(c')$

$$\mathsf{ct} \leftarrow \mathsf{LFE}.\mathsf{Enc}(\mathsf{crs},\mathsf{digest}_C)$$
$$y = \mathsf{LFE}.\mathsf{Dec}(\mathsf{crs},C,r,r)$$

Fully Adaptive Succinct MPC

$\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa}, f.\mathsf{params})$ Succinct

Fully Adaptive Succinct MPC $crs \leftarrow LFE.crsGen(1^{\kappa}, f.params)$

$\mathsf{digest}_f = \mathsf{LFE}.\mathsf{Compress}(\mathsf{crs}, C_f)$

Fully Adaptive Succinct MPC $crs \leftarrow LFE.crsGen(1^{\kappa}, f.params)$ Succinct

$\mathsf{digest}_f = \mathsf{LFE}.\mathsf{Compress}(\mathsf{crs}, C_f)$

 $\mathcal{F}_{sfe-abort}^{LFE.Enc}(input, sid, (crs, digest_f, x_i, r_i)).$

Fully Adaptive Succinct MPC $\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa}, f.\mathsf{params})$ Succinct

$\operatorname{digest}_{f} = \operatorname{LFE}.\operatorname{Compress}(\operatorname{crs}, C_{f})$

Benhamouda-Lin-Polychroniado-Muthu

 $\mathcal{F}_{sfe-abort}^{LFE.Enc}(input, sid, (crs, digest_f, x_i, r_i)).$

Fully Adaptive Succinct MPC $\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa}, f.\mathsf{params})$ Succinct

$\operatorname{digest}_{f} = \operatorname{LFE}.\operatorname{Compress}(\operatorname{crs}, C_{f})$

Benhamouda-Lin-Polychroniado-Muthu

 $y = LFE.Dec(crs, C_f, ct)$ Erase ri.

 $\mathcal{F}_{sfe-abort}^{LFE.Enc}(input, sid, (crs, digest_f, x_i, r_i)).$

Fully Adaptive Succinct MPC $\mathsf{crs} \leftarrow \mathsf{LFE}.\mathsf{crsGen}(1^{\kappa}, f.\mathsf{params})$ Succinct

$\operatorname{digest}_{f} = \operatorname{LFE}.\operatorname{Compress}(\operatorname{crs}, C_{f})$

Benhamouda-Lin-Polychroniado-Muthu

 $y = LFE.Dec(crs, C_f, ct)$ Erase ri. LFE is all-but-one adaptive secure.

 $\mathcal{F}_{sfe-abort}^{LFE.Enc}(input, sid, (crs, digest_f, x_i, r_i)).$

Removing erasures

BANFORD 100

 $EC(Alg) \rightarrow (Alg, Explain)$

$EC(Alg) \rightarrow (Alg, Explain)$

Poly-time overhead

$EC(Alg) \rightarrow (Alg, Explain)$

Poly-time overhead Correctness: $Alg(x) \approx Alg(x) \quad \forall x$

$EC(Alg) \rightarrow (Alg, Explain)$

Poly-time overhead Correctness: $Alg(x) \approx Alg(x) \quad \forall x$ For any input/output (x,y), **Explain** produces coins r s.t. ~Alg(x,r) = y

$EC(Alg) \rightarrow (Alg, Explain)$

Poly-time overhead Correctness: $Alg(x) \approx Alg(x) \quad \forall x$ For any input/output (x,y), **Explain** produces coins r s.t. ~Alg(x,r) = y

Corollary A.7. Assuming the existence of an indistinguishable obfuscator for P/poly and of oneway functions, both with sub-exponential security, there exists an explainability compiler with adaptive security for P/poly.

