Prediction of Functional Regulatory SNPs in Monogenic

and Complex Disease

Human Mutation

OFFICIAL JOURNAL

HGVS

HUMAN GENOME
VARIATION SOCIETY

www.hgvs.org

Yigiang Zhao,"2 Wyatt T. Clark,® Matthew Mort,* David N. Cooper,* Predrag Radivojac,® and Sean D. Mooney"*

"Buck Institute for Research on Aging, Novato, California; 2Department of Medical and Molecular Genetics, Indiana University School of

Medicine, Indianapolis, Indiana; °School of Informatics and Computing, Indiana University, Bloomington, Indiana; *Institute of Medical Genetics,

School of Medicine, Cardiff University, Cardiff, United Kingdom

Communicated by Muno Vihinen
Received 18 January 2011; accepted revised manuscript 15 June 2011.

Published online 26 July 2011 in Wiley Online Library (www.wiley.com/humanmutation).DOI: 10.1002/humu.21559

ABSTRACT: Next-generation sequencing (NGS) technolo-
gies are yielding ever higher volumes of human genome
sequence data. Given this large amount of data, it has be-
come both a possibility and a priority to determine how
disease-causing single nucleotide polymorphisms (SNPs)
detected within gene regulatory regions (rSNPs) exert
their effects on gene expression. Recently, several stud-
ies have explored whether disease-causing polymorphisms
have attributes that can distinguish them from those that
are neutral, attaining moderate success at discriminat-
ing between functional and putatively neutral regulatory
SNPs. Here, we have extended this work by assessing the
utility of both SNP-based features (those associated only
with the polymorphism site and the surrounding DNA)
and gene-based features (those derived from the associ-
ated gene in whose regulatory region the SNP lies) in
the identification of functional regulatory polymorphisms
involved in either monogenic or complex disease. Gene-
based features were found to be capable of both augment-
ing and enhancing the utility of SNP-based features in the
prediction of known regulatory mutations. Adopting this
approach, we achieved an AUC of 0.903 for predicting
regulatory SNPs. Finally, our tool predicted 225 new reg-
ulatory SNPs with a high degree of confidence, with 105
of the 225 falling into linkage disequilibrium blocks of re-
ported disease-associated genome-wide association studies
SNPs.
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Introduction

Single nucleotide polymorphisms (SNPs) occur approximately
every 300 base pairs along human chromosomes and represent the

Additional Supporting Information may be found in the online version of this article.

*Correspondence to: Sean D. Mooney, Buck Institute for Research on Aging, 8001
Redwood Boulevard, Novato, CA 94945, E-mail: smooney@buckinstitute.org

Contract grant sponsor: National Library of Medicine; Contract grant numbers:
K22LM009135 (to S.D.M) and R01LMO009722 (to S.D.M.). Contract grant sponsor: INGEN.

