On Adaptively Secure Multiparty

Computation with a Short CRS
[SCN‘16]

Ran Cohen (Tel Aviv University)
Chris Peikert (University of Michigan)

Secure Multiparty Computation (MPC)

ldeal World/“Functionality”

Based Security

Simulation-

Based Security

Simulation-

Based Security

Simulation-

-

Simulation-Based Security

-

Simulation-Based Securit

@

Corrupting All Parties

Corrupting All Parties

Corrupting All Parties

Modeling Adaptive Security

Modular Composition |Universal Composition

[Canetti’00] [Canetti’01]
Sequential composition Concurrent composition
Synchronous protocols Asynchronous protocols

(Mostly) non-interactive

, Interactive environment
environment

Inputs are given statically Inputs are given dynamically
before the computation during the computation

Feasibility Result [CLOS'02]

1. Semi-honest protocol in the plain model

— Round complexity is O(d)

d= depth of the circuit

2. Semi-honest to malicious compiler in CRS model
— Round complexity blows up by constant factor

3. Malicious protocol in CRS model

— Round complexity is O(d)

Semi-honest

Malicious

Constant-Round Protocols
Constant-round adaptive MPC [CGP’15] [DKR’15] [GP"15]

— In the CRS model, also for the semi-honest case

— CRS contains obfuscated program that gets the circuit as input
= The size of the CRS grows with the size of the circuit

Constant-round in RAM model [CP’16]
— The size of the CRS grows with the size of the inputs

Protocols with Short CRS

Semi-honest setting
— No CRS (plain model)

Malicious setting

— CRS independent of the circuit
(depends only on security parameter)

Can use [CLOS'02] compiler

Outline

1. Non-Interactive NCE in UC framework
2. Protocols with round complexity independent of circuit

3. Constant-round protocols for class of functions

Non-Interactive
Non-Committing Encryption

Non-Interactive
Non-Committing Encryption

Secure Message Transmission (SMT)

Secure Message Transmission (SMT)

Upon corruption
reveal m \

Statically Secure Protocol

pk « Gen(1%)

* Use public-key encryption (PKE)
* Simulation:

— Both parties are honest, encrypt 0
— One party corrupted, S learns m and encrypts m

PKE can be defined as a non-interactive
(2-round) protocol statically realizes Fqpr

Adaptive Corruptions

Using PKE simulation fails when parties start honest

ICFGN’96] defined Non-Committing Encryption (NCE)
as n-party protocol that adaptively realizes Fgqpr

IDN’00] defined strong NCE as 2-party protocol that
adaptively realizes F¢pr (in [Canetti’00])

Both definitions and constructions are interactive
Can define non-interactive NCE as 2-round protocol

ICLOS’02] provided a simpler definition

Non-Interactive NCE

Definition: A PKE scheme (Gen, Enc, Dec) with
algorithm Sim is non-interactive NCE if Vvm € {0,1}
the distributions are comp. indistinguishable

 Honest view of encryption of m

{pk' G, Te TE | pk — Gen(lk;rG); C = EnC(Pk; m, rE)}
* Simulated encryption explained for m

{pk, &, pt" o | (DK, €, 02, P2, P, PE) < Sim(1¥) }

Non-Interactive NCE (2)
IDEAL REAL

pk < Gen(rg) c « Enc(m;rg)

(k. & pl, pp, P&, pE) < Sim(1%)

Non-Interactive NCE (2)
IDEAL REAL

T pk < Gen(r;) c « Enc(m;rg)

pk
=
= <C—

m m
pk, ¢, pg, PE' pk,c, 1,18
e PR LR

(k. & pl, pp, P&, pE) < Sim(1%)

Problem

Simulation is valid if inputs are given before the
computation begins (as in modular composition)

In UC inputs are dynamically generated
Need to simulate corruptions before inputs are given

Problem

Simulation is valid if inputs are given before the
computation begins (as in modular composition)

In UC inputs are dynamically generated
Need to simulate corruptions before inputs are given

pk « Gen(rg)

Problem

* Simulation is valid if inputs are given before the
computation begins (as in modular composition)

* In UC inputs are dynamically generated
* Need to simulate corruptions before inputs are given

pk « Gen(rg)

(pk, & p2, p2, pt, pE) < Sim(1%)

Problem

* Simulation is valid if inputs are given before the
computation begins (as in modular composition)

* In UC inputs are dynamically generated
* Need to simulate corruptions before inputs are given

pk « Gen(rg)

(pk, ¢ pe, p. pé, pE) < Sim(1%)

Problem

* Simulation is valid if inputs are given before the
computation begins (as in modular composition)

* In UC inputs are dynamically generated
* Need to simulate corruptions before inputs are given

pk « Gen(rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Problem

* Simulation is valid if inputs are given before the
computation begins (as in modular composition)

* In UC inputs are dynamically generated
* Need to simulate corruptions before inputs are given

pk « Gen(rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Problem

* Simulation is valid if inputs are given before the
computation begins (as in modular composition)

* In UC inputs are dynamically generated
* Need to simulate corruptions before inputs are given

pk « Gen(rg) c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Problem

* Once pk, p2 (or p}) are fixed, & is committing

e (¢ won’tdecrypt to random m with noticeable prob.

