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Modeling Adaptive Security

Modular Composition |Universal Composition

[Canetti’00] [Canetti’01]
Sequential composition Concurrent composition
Synchronous protocols Asynchronous protocols

(Mostly) non-interactive

, Interactive environment
environment

Inputs are given statically Inputs are given dynamically
before the computation during the computation



Feasibility Result [CLOS'02]

1. Semi-honest protocol in the plain model

— Round complexity is O(d)

d= depth of the circuit

2. Semi-honest to malicious compiler in CRS model
— Round complexity blows up by constant factor

3. Malicious protocol in CRS model

— Round complexity is O(d)

Semi-honest

Malicious




Constant-Round Protocols
Constant-round adaptive MPC [CGP’15] [DKR’15] [GP"15]

— In the CRS model, also for the semi-honest case

— CRS contains obfuscated program that gets the circuit as input
= The size of the CRS grows with the size of the circuit

Constant-round in RAM model [CP’16]
— The size of the CRS grows with the size of the inputs




Protocols with Short CRS

Semi-honest setting
— No CRS (plain model)

Malicious setting

— CRS independent of the circuit
(depends only on security parameter)

Can use [CLOS'02] compiler



Outline

1. Non-Interactive NCE in UC framework
2. Protocols with round complexity independent of circuit

3. Constant-round protocols for class of functions
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Non-Committing Encryption
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Secure Message Transmission (SMT)




Secure Message Transmission (SMT)

Upon corruption
reveal m \




Statically Secure Protocol

pk « Gen(1%)

* Use public-key encryption (PKE)
* Simulation:

— Both parties are honest, encrypt 0
— One party corrupted, S learns m and encrypts m

PKE can be defined as a non-interactive
(2-round) protocol statically realizes Fqpr




Adaptive Corruptions

Using PKE simulation fails when parties start honest

ICFGN’96] defined Non-Committing Encryption (NCE)
as n-party protocol that adaptively realizes Fgqpr

IDN’00] defined strong NCE as 2-party protocol that
adaptively realizes F¢pr (in [Canetti’00])

Both definitions and constructions are interactive
Can define non-interactive NCE as 2-round protocol

ICLOS’02] provided a simpler definition



Non-Interactive NCE

Definition: A PKE scheme (Gen, Enc, Dec) with
algorithm Sim is non-interactive NCE if Vvm € {0,1}
the distributions are comp. indistinguishable

 Honest view of encryption of m

{pk' G, Te TE | pk — Gen(lk;rG); C = EnC(Pk; m, rE)}
* Simulated encryption explained for m

{pk, &, pt" o | (DK, €, 02, P2, P, PE) < Sim(1¥) }



Non-Interactive NCE (2)
IDEAL REAL

pk < Gen(rg) c « Enc(m;rg)

(k. & pl, pp, P&, pE) < Sim(1%)



Non-Interactive NCE (2)
IDEAL REAL

T pk < Gen(r;) c « Enc(m;rg)

pk
=
= <C—

m m
pk, ¢, pg, PE' pk,c, 1,18
e PR LR

(k. & pl, pp, P&, pE) < Sim(1%)



Problem

Simulation is valid if inputs are given before the
computation begins (as in modular composition)

In UC inputs are dynamically generated
Need to simulate corruptions before inputs are given
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Problem
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Problem

* Once pk, p2 (or p}) are fixed, & is committing

e (¢ won’tdecrypt to random m with noticeable prob.

pk « Gen(rg) c « Enc(m;rg)

(pk. &, 02, p, P&, i) < Sim(1¥)



Adjust the Simulation

* Simulation of ¢ only after sender activated with m

S learns m from ideal functionality (receiver corrupt)

* S encrypts c « Enc(ﬁc, m; rE)

pk « Gen(rg) c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)
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Adjust the Simulation (2)

* We show how to combine committing and
non-committing ciphertexts in simulation

r )
Thm: If non-interactive NCE exists, then Fqp,r

can be adaptively UC realized in 2 rounds
pk « Gen(rg)

c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)



Application: Oblivious Transfer (OT)