most common form of sequence variation [International HapMap
Consortium, 2003]. Although it is likely that most SNPs lack func-
tional significance, they are widely used as genetic markers through-
out the genome [Kruglyak, 1997; Sachidanandam etal., 2001]. How-
ever, some SNPs, depending upon their location, can influence gene
transcription, transcript processing, or protein synthesis, and a pro-
portion of these may in turn be associated with human genetic
disease [Buckland et al., 2004; Campino et al., 2008; Pastinen and
Hudson, 2004; Prokunina and Alarcon-Riquelme, 2004; Savinkova
et al., 2009]. Considerable efforts have been made to identify and
characterize functional SNPs in human genes [Buckland, 2006;
Chorley et al., 2008; Khan et al., 2006; Mottagui-Tabar et al., 2005;
Pampin and Rodriguez-Rey, 2007]. However, given the large number
of SNPs that exist in the human genome, it is currently impracti-
cal to investigate each of them individually in vitro. Computational
approaches to the prediction of functional SNPs, therefore, provide
an alternative means to address this problem [Mooney, 2005].
SNPs located within promoter regions can exert a functional ef-
fect by altering the regulation of gene transcription. For this reason,
a number of promoter SNP prediction studies have focused exclu-
sively on transcription factor binding sites (TFBS) [Andersen et al.,
2008; Lapidot et al., 2008; Ponomarenko et al., 2002]. However,
such studies are limited by our current rather incomplete knowl-
edge of all existing TFBS. With the aim of improving our ability
to predict functional SNPs, Montgomery et al. [2007] evaluated a
number of allele- and sequence-based features for the prediction
of functional regulatory polymorphisms. The most important fea-
tures were found to be the distance from the transcriptional start
site (TSS), the presence of a CpG island, and local sequence repeti-
tiveness. Torkamani and Schork [2008] have reported that the inte-
gration of Encyclopedia of DNA Elements (ENCODE) annotations
improved the prediction of functional polymorphisms. Although it
is a challenging task, and despite the need to address several out-
standing methodological considerations pertaining to the analytical
approach (e.g., biased features, imbalanced training sets, and the
means of evaluation), these initial results suggested that, with an
appropriate feature set and machine learning method, functional
regulatory polymorphisms ought to be inherently predictable.
Here, we have attempted to distinguish functional SNPs from
likely neutral SNPs within putative transcription regulatory regions
(defined here as 2,500 bp upstream of the TSS and 500 bp down-
stream of the TSS) of human genes. To this end, we employed a
supervised machine learning method using a set of 445 known func-
tional regulatory SNPs from the Human Gene Mutation Database
(HGMD) together with a set of putatively neutral SNPs. By in-
corporating a series of novel features from each associated gene,
we were able to demonstrate that functional regulatory SNPs are
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indeed predictable (our method achieved an area under the receiver
operating characteristic [ROC] curve [AUC] value of 0.903). Inter-
estingly, features from the associated gene (as opposed to features
pertaining solely to the SNP) were found to be highly predictive
in this study. These findings promise to guide the development of
better training data, a prerequisite not only for the improvement of
our ability to predict disease-related polymorphisms but also, more
fundamentally, for the prediction of those genes likely to play a role
in genetic disease.

Materials and Methods

Data Preparation

RefSeq sequences [Pruitt et al., 2007], which mapped ambigu-
ously to multiple genomic positions, were excluded from the analy-
sis. This yielded a set 0£ 20,826 nonredundant gene transcripts. Simi-
larly, a set 0f 16,872,794 unambiguously mapped SNPs, derived from
dbSNP version 130 [http://www.ncbi.nlm.nih.gov/SNP/index.html;
Sherry et al.,, 2001], was employed in this analysis.

In order to evaluate features (attributes) that had the poten-
tial to be useful in identifying polymorphic sites responsible for
altered gene expression, two datasets were collected. First, bona
fide annotated functional SNPs were retrieved from the HGMD
[http://www.hgmd.org; Stenson et al., 2009] as a “positive set.” Sec-
ond, a dataset of 241,465 SNPs (not present in the positive set of
functional SNPs) was obtained from dbSNP as a “negative con-
trol dataset.” While a large proportion of this negative control SNP
dataset is likely to be neutral, some of the SNPs could nevertheless
exert a functional effect (hence we refer hereafter to this dataset as
being “putatively neutral”). Both datasets were filtered to ensure that
they mapped uniquely to the UCSC Human Genome Database Hg18
[Karolchik et al., 2008]. RefSeq transcripts in the UCSC database
were used to define the locations of the SNPs. All SNPs in both
the positive and negative sets were filtered so as to include only
those promoter polymorphisms with the potential to directly im-
pact upon the expression of their associated transcripts; hence, we
confined our analysis to the putative transcriptional regulatory re-
gion of each gene (defined for the purposes of this study as the
region spanning 2,500 bp upstream and 500 bp downstream of the
corresponding major TSS). A 3,000-bp region was selected in or-
der to allow direct comparison with previously published methods
[Andersen et al., 2008; Kim et al., 2008; Montgomery et al., 2007].