Fully-adaptive summary

Protocol	Security (erasures)	Rounds	Communication	Online Computation	Setup size	Setup type	Assumption
MW [79]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\mathrm{poly}(C ,\kappa)$	$\operatorname{poly}(\kappa,d)$	CRS	LWE, NIZK
QWW [85] ABJMS [3]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\mathrm{poly}(\kappa,d)$	CRS	ALWE LWE
CLOS [24]	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\operatorname{poly}(C ,\kappa)$	$\operatorname{poly}(\kappa)$	CRS	TDP, NCE dense-crypto
GS [50]*	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	_	_	CRH TDP, NCE dense-crypto
DKR [40] CGP [27]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
GP [49]	adaptive(no)	2	$\mathrm{poly}(\ell_{in},\ell_{out},\kappa,n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
CPV [3 0]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\operatorname{poly}(\kappa)$	CRS	NCE dense-crypto
BLPV [<mark>13</mark>]	adaptive(no)	2	$ C \cdot \mathrm{poly}(\kappa, n)$	$\operatorname{poly}(C ,\kappa)$	$\operatorname{poly}(\kappa)$	Ref	adaptive 2-round OT
This work	adaptive(yes) adaptive(no)	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$ \begin{array}{l} \operatorname{poly}(\kappa, d) \\ \operatorname{poly}(\ell_{in}, \ell_{out}, d, \kappa, n) \end{array} \end{array} $	$\begin{array}{c} \text{CRS} \\ \text{Ref} \end{array}$	ALWE ALWE, iO

Alice-optimal

Alice learns y = f(x_a,x_b)

Alice-optimal

Alice learns y = f(x_a,x_b)

Comm: |xa| + |y|

Comp: |xa| + |y|

Comp: |f|

Bob-optimal

Alice learns y = f(x_a,x_b)

Bob-optimal

Alice learns y = f(x_a,x_b) Comp: |f|

Comm: |x_b| + |y| Comp: |x_b| + |y|

Approach	Security	\mathbf{CRS}	Communication		Computation		Assumption
	(erasures)		Alice	Bob	Alice	Bob	1
GC [92]	static	_	ℓ_A	f	f	f	static OT
LOT $[32]$	static	O(1)	O(1)	f	f	f	DDH, etc.
FHE $[52]$	static	_	ℓ_A	$\ell_{\sf out}$	$\ell_A + \ell_{out}$	f	LWE
LFE $[85]$	static	O(1)	O(1)	$\ell_B + \ell_{out}$	f	$\ell_B + \ell_{out}$	ALWE
equivocal GC [<mark>30</mark>]	adaptive (no)	_	ℓ_A	f	f	f	adaptive O'
	adaptive (yes)	O(1)	O(1)	$\ell_B + \ell_{out}$	f	$\ell_B + \ell_{out}$	ALWE
This work	adaptive (no)	$\ell_B + \ell_{out}$	O(1)	$\ell_B + \ell_{out}$	f	$\ell_B + \ell_{out}$	ALWE and
	adaptive (yes)	f	f	$\ell_{out} + o(\ell_B)$	f	f	impossible

Table 2: Comparison of two-message semi-honest protocols for $f: \{0,1\}^{\ell_A} \times \{0,1\}^{\ell_B} \to \{0,1\}^{\ell_{out}}$. Alice talks first, Bob the second, and only Alice learns the output. For simplicity, multiplicative factors that are polynomial in the security parameter κ or the circuit depth d are suppressed.

At what cost lesser adaptive security?

Adaptive UC-NIZK

Groth-Ostrovsky-Sahai

Using bilinear pairings, Adaptive NIZK of size |C|*poly(k).

Succinct NIZK

Gentry-Groth-Ishai-Peikert-Sahai-Smith

NIZK crs

Prover(x,w)

sk,pk = FHE.Gen(r) v_i = FHE.Enc_{pk}(w_i) u* = FHE.Eval_{pk}(R,x,w_i,...w_i) pi = Nizk{ FHE.Dec(sk,u*) = 1 }

{v_i}, pi

Succinct + Adaptive \mathbb{N}

Homomorphic Trapdoor Function Gorbunov-Vinod-Wichs

 $(pk, sk) \leftarrow \mathsf{HTDF}.\mathsf{Gen}(1^k, 1^d)$

- $f_{\mathsf{pk},x} : \mathcal{U} \to \mathcal{V}_{\mathsf{f}}$ $\mathsf{HTDF}.\mathsf{Inv}_{\mathsf{sk},x} : \mathcal{V} \to \mathcal{U}.$

