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Notions of security

* Full security: no abort




Notions of security

* Full security: no abort

e Fairness: abort before obtaining output
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Notions of security

* Full security: no abort
e Fairness: abort before obtaining output
e Security with abort: abort after obtaining output
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Communication Model




Communication model

* Point-to-point (P2P) model

— Secure channels

— Authenticated channels

e Broadcast model
— Additional broadcast channel



Settings

n23,t>n/3 o s otcomuptedpares
Full security in the P2P model (without setup)
Static malicious adversaries
Stand-alone security
1) Honest majority:

— All-powerful adversaries (statistical security)

— Secure channels

2) No honest majority:

— Efficient adversaries (computational security)
— Authenticated channels




Known results (w/o setup)

Broadcast Point-to-Point

Qj t<n/2 Q_.t<n/3

— Vf full security [RB’89, CDDHR’99] — Vf full security [BGW’88, CCD’88]
®:>n @:>n3

— 3f without fairness [Cleve’86] — 3f without full security [PSL'80,CL'14]
L t<n() ot <n/2

— Vf security with abort [GMW’87] — Vf fairness [FGMR’02]

— 3f with full security [GK’09] Q t < n (%)

— Full security & fairness [CL'14] _ Vf security with abort [FGHHS'02]

— 3f with full security [FGHHS'02 ,CL'14]
(%) assuming OT




Question #1

In the P2P model, forn > 3,t > n/3, and w/o setup,
which functions can be computed with full security?

t<n/2 t<n
Byzantine agreement x x
Three-party majority x x
Weak Byzantine agreement « J
Boolean OR g/ g/
Boolean XOR ? x
max(xq, ..., X, ) over Z ? ?

* Openevenforn =3andt =1



Our result #1 - full security

Def: f is k-dominated, if 3 efficiently computable y*, s.t.
every k inputs can determine the output y*

Example: Boolean OR is 1-dominated (w ];(9(631] -.-.-.,9363) J

Theorem 1: Let n = 3 and f symmetric n-party functionality
1) Honest majority (n/3 <t <n/2):

f has t-full-security <:> fis (n — 2t)-dominated
(in P2P model)
2) No honest majority (n/2 <t < n):
4 I
. :> 1) f is 1-dominated
Lf has t-full-security } 2) f has t-full-security

(in P2P model) OWF - (with broadcast)

/




Consequences (1)

t<n/2
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Consequences (2)

Consider the 2-dominated function

f(xq4,...,xs) =1 < 3 at least two non-zero inputs

* Honest majority (t = 2) =
f has full security (n — 2t = 6 — 4 = 2) &)

* No honest majority (t = 3)
f does not have full security (not 1-dominated)




Our result #2 - coin flipping (CF)
Theorem 1 = No fully secure CF witht = n/3 .

Def: a-bias coin flipping. All honest parties agree on
common bit that is a-close to uniform

Broadcast model: [Cleve’86] ‘o
311 /p-bias CF secure Vt < n, for every poly p =
Theorem 2: letn = 3 andt = n/3 .
No a-bias CF in P2P model, forany a < 1/2

Corollary:
Non-trivial 3-party CF requires broadcast



Main Lemma (lower bound)

Def: 1t is t-consistent, if all honest parties output
same value, facing < t corrupted parties

‘n—2t ;t<n/2

. > —
Lemma: Lett > n/3ands 11 t>n/2

Let 7t be t-consistent in the P2P model

Then 3 PPT A that by controlling (any) subset I of
S parties, can:

1) Announce a value y;

2) Force all honest parties to output y;

* Holds also for expected poly-time protocols



The Attack

-Merritt '85]

Lynch
“Hexagon argument”

ischer

Variant of [F

R
{2

B, B NS AN
P .. & vﬂvm.vw“‘

- >
oAl




Main Lemma (n = 3,t = 1)

Lemma: Let  be 1-consistent 3-party protocol in

the P2P model

Then 3 PPT A that by controlling any party P; can:
1) Announce value y;

2) Force all honest parties to output y;



Proof

Let m = (A4, B, C) be a 3-party, g-round,
1-consistent protocol in the P2P model

Assume (for simplicity) that parties are input-less,
and use Kk random coins




The ring system S
S = (4B CY, .., A9,B9,C?) — g copies of

S(r) denotes the execution of S on

r=(ri,r5,1% ., r, 15, 11) € ({0,1}%)34

ﬁAq

q
q—1

B4 c1 Al B!




Claim 1: S(7) is monochromatic
View of (41, BY) in S(1), forr « ({0,1}%)39, is view of (4, B) in
a random interaction of (4, B, C*) with some C*

1T is 1-consistent = A' and B! output same value
= each pair of adjacent parties output the same value




Claim 1: S(r) is monochromatic

View of (4%, BY) in S(r), forr « ({0,1}*)34, is view of (4, B) in
a random interaction of (4, B, C*) with some C".

1T is 1-consistent = A and B* output same value.
= each pair of adjacent parties output the same value.




Claim 2: A', B! messages don’t reach P* = A9/2

Proof:
* 11 ends after at most g rounds

 The distance between (4%, B') and P* is ~37q > q

2000000000




Attack (step 1): output y~*

1. Sample r « ({0,1}%)34
2. Output y* — the output of P* in S(7)




Attack (step 2): force (4, B) output

Run S(7) while (4, B) take the role of (4!, BY)
(without knowing that).

i




Attack (step 2): force (4, B) output

Run S(7) while (4, B) take the role of (4!, BY)
(without knowing that).




Claim 3: S is monochromatic

Proof:

The execution of S induced by the attack on (honest)
(A, B), is that of S(7) for ' « ({0,1}¥)34

B4~
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Claim 4: A and B output y”*

Proof:

The messages of (4, B) do not reach P* (too far apart)

= P* has the same view in S(r) and S(") (outputs y*)
(4, B) output the same value as P* (S monochromatic) m

pa-1

BZ
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Summary & open question

We considered t-consistent n-party protocols in
the P2P model (forn = 3 and t = n/3)

1. Characterization of symmetric functionalities
with full security

2. Coin flipping requires broadcast

Open question: Non-symmetric functionalities?

ThankGou,