For each HGMD functional SNP, +30-bp flanking sequences
were obtained. The flanking sequences were aligned against the
RefSNP sequences using BLAST. Where the flanking £15-bp se-
quences (deemed sufficient for the human genome) around the
SNP positions were identical between the HGMD functional SNP
and RefSNP, they were matched with the appropriate RefSNP id.
By comparing the recorded genomic positions between dbSNP and
the RefSeq sequences, a total of 445 functional SNPs and 2,41,465
background SNPs were obtained from putative transcriptional reg-
ulatory regions.

Disease-associated SNPs from published genome-wide associa-
tion studies (GWAS) were downloaded from http://genome.gov/
gwastudies/. Caucasians of European descent genotype data for
nonredundant SNP assays from phases 1, 2, and 3 of the HapMap
project were downloaded from HapMap website (http://hapmap
.ncbinlm.nih.gov/). In order to determine linkage disequilibrium
(LD) blocks, genotype information from relatives (i.e., children)
was excluded from the original data. Haploview software was used
to calculate the LD blocks with default settings.
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Features

Features used in this study were split into two distinct sets: those
directly relating to the SNP under consideration (SNP based) and
those pertaining to the gene in whose transcription regulatory region
the SNP lies (gene based). SNP-based features included SNP distance
to TSS, flanking nucleotide GC-content, flanking nucleotide conser-
vation, SNP diversity, derived SNP frequency, and SNP occurrence
within known functional elements. Gene-based features were the
same for each SNP lying within the regulatory region of a given
gene. Gene-based features were further split into two sets: those
pertaining to the function of the associated gene (function based)
and those relating to the mRNA expression of the associated gene
(expression based). For function-based features, a set of prediction
scores for GO biological process (1,788) and molecular function
(344) terms was generated using the FANN-GO (functional an-
notator uses multi-output artificial neural networks) predictor of
protein GO term annotations [Clark et al., 2011]. The use of pre-
dicted functions instead of experimentally determined functional
annotations allowed us to obtain values for all data points and a set
of features that is less likely to be biased toward genes frequently
studied by biomedical researchers (which could result in an over-
estimation of performance accuracy). We also included interaction
complexity (node degree in a protein—protein interaction network),
which is derived from high-throughput experiments in this subset of
function features. Expression-based features were generated using
microarray platforms GPL1074 and GPL96 [Su et al., 2004]. A set
of 158 features was generated that represent the normalized expres-
sion levels of each gene across 79 tissues. Features pertaining to the
mean, standard deviation, coefficient of variation, and maximum
and minimum expression level of each gene across tissues were also
generated. Finally, we generated two codon-usage features that were
not classified as being either expression based or function based (see
Table 1 for the complete list of SNP-based features and how these
features were constructed).

Classification Method and Identification of Optimum
Predictive Features

We evaluated several different machine learning methods includ-
ing support vector machines (SVMs), Bayesian networks, and de-
cision trees. Decision trees were selected on the basis of their in-
terpretability, ease of use, and comparable performance with other
methods. Evaluation of our model was performed using 10-fold
cross-validation. The dataset was initially randomly split into 10
nonoverlapping partitions, each containing 10% positive and 10%
negative data points. In each step i € {1, 2, .. ., 10} of the 10 cross-
validation steps, the ith fold was used as the test set whereas the
remaining data were used to train classification models.

Predictors for each fold comprised an ensemble of 1,000 trees.
For each tree, training data were balanced by randomly sampling
negative data points in order to have a balanced number of positive
and negative data points in the training set. Missing values were
replaced with the mean values from the respective feature with the
null hypothesis (i.e., assuming no difference between the functional
SNPs and the putatively neutral SNPs). Each testing data point’s final
prediction score was an average of all scores’ output by the ensemble
of 1,000 decision trees. After completing the cross-validation steps,
each data point contained exactly one predicted and one class value
and the performance accuracy was estimated.