Homomorphic Trapdoor Function Gorbunov-Vinod-Wichs

 $(pk, sk) \leftarrow \mathsf{HTDF}.\mathsf{Gen}(1^k, 1^d)$ $f_{\mathsf{pk},x} : \mathcal{U} \to \mathcal{V}_{\mathsf{f}}$ $\mathsf{HTDF}.\mathsf{Inv}_{\mathsf{sk},x} : \mathcal{V} \to \mathcal{U}.$

 $\mathsf{HTDF}.\mathsf{Eval}^{\mathsf{in}}(g,(x_1,u_1),\ldots,(x_\ell,u_\ell))$

 $v^* = \mathsf{HTDF}.\mathsf{Eval}^{\mathsf{out}}(g, v_1, \ldots, v_\ell).$

Impossibility doesn't apply to HTDF

 $(pk, c_1, \ldots, c_\ell, s) \leftarrow \mathcal{S}_1(1^k)$ $c' \leftarrow \operatorname{Eval}_{\mathsf{pk}}(C_f, c_1, \dots, c_\ell)$

Given input $m = (m_1, ..., m_\ell)$ compute f(m) as: $sk \leftarrow S_2(s, m_1, ..., m_\ell);$

 $f(m) \leftarrow \text{Dec}_{sk}(c)$

$$_1,\ldots,m_\ell);$$

Size of circuit computing f is:

Succinct Adaptive NIZK

crs = HTDF.pk

Prover(x,w)

$v_i = HTDF_{pk}(w_i)$

Succinct Adaptive NIZK

crs = HTDF.pk

Prover(x,w)

- $v_i = HTDF_{pk}(w_i)$
- u* = HTDF.Eval_{pk}(R,x,w_i,...w_i)
Succinct Adaptive NIZK

crs = HTDF.pk

- Prover(x,w)
 - $v_i = HTDF_{pk}(w_i)$
- u* = HTDF.Eval_{pk}(R,x,w_i,...w_i)
- v* = HTDF.Eval_{pk}(R,x,v_i,...,v_i)

Succinct Adaptive NIZK

crs = HTDF.pk

- Prover(x,w)
 - $v_i = HTDF_{pk}(w_i)$
- u* = HTDF.Eval_{pk}(R,x,w_i,...w_i)
- v* = HTDF.Eval_{pk}(R,x,v_i,...,v_i)
- pi = Adp-Nizk{f_{pk}(u*) = v*}

Succinct Adaptive NIZK

crs = HTDF.pk

- Prover(x,w)
 - $v_i = HTDF_{pk}(w_i)$
- $u^* = HTDF.Eval_{pk}(R,x,w_i,...,w_i)$
- $v^* = HTDF.Eval_{pk}(R,x,v_i,...,v_i)$
- $pi = Adp-Nizk{f_{pk}(u^*) = v^*}$

$\{v_i\}, pi$

Adaptive NIZK

Protocol	Security (erasures)	CRS size	Proof size	Assumptions
Groth $[60]$	static	$ C \cdot \mathrm{poly}(\kappa)$	$ C \cdot \mathrm{poly}(\kappa)$	TDP
Groth $[60]$	static	$ C \cdot \operatorname{polylog}(\kappa) + \operatorname{poly}(\kappa)$	$ C \cdot \mathrm{poly}(\kappa)$	Naccache-Stern
GOS [61]	adaptive (no)	$\operatorname{poly}(\kappa)$	$ C \cdot \operatorname{poly}(\kappa)$	pairing based
Gentry [52]	adaptive (yes)	$\operatorname{poly}(\kappa)$	$ w \cdot \operatorname{poly}(\kappa, d)$	LWE, NIZK
GGIPSS $[56]$	adaptive (yes)	$\mathrm{poly}(\kappa)$	$ w + \text{poly}(\kappa, d)$	LWE, NIZK
This work	adaptive (no)	$\operatorname{poly}(\kappa)$	$ w \cdot \operatorname{poly}(\kappa, d)$	LWE, NIZK