pk « Gen(rg) c « Enc(m;rg)

(pk. &, 02, p, P&, i) < Sim(1¥)

Adjust the Simulation

* Simulation of ¢ only after sender activated with m

S learns m from ideal functionality (receiver corrupt)

* S encrypts c « Enc(ﬁc, m; rE)

pk « Gen(rg) c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Adjust the Simulation

* Simulation of ¢ only after sender activated with m

S learns m from ideal functionality (receiver corrupt)

* S encrypts c « Enc(ﬁc, m; rE)

pk « Gen(rg) c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Adjust the Simulation (2)

* We show how to combine committing and
non-committing ciphertexts in simulation

r)
Thm: If non-interactive NCE exists, then Fqp,r

can be adaptively UC realized in 2 rounds
pk « Gen(rg)

c « Enc(m;rg)

(P, &, 08, pp. P&, pE) < Sim(1%)

Application: Oblivious Transfer (OT)

Augmented NCE:
— Oblivious sampling of public keys pk <« OGen(1%)
— Invertible sampling

Ik, | pk = 0Gen(1%; 1)} ~ {pk, 0Gen ' (pk) | pk <« Gen(1¥)}

Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co <« Enc(pky, my)

c; « Enc(pky, my)
Simulation (semi-honest)

+ S simulate using (pko, ¢, 03 ¢, P05 P60 Poe) < Sim(1%)
(pky, 61,076, P15 Pig Pig) < Sim(1%)

Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co < Enc(pky, mg)

-

¢, < Enc(pky,my) mc

Simulation (semi-honest)

+ S simulate using (pko, ¢, 03 ¢, P05 P60 Poe) < Sim(1%)

~ ~ 0 0 1 1 : K
(Pkp C1»P1,G»P1,E:P1,G»P1,E) « Sim(1%)
* Upon receiver corruption, & learns ¢, m, and provides
m
randomness p,. -

Adaptive OT [CLOS'02]

pk. < Gen(1%)

pki_. < OGen(1%)

co <« Enc(pky, my)

c; <« Enc(pk{,my)
Simulation (semi-honest)
» S simulate using (pko, ¢, 00 ¢, PO £ PO,6» Po,g) < Sim(1%)
(ﬁ‘p 51»,03(;:,019,15: P%,G»P%,E) « Sim(1%)

 Upon receiverii rruption, & Iearnnd provides

randomness(p

[See the paper for details] ﬁ& output]

Round Complexity Independent of C

YCARTGONSTOCK!
' .COIMm

"Your proposal is written with clarity and
conviction. Send it up to legal for obfuscation.”

Indistinguishability Obfuscation (iO)

0 o~

Candidate construction [GGHRSW’13]

Nice property: the depth of the obfuscation circuit is
independent of the circuit to obfuscate

Non-Committing 10

QOnA

7

[All circuits are functionally equivalent]

Def: (i0, Sim4, Sim,) is non-committing iO for I if

 Sim, generates canonical obf. circuit C for T
ain C as i0(C)

* Givenany C €T, Sim, can exp
\

r N
O |- DI
- /

- /

r

Non-Committing iO (2)

Bad news:

If NCiO for circuits exists
= poly-time solution to circuit equivalence (co-NP)
= polynomial hierarchy collapses

Good news:

Circuit equivalence is easy for constant circuits
(no input wires)

Thm: If NCiO for constant circuits exists
then 3 adaptive SFE protocol with short CRS
whose round complexity is independent of C

Protocol Idea

1. Circuit C; : hard-wire x{,x, to C
2. Obfuscate C, = i0(Cy;1, D 17y)

Protocol Idea

),*/ ; ‘O‘i‘ Y s ,
A
xm 1. Circuit C; : hard-wire x{,x, to C X2, 12

/ 2. Obfuscate C, = i0(Cy;14 D 1) \
C

Simulation idea

1% corruption: learn x4, y and randomly sample r;
Compute C < Sim4 obfuscated constant circuit with output y

Protocol Idea

;91
i
xm 1. Circuit C; : hard-wire x{,x, to C

%
/ 2. Obfuscate C, = i0(Cy;14 D 1) \

Simulation idea

1% corruption: learn x4, y and randomly sample r;
Compute C < Sim4 obfuscated constant circuit with output y

2"d corruption: learn x,, vy and compute C; (using C, x4, x5)
Compute r « Simz(C, Cl) andsetr, =r@n

Constant Round for
One-Sided Poly-Size Domain

Constant-Round Protocol

Thm: Assume adaptively secure OT exist
* f is deterministic 2-party functionality
« x; €D c{0,1}",|D| = poly(n)

¢ x, € {0,1}"

Then f can be adaptively realized with short CRS
in constant number of rounds

Optimistic view: feasibility result

Pessimistic view: to rule out constant-round

protocols in general, consider super-poly domain
or randomized functions

Summary

1. How to simulate non-interactive NCE in UC

2. NCiO is complete for round complexity ind. of circuit
3. Constant-round protocols for class of functions
Open questions:

* Does NCiO for constant circuits exist?

 Find more functions that have constant-round
protocols with short CRS

G