Classification performance was measured by calculating the Area
Under Receiver Operator Characteristics curves (AUC). AUC pro-
vides a measure of the true positive rate (sensitivity) as a function of



Table 1. Features Investigated in This Study

Feature

Type

Source

Description

Individual tissue expression
feature set

Mean expression level

Minimum expression level

Maximum expression level

Coefficient of variation for
expression level

Standard deviation for expression
level

Frequency of optimal codons

Effective number of codons
FANN-GO feature set

Protein—protein interaction
complexity
Distance to transcription start site

GC content

Sequence conservation

Derived allele frequency

SNP diversity
In CpG island

In enhancer

In insulator

In RNA polymerase II-enriched
region

In nuclease hypersensitive site

In conserved noncoding sequences
In transcription factor binding site

Gene based

Gene based
Gene based
Gene based
Gene based
Gene based

Gene based

Gene based
Gene based

Gene based

SNP based

SNP based

SNP based

SNP based

SNP based
SNP based

SNP based
SNP based
SNP based
SNP based

SNP based
SNP based

http://wombat.gnf.org/index.html

Same as above)
Same as above)
Same as above)
Same as above)

(
(
(
(

(Same as above)

ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot

(As above)
Clark et al., 2011

http://www.reactome.org/download/index.html;
http://www.thebiogrid.org/downloads.php
http://genome.ucsc.edu/cgi-bin/hgTables

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/
phastCons28way

http://haplotter.uchicago.edu;
http://ftp.hapmap.org/genotypes/latest_ncbi_build36/
forward/non-redundant

(Same as above)
http://genome.ucsc.edu/cgi-bin/hgTables

http://www.dcode.org/EI
http://insulatordb.utmem.edu

http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.html

http://research.nhgri.nih.gov/DNaseHS/May2005;
http://genome.ucsc.edu/cgi-bin/hgTables

http://www.bx.psu.edu/~ross/dataset/DatasetHome.html

http://genome.ucsc.edu/cgi-bin/hgTables

158 expression data for 79 different types of human
tissue/cell were retrieved from the GPL96 and
GPL1074 datasets. Expression values from all
probe sets corresponding to the same gene were
averaged. The raw expression values were log2
transformed.

Same as above)

Same as above)

Same as above)

Same as above)

(
(
(
(

(Same as above)

Frequency of optimal codons (Fop) the ratio of
optimal codons to synonymous codons. The
reported values lie between 0 (where optimal
codons were not used) and 1 (where only optimal
codons were used). The effective number of
codons (ENC) is a measure of overall codon bias
and is analogous to the effective number of alleles
measure used in population genetics. The
reported value lies between 20 (when only one
codon effectively was used for each amino acid)
and 61 (when codons were used randomly). Fop
and ENC values were calculated for human
transcript coding sequences by means of
CondonW.

(As above)

2,132 FANN-GO features were generated using the
FANN-GO predictor of gene ontology function.
FANNGO employs multioutput artificial neural
networks that naturally incorporate the structure
of the ontology in probabilistic inference. For a
given data point, each of the 2,132 features
represents an output score from FANN-GO
generated using the protein sequence associated
with the particular SNP.

Number of proteins recorded as interacting with a
given protein.

The distance to transcription start site refers to the
distance between a given SNP and the
transcriptional start site of the transcript in the
vicinity of each SNP.

Number of nucleotides that are either guanine or
cytosine within the 21 bases flanking of a given
SNP (i.e., 10 bp upstream and 10 bp downstream).

Average PhastCons scores for multiple alignments of
28 vertebrate genomes for the 21 base-pair
sequence flanking a given SNP (10 bp upstream
and 10 bp downstream).

Derived alleles were identified, based on the
estimation of the ancestral state for HapMap
SNPs by alignment with the chimpanzee genome
sequence. The frequency was then calculated
using HapMap genotype data. SNP diversity was
defined as 1-f5*f,-fg*fz, where f5 and f are the
frequencies of the respective SNP allele,
respectively.