Table 3: NIZK arguments with security parameter κ , for circuit size |C|, depth d, and witness size |w|.

size

All-but-one in 2 rounds

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$ $d_i \leftarrow \text{Dec}_{sk_i}(y + r_i)$

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

+ Adaptive NIZK for malicious security

All-but-one in 2 rounds

 $c_i \leftarrow \mathsf{TEFHE} \cdot \mathsf{Enc}_{pk}(x_i), s = [0]$

(receive c1,...,cn from everyone)

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$ $d_i \leftarrow \text{Dec}_{sk_i}(y + r_i)$

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

+ Adaptive NIZK for malicious security

All-but-one in 2 rounds

(receive c1,...,cn from everyone)

$$y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$$

$$d_i \leftarrow \mathsf{Dec}_{sk_i}(y + r_i) \qquad \qquad d_i + s_i$$

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

+ Adaptive NIZK for malicious security

$c_i \leftarrow \mathsf{TEFHE} \cdot \mathsf{Enc}_{pk}(x_i), s = [0]$

All-but-one corruptions

Protocol	Security	Rounds	Communication	Assumptions	Setup
AJLTVW [5]	static	$2 \\ 3$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold PKI CRS
MW [79]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	CRS
IPS [70]	adaptive	O(1)	$ C + \text{poly}(d, \log C , \kappa, n)$	OT-hybrid	_
GS [50]	adaptive	O(1)	$ C + \text{poly}(d, \log C , \kappa, n)$	CRH, TDP, NCE dense crypto	_
DPR [45]	adaptive	3	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold PKI
This work	adaptive	2 4	$\operatorname{poly}(\ell_{in}, \ell_{out}, d, \kappa, n)$	LWE, NIZK	threshold PKI CRS

model.

Table 4: Comparison of maliciously secure MPC for $f: (\{0,1\}^{\ell_{\text{in}}})^n \to \{0,1\}^{\ell_{\text{out}}}$ represented by a circuit C of depth d, tolerating n-1 corruptions. (*) The results in [50] only hold in the stand-alone

Honest majority results

Protocol	Security	Rounds	Communication	Assumptions	Setup
AJLTVW [5]	static	4 5	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold P CRS
GLS [59]	static	2 3	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold P CRS
ACGJ [4]	static	3	$ C \cdot \mathrm{poly}(\kappa, n)$	PKE and zaps	_
BJMS [6]	static	2 3	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, zaps, dense crypto	threshold P -
DI [41]	adaptive	O(1)	$ C \cdot \operatorname{poly}(\kappa, n)$	OWF	_
This work	adaptive	$\frac{2}{O(1)}$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold P -

Table 5: Comparison of maliciously secure MPC for $f : (\{0,1\}^{\ell_{in}})^n \to \{0,1\}^{\ell_{out}}$ represented by circuit C of depth d, in the honest-majority setting.

Open questions

Are erasures/io necessary for adaptive succinct MPC?

Protocol	Security (erasures)	Rounds	Communication	Online Computation	Setup size	Setup type	Assumption
MW [79]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa,d)$	CRS	LWE, NIZK
QWW [85] ABJMS [3]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\mathrm{poly}(\kappa,d)$	CRS	ALWE LWE
CLOS [24]	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	CRS	TDP, NCE dense-crypto
$GS \ [50]^*$	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	_	_	CRH TDP, NCE dense-crypto
DKR [40] CGP [27]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
GP [49]	adaptive(no)	2	$\mathrm{poly}(\ell_{in},\ell_{out},\kappa,n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
CPV [30]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	CRS	NCE dense-crypto
BLPV [13]	adaptive(no)	2	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	Ref	adaptive 2-round OT
This work	adaptive(yes) adaptive(no)	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\overrightarrow{\text{poly}(\kappa, d)}_{\text{poly}(\ell_{\text{in}}, \ell_{\text{out}}, d, \kappa, n)}$	$\begin{array}{c} \mathrm{CRS} \\ \mathrm{Ref} \end{array}$	ALWE ALWE, iO

Open questions

Are Ref strings/erasures necessary for fully adaptive succinct MPC?

