On the Round Complexity of Randomized Byzantine Agreement

Ran Cohen, Iftach Haitner, **Nikolaos Makriyannis**, Matan Orland & Alex Samorodnitsky

DISC'2019

Definition of Byzantine Agreement (BA)

[Pease-Lamport-Shostak'80, Lamport-Shostak-Pease'82]

- Each P_i holds input $v_i \in \{0,1\}$.
- Agreement: All honest parties output the same bit.
- Validity: $\exists i$ s.t. (honest) P_i outputs v_i .

- Fault-tolerant distributed systems
- Cryptography (Multi-Party Computation)
- Blockchain (Cryptocurrencies)

Sender sends a message to many receivers s.t. all receivers agree on the message

Model Synchronous, Message-Passing v_i

Problem Statement:

What is the minimal number of (expected) rounds needed to reach

Byzantine Agreement?

When facing *t*-out-of-*n* corrupted players.

Previous Results

Synchronous, Message-Passing

Deterministic protocols:

- #Rounds = t + 1 [Lamport-Shostak-Pease'82, Dolev-Strong'83, Garay-Moses'93]
- #Rounds $\geq t + 1$ [Fischer-Lynch'82, Dolev-Strong'83]

t = security

threshold

Randomized protocols:

- Constant-round impossibility [Chor-Merritt-Shmoys'85, Karlin-Yao'84]
- Expected constant-round BA

[BenOr'83, Rabin'83, Feldman-Micali'88, Katz-Koo'06, Micali'17] [Micali-Vaikuntanathan'17, Abraham-Devadas-Dolev-Nayak-Ren'18] [Abraham-Chan-Dolev-Nayak-Pass-Ren-Shi'19]

Our Work

We prove bounds on the halting probability after 1 and 2 rounds.

Micali's BA (ITCS'17) halts after 3 rounds with constant probability.

We Show

For every BA resilient against t = n/3 corruptions

Halting Probability in round 1	Halting Probability in round 2
$o(1) \approx 0$	$1-\Theta(1)\ll 1$

Under plausible combinatorial assumption:

Halting Probability in round 2 $o(1) \approx 0$

Outline

- 1. Adversarial Model Local Consistent Adversaries
- 2. Our Attack(s)
 - i. 1st round halting
 - ii. 2nd round halting

Adversarial Model

Adversarial Model

Locally Consistent Adversaries

- Efficient (PPTM) limited to the following adversarial behavior
 - i. Adversary corrupts a subset of parties
 - ii. Corrupted parties may send conflicting inputs to honest parties
 - iii. Adversary may abort (some corrupted parties) at any given round

Adversary may not

- Manipulate randomness
- Lie about (honest) incoming messages

Adversarial Model

Locally Consistent Adversaries

- Efficient (PPTM) limited to the following adversarial behavior
 - i. Adversary corrupts a subset of parties
 - ii. Corrupted parties may send conflicting inputs to honest parties
 - iii. Adversary may abort (some corrupted parties) at any given round
- We show lower bounds via locally consistent attacks

• On the positive (protocols) side

Additional Contribution (See Full Version of the Paper) Locally consistent security \implies Malicious security

Our Attack 1st Round Halting

Lemma (Folklore) In an honest execution: If $\#\{inputs = z\} \ge 2n/3$ then output = z

Input *

Input 1

Lemma (Folklore) In an honest execution: If $\#\{inputs = z\} \ge 2n/3$ then output = z

Theorem

BA resilient against n/3 corruptions never halts at the 1st round.

Our Attack 2nd Round Halting

Input *

Input 1

Input 1

Limits of Attack

Our Attack 2nd Round Halting with Abort

Attack with Aborting Parties

We add another dimension to our attack by instructing (certain) corrupted parties to **abort prematurely**

ATTACK w/ Aborting Parties

- Follow previous attack.
- At round **2**:

Choose a random set S and **abort** it for a **subset** of honest parties.

Attack with Aborting Parties

Attack with Aborting Parties

Theorem

Statement

Theorem Statement

Conjecture 1.5. For any $\sigma, \lambda > 0$ there exists $\delta > 0$ such that the following holds for large enough $n \in \mathbb{N}$: let Σ be a finite alphabet, and let $\mathcal{A}_0, \mathcal{A}_1 \subseteq {\Sigma \cup \bot}^n$ be two sets such that for both $b \in {0,1}$:

$$\Pr_{\mathcal{S}\leftarrow \mathbf{D}_{n,\sigma}}\left[\Pr_{r\leftarrow\Sigma^n}\left[r,\bot_{\mathcal{S}}(r)\in\mathcal{A}_b\right]\geq\lambda\right]\geq 1-\delta.$$

Then,

THEOREM

$$\Pr_{\substack{\mathcal{S} \leftarrow \mathbf{D}_{n,\sigma} \\ r \leftarrow \Sigma^n}} \left[\forall b \in \{0,1\} \colon \{r, \bot_{\mathcal{S}}(r)\} \cap \mathcal{A}_b \neq \emptyset \right] \ge \delta.$$

We know how to handle limited (and unrealistic) cases without the conjecture.

Conj. 1.5. \Rightarrow *BA protocols* halt after two rounds with probability 0.

Public Randomness (PR) Protocols

Analogues of (inputless) public coin protocols

Public Randomness Protocols:

The ℓ -th round message from P_i to P_k is a pair $(m_{i,k}^{(\ell)}, r_i^{(\ell)})$ s.t.

 $m_{i,k}^{(\ell)}$ is a deterministic function of P_i 's view.

• Such protocols are typically

✓ Conceptually Simple(r)

✓ Highly Efficient (inputless regime).

• All known BA protocols can be cast as PR protocols.

Randomness is sent in the clear

Summary

For every BA resilient against t = n/3 corruptions

Halting Probability in round 1	Halting Probability in round 2
$o(1) \approx 0$	$1-\Theta(1)\ll 1$

Under plausible combinatorial assumption:

Halting Probability in round 2 $o(1) \approx 0$

FIN