(Same as above)

Whether or not the given SNP is located in the
predefined/validated functional region

(Same as above)

(Same as above)

(Same as above)

(Same as above)

(Same as above)
(Same as above)

All data are based on UCSC Genome Database hg18 coordinates (where these were not available, data coordinates were converted to hg18).
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the false positive rate (1-specificity) over the entire (0, 1) interval.
Given a set of data points and a decision threshold, sensitivity was
defined as the fraction of positive data points correctly predicted
(a data point was counted as a positive prediction if its predicted
class value was greater than the decision threshold). Similarly, speci-
ficity was defined as the fraction of negative data points correctly
predicted [Hastie et al., 2001].

We evaluated the performance of each individual feature by
employing both the Wilcoxon test and by calculating the AUC
(AUC only for individual tissue expression feature set and
FANN-GO feature set) on prediction scores derived using the in-
dividual features as the sole feature when building an ensemble
of trees. For the Wilcoxon test, statistical repeatability (defined
as the frequency of statistical significance detected for all 1,000
trees) was reported. The best performing features were reported,
assuming that both threshold criteria were met (i.e., higher AUC
value and higher statistical repeatability, as defined in the tables).
Training dataset and functional SNPs used in this study can be
found at: http://www.mooneygroup.org/yiqiang/rSNP_data/. Pre-
diction scores for each SNP investigated are also available in the
Supporting Information (see Supp. Table S1).

Results

Model Performance

With respect to the task of discriminating between functional
SNPs and putatively neutral SNPs, we achieved an AUC of 0.903,
sensitivity of 0.818, and specificity of 0.837 (decision threshold that
maximizes the sum of sensitivity and specificity was used, and here-
after), using all features. Since some studies have suggested that
selecting only informative features to train the classifier (feature se-
lection) can improve prediction performance [Guyon, 2003; Saeys
et al., 2007], we applied correlation-based feature selection (CFS)
to ascertain a subset of features that would be the most informative
for classification. Using a subset of the most relevant features de-
creased performance by 2-6% (data not shown), indicating that the
ensemble method (1,000 decision trees) was robust with respect to
the noise introduced by less important features. We also evaluated
the final classification model by constructing a random classifier
for which the positive set was randomly selected from the putatively
neutral SNPs. Consistent with our expectation, the random classifier
achieved an AUC of 0.529.

Because the types of diseases associated with SNPs used in this
study differ very considerably, the HGMD regulatory variants were
subdivided into three categories: functional SNPs reported to cause
monogenic disease (MS, n = 48), functional SNPs associated with
complex disease (CS, n = 214), and SNPs with demonstrated func-
tional significance but without any currently reported disease asso-
ciation (FS, n = 183). The analysis was then performed separately
for these three categories of regulatory variants (MS, CS, and FS).
Prediction performance on the MS dataset was found to be the
most accurate and yielded an overall performance AUC of 0.958,
sensitivity of 0.896, and specificity of 0.941. We obtained compara-
ble prediction performances for CS (AUC: 0.889, sensitivity: 0.799,
and specificity: 0.821) and FS (AUC: 0.905, sensitivity: 0.809, and
specificity: 0.870). AUC values were calculated on these subsets of
SNPs by excluding prediction values for all other subclasses during
evaluation. It should be noted that these values do not reflect how
well a predictor would perform when built to identify specifically
these SNPs; instead they indicate how well these subclasses of SNPs
are identified by a general predictor.
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Table 2. Optimal Features for the Prediction of All Functional
SNPs (MS, CS, and FS)

Statistical

Feature AUC®  repeatability ~Direction®
FANN-GO feature set 0.869 NA® NA
Individual tissue expression feature set 0.775 NA NA
Maximum expression level of assoc. gene 0.767 1 +
Coefficient of variation for gene expression level ~ 0.763 0.994 +
Standard deviation for gene expression level 0.740 0.986 +
Protein—protein interaction complexity 0.705 0.998 +
Distance to transcription start site in gene 0.705 1 -

2Using the maximum AUC value from random classifier (0.591) and statistical
repeatability >0.6 as a threshold.

b(+) the functional SNPs (MS, CS, and FS) have higher median values than neutral
SNPs; (-) the functional SNPs (MS, CS, and FS) have lower median values than the
neutral SNPs.