Protocol	Security (erasures)	Rounds	Communication	Online Computation	Setup size	Setup type	Assumption
MW [79]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa,d)$	CRS	LWE, NIZK
QWW [85] ABJMS [3]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\mathrm{poly}(\kappa,d)$	CRS	ALWE LWE
CLOS [24]	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	CRS	TDP, NCE dense-crypto
GS [50]*	adaptive(no)	O(d)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	_	_	CRH TDP, NCE dense-crypto
DKR [40] CGP [27]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
GP [49]	adaptive(no)	2	$\operatorname{poly}(\ell_{in},\ell_{out},\kappa,n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(C ,\kappa)$	Ref	OWF, iO
CPV [30]	adaptive(no)	O(1)	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	CRS	NCE dense-crypto
BLPV [13]	adaptive(no)	2	$ C \cdot \mathrm{poly}(\kappa, n)$	$\mathrm{poly}(C ,\kappa)$	$\mathrm{poly}(\kappa)$	Ref	adaptive 2-round OT
This work	adaptive(yes) adaptive(no)	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	$ \begin{array}{c} \operatorname{poly}(\kappa, d) \\ \operatorname{poly}(\ell_{in}, \ell_{out}, d, \kappa, n) \end{array} \end{array} $	CRS Ref	ALWE ALWE, iO

Are erasures/io necessary for adaptive succinct MPC?

Open questions

Are Ref strings/erasures necessary for fully adaptive succinct MPC?

Are setup relaxations possible for all-but-one adaptive succinct MPC?

Protocol	Security	Rounds	Communication	Assumptions	Setup
AJLTVW [5]	static	$2 \\ 3$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold PKI CRS
MW [79]	static	2	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	CRS
IPS [70]	adaptive	O(1)	$ C + \text{poly}(d, \log C , \kappa, n)$	OT-hybrid	-
GS [50]	adaptive	O(1)	$ C + \operatorname{poly}(d, \log C , \kappa, n)$	CRH, TDP, NCE dense crypto	-
$\mathrm{DPR}\ [45]$	adaptive	3	$\mathrm{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold PKI
This work	adaptive	$\frac{2}{4}$	$\operatorname{poly}(\ell_{in},\ell_{out},d,\kappa,n)$	LWE, NIZK	threshold PKI CRS

model.

Are erasures/io necessary for adaptive succinct MPC?

Table 4: Comparison of maliciously secure MPC for $f: (\{0,1\}^{\ell_{\text{in}}})^n \to \{0,1\}^{\ell_{\text{out}}}$ represented by a circuit C of depth d, tolerating n-1 corruptions. (*) The results in [50] only hold in the stand-alone

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$

 $d_i \leftarrow \text{Dec}_{sk}(y + r_i)$

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

Damgard-Polychroniadou-Rao

 pk, sk_i

 $c_i \leftarrow \text{EquivFHE} \cdot \text{Enc}_{pk}(x_i)$

(receive c1,...,cn from everyone)

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$

 $d_i \leftarrow \text{Dec}_{sk}(y + r_i)$

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

Damgard-Polychroniadou-Rao

 pk, sk_i

 $c_i \leftarrow \text{EquivFHE} \cdot \text{Enc}_{pk}(x_i)$

(receive c1,...,cn from everyone)

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$

 $d_i \leftarrow \text{Dec}_{sk}(y + r_i)$ d_i

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

Damgard-Polychroniadou-Rao

 pk, sk_i

 $c_i \leftarrow \text{EquivFHE} \cdot \text{Enc}_{pk}(x_i)$

(receive c1,...,cn from everyone)