Augmented NCE:
— Oblivious sampling of public keys pk <« OGen(1%)
— Invertible sampling

Ik, | pk = 0Gen(1%; 1)} ~ {pk, 0Gen ' (pk) | pk <« Gen(1¥)}



Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co <« Enc(pky, my)

c; « Enc(pky, my)
Simulation (semi-honest)

+ S simulate using (pko, ¢, 03 ¢, P05 P60 Poe) < Sim(1%)
(pky, 61,076, P15 Pig Pig) < Sim(1%)



Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co < Enc(pky, mg)

-

¢, < Enc(pky,my) mc

Simulation (semi-honest)

+ S simulate using (pko, ¢, 03 ¢, P05 P60 Poe) < Sim(1%)

~ ~ 0 0 1 1 : K
(Pkp C1»P1,G»P1,E:P1,G»P1,E) « Sim(1%)
* Upon receiver corruption, & learns ¢, m, and provides
m
randomness p,. -



Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co <« Enc(pky, my)

c; <« Enc(pk{,my)
Simulation (semi-honest)
» S simulate using (pko, ¢, 00 ¢, PO £ PO,6» Po,g) < Sim(1%)
(ﬁ‘p 51»,03(;:,019,15: P%,G»P%,E) « Sim(1%)

 Upon receiverii rruption, & Iearnnd provides

randomness(p

[ See the paper for details ] ﬁ& output ]




Round Complexity Independent of C

YCARTGONSTOCK!
' .COIMm

"Your proposal is written with clarity and
conviction. Send it up to legal for obfuscation.”



Indistinguishability Obfuscation (iO)

0 o~

Candidate construction [GGHRSW’13]

Nice property: the depth of the obfuscation circuit is
independent of the circuit to obfuscate




Non-Committing 10

QOnA
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[ All circuits are functionally equivalent ]

Def: (i0, Sim4, Sim,) is non-committing iO for I if

 Sim, generates canonical obf. circuit C for T
ain C as i0(C)

* Givenany C €T, Sim, can exp
\
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Non-Committing iO (2)

Bad news:

If NCiO for circuits exists
= poly-time solution to circuit equivalence (co-NP)
= polynomial hierarchy collapses

Good news:

Circuit equivalence is easy for constant circuits
(no input wires)

Thm: If NCiO for constant circuits exists
then 3 adaptive SFE protocol with short CRS
whose round complexity is independent of C



Protocol Idea

1. Circuit C; : hard-wire x{,x, to C
2. Obfuscate C, = i0(Cy;1, D 17y)




Protocol Idea

),*/ ; ‘O‘i‘ Y s ,
A
xm 1. Circuit C; : hard-wire x{,x, to C X2, 12

/ 2. Obfuscate C, = i0(Cy;14 D 1) \
C

Simulation idea

1% corruption: learn x4, y and randomly sample r;
Compute C < Sim4 obfuscated constant circuit with output y



Protocol Idea

;91
i
xm 1. Circuit C; : hard-wire x{,x, to C

%
/ 2. Obfuscate C, = i0(Cy;14 D 1) \

Simulation idea

1% corruption: learn x4, y and randomly sample r;
Compute C < Sim4 obfuscated constant circuit with output y

2"d corruption: learn x,, vy and compute C; (using C, x4, x5)
Compute r « Simz(C, Cl) andsetr, =r@n



Constant Round for
One-Sided Poly-Size Domain




Constant-Round Protocol

Thm: Assume adaptively secure OT exist
* f is deterministic 2-party functionality
« x; €D c{0,1}",|D| = poly(n)

¢ x, € {0,1}"

Then f can be adaptively realized with short CRS
in constant number of rounds

Optimistic view: feasibility result

Pessimistic view: to rule out constant-round

protocols in general, consider super-poly domain
or randomized functions



Summary

1. How to simulate non-interactive NCE in UC

2. NCiO is complete for round complexity ind. of circuit
3. Constant-round protocols for class of functions
Open questions:

* Does NCiO for constant circuits exist?

 Find more functions that have constant-round
protocols with short CRS

G