“Wilcoxon test is not done, because this is a feature set instead of a single feature.

Gene-Based Features are Important for Prediction

Interestingly, by ranking features using the AUC of the ROC,
we found that many of the informative features corresponded to
those that were derived from the associated gene (i.e., gene-based
features) (Table 2). To validate this finding, we retrained the model
so as to exclude all the gene-based features; the overall performance
decreased by approximately 13 percentage points (from an AUC
of 0.903 to an AUC of 0.785). All three categories of regulatory
variant displayed a deterioration of classification performance after
removing gene-based features (data not shown). In order to assess
how likely the increased performance of our predictor when using
gene-based features was due to potential bias in the sample of genes
associated with discovered bona fide annotated functional SNPs,
we created a paired dataset, with no gene-based features included.
In this paired dataset, we selected only negative data points whose
SNPs lie within the regulatory region of a transcript that also has
a bona fide annotated functional SNP in its regulator region. The
performance of the paired sets was found to be comparable to that
of the original sets without gene-based features (AUC of 0.785 vs.
AUC of 0.774, respectively). The difference in performance should
therefore be attributed solely to the incorporation of gene-based
features in the original set.

Both function-based and expression-based features contributed
greatly to prediction accuracy with the function-based features
performing slightly better than expression-based features (Supp.
Table S2). For the monogenic disease-related functional SNPs (MS),
the importance of features used for classification (functional vs.
neutral) was found to share some similarities, but also some dif-
ferences, when identifying functional complex disease-associated
variants (CS). We found that four features pertaining to gene ex-
pression, codon usage, and sequence conservation performed well
only for MS prediction, whereas the protein—protein interaction
complexity feature performed well only for CS prediction (Tables 3
and 4).

Prediction of Functional SNPs in GWAS

On the basis that functional SNPs are likely to be comparatively
rare (as compared with neutral SNPs), a prediction tool to iden-
tify functional SNPs requires high specificity (i.e., the proportion of
correctly identified neutral SNPs) to be useful in a research context.
Applying a very conservative decision threshold to our method, we
obtained a specificity of 99.9%. We then applied our method (with
this conservative decision threshold) to all SNPs (#n = 2,41,465) in
the candidate regulatory region, thereby prospectively identifying



Table 3. Optimal Features for the Prediction of Monogenic
Disease-Causing SNPs (MS)

Statistical

Feature AUC*  repeatability ~Direction®
FANN-GO feature set 0.931 NA® NA
Maximum expression level of assoc. gene 0.918 1 +
Individual tissue expression feature set 0.884 NA NA
Coefficient of variation for gene expression level ~ 0.918 0.978 +
Standard deviation for gene expression level 0.904 1 +
Mean gene expression level 0.878 0.932 +
Effective number of codons in assoc. gene 0.860 0.988 -
Distance to transcription start site of gene 0.825 1 -
Sequence conservation of £10-bp flanking SNP  0.648 0.986 +

2Using the maximum AUC value from random classifier (0.591) and statistical
repeatability >0.6 as a threshold.

b(+) the MS have higher median values than neutral SNPs; (-) the MS have lower
median values than the neutral SNPs.

“Wilcoxon test is not done, because this is a feature set instead of a single feature.

Table 4. Optimal Features for Prediction of SNPs Associated
with Complex Disease (CS)

Statistical

Feature AUC*  repeatability Direction®
FANN-GO feature set 0.841 NA© NA
Individual tissue expression feature set 0.757 NA NA
Protein—protein interaction complexity 0.749 0.986 +
Coefficient of variation for gene expression level ~ 0.740 0.616 +
Mean gene expression level 0.721 0.622 -
Distance to transcription start site of gene 0.677 1 -

2Using the maximum AUC value from random classifier (0.591) and statistical
repeatability >0.6 as threshold.

®(+) the CS have higher median values than neutral SNPs; (-) the CS have lower
median values than the neutral SNPs.