 $y \leftarrow \mathsf{Eval}_{pk}(f, c_1, c_2, \dots, c_n)$

 $d_i \leftarrow \text{Dec}_{sk}(y + r_i)$ d_i

(receive from everyone)

 $f(x_1, \ldots, x_n) \leftarrow \text{Combine}(d_1, \ldots, d_n)$

Damgard-Polychroniadou-Rao

$r_i \leftarrow \text{EquivFhe} \cdot \text{Enc}(0)$

Adaptive LWE

- The Challenger picks k random matrices $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ for $i \in [k]$, and sends them to \mathcal{A} .
- A adaptively picks $x_1, \ldots, x_k \in \{0, 1\}$, and sends it to the Challenger.
- The Challenger samples $\mathbf{s} \leftarrow \mathbb{Z}_q^n$ and computes for all $i \in [k]$

$$\begin{cases} \boldsymbol{b}_i = \boldsymbol{s}^T (\boldsymbol{A}_i - x_i \cdot \boldsymbol{G}) + \boldsymbol{e}_i \text{ where } \boldsymbol{e}_i \leftarrow \chi^m, & \text{if } \beta = 0. \\ \boldsymbol{b}_i \leftarrow \mathbb{Z}_q^m, & \text{if } \beta = 1. \end{cases}$$

The Challenger also picks $A_{k+1} \leftarrow \mathbb{Z}_q^{n \times m'}$ and computes $\begin{cases} \boldsymbol{b}_{k+1} = \boldsymbol{s}^T \boldsymbol{A}_{k+1} + \boldsymbol{e}_{k+1} & \text{where } \boldsymbol{e} \\ \boldsymbol{b}_{k+1} \leftarrow \mathbb{Z}_{a}^{m'}, \end{cases}$

The challenger sends A_{k+1} and $\{b_i\}_{i \in [k+1]}$ to the adversary.

$$e_{k+1} \leftarrow \chi^{m'}, \quad if \ \beta = 0.$$

 $if \ \beta = 1.$

HII)F

- $f_{pk,y}(u^*) = v^*$, where $y = g(x_1, \dots, x_\ell)$.
- random and computing $u = \mathsf{HTDF}.\mathsf{Inv}_{\mathsf{sk},x}(v)$.
- such that $f_{\mathsf{pk},0}(u) = f_{\mathsf{pk},1}(u')$ with more than a negligible probability.

• Correctness. Let $x_1, \ldots, x_\ell \in \{0, 1\}$ and $v_i = f_{pk, x_i}(u_i)$ for $i \in [\ell]$. Then, for $u^* = \mathsf{HTDF}.\mathsf{Eval}^{\mathsf{in}}(g, (x_1, u_1), \dots, (x_\ell, u_\ell)) \text{ and } v^* = \mathsf{HTDF}.\mathsf{Eval}^{\mathsf{out}}(g, v_1, \dots, v_\ell) \text{ it holds that}$

• Distributional equivalence of inversion. For a bit $x \in \{0,1\}$, the tuple (pk, x, u, v) computed as $v = f_{\mathsf{pk},x}(u)$ for a random $u \leftarrow \mathcal{U}$ is statistically close to sampling $v \leftarrow \mathcal{V}$ at

• Claw-free security. Given the public key, no efficient adversary can come up with u and u'

Full adaptive case

let $f: (\{0,1\}^{\ell_{in}})^n \to \{0,1\}^{\ell_{out}}$ be an n-party function of depth d. Then, $\mathcal{F}_{sfe-abort}^{f}$ can be UC-realized tolerating a malicious, adaptive PPT adversary by a 2- $\operatorname{poly}(\kappa, \ell_{in}, \ell_{out}, d, n).$

Theorem 4.1 (Theorem 1.1, secure-erasures version, restated). Assume the existence of LFE schemes for P/poly, of 2-round adaptively and maliciously secure OT, and of secure erasures, and

round protocol in the common random string model. The size of the common random string is $poly(\kappa, d)$, whereas the communication and online-computational complexity of the protocol are