“Wilcoxon test is not done, because this is a feature set instead of a single feature.

225 SNPs (not present in our positive training dataset) that repre-
sent good candidates for SNPs with functional significance (Supp.
Table S3). By applying the 99.9% specificity threshold, the predic-
0.9
0.8

0.7

0.5

Ision

0.4

Prec

0.3

0.2

0.1

] 0.1 02 0.3 0.4

tion precision (i.e., the proportion of true functional SNPs) reached
20.6%. Since regulatory SNPs are likely to be individually very rare
(in the present case, 445 functional SNPs and 2,41,465 background
SNPs, 0.18%), our method promises to greatly simplify the task of
identifying a regulatory SNP in the genome (see Fig. 1 for the overall
recall-precision plot). With one exception (see Case Study below),
no experimental evidence for the functional significance of these 225
SNPs has so far been reported in the literature. However, the recent
increase in reported GWAS data provides us with an opportunity
to establish post hoc the potential functional/clinical significance
of these SNPs. Although not all disease-associated SNPs reported
in GWAS are directly causative of the observed disease association,
some will indeed be of functional significance and hence will also be
likely to be causative of the reported disease association. Analysis of
GWAS data and the 225 SNPs predicted to be functional, revealed
that 105 of these 225 predicted functional SNPs (47%), distributed
between 66 different genes, occurred within the same LD block
as a reported disease-associated GWAS SNP. Although these 225
candidate functional regulatory SNPs still await in vitro validation
by reporter gene assay, their frequent spatial coincidence within the
same LD blocks as reported disease-associated GWAS SNPs suggests
that a substantial proportion may eventually turn out to be bona
fide functional regulatory SNPs. On the other hand, we believe that
many of the remaining 120 SNPs could still be important in func-
tional terms since having a regulatory role does not necessarily imply
that it is also going to be of pathological significance.

Case Study

We retrospectively searched the literature for any experimental
evidence of a functional effect for the 225 candidate regulatory SNPs
identified in this study. Functional evidence was obtained for one
candidate SNP (rs2280789, T/C) in the Chemokine (C-C motif)
ligand 5 (CCL5) gene. This SNP occurs within an upregulating
intron 1 element; employing a luciferase reporter gene assay, it was
shown that the “C” allele of rs2280789 was associated with a highly

0.5 0.6 0.7 0.8 0.9 1

Recall

Figure 1. The recall-precision plot for the prediction model.
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significant threefold reduction in gene expression as compared to
the “T” allele (p < 0.001) [An et al., 2002]. The “C” allele was also
reported to be associated with rapid disease progression to AIDS for
individuals with an HIV infection.

Discussion

Assessment of Performance

In this study, we employed what is, to our knowledge, the most
comprehensive functional regulatory SNP dataset available. Com-
pared to previous studies that have used relatively small num-
bers of functional regulatory SNPs (about 100 regulatory SNPs)
and an imbalanced training approach without special treatment
[Montgomery et al., 2007; Torkamani and Schork, 2008], we have
performed a robust analysis of the prediction of functional SNPs
within promoter regions. We achieved this by incorporating bi-
ologically relevant features of the downstream genes and using a
forest-like tree method that greatly improved prediction perfor-
mance (AUC of 0.903, sensitivity of 0.818, and specificity of 0.837).
Owing to the likely low prevalence (as compared to neutral SNPs)
of functional regulatory SNPs in the human genome, the accurate
prediction of functional regulatory SNPs is inherently very diffi-
cult. Our method nevertheless provides a high-throughput means
to identify potentially functional regulatory SNPs. Employing this
method, we report here 225 high-confidence candidates that we
consider worthy of laboratory testing.

This study does however indicate that much work still remains to
be done in order to improve the prediction of polymorphic sites of
functional significance. Indeed, several major challenges lie ahead.
First, available bona fide (i.e., experimentally supported) functional
polymorphism data are still limited. Since millions of SNPs remain
uncharacterized, we are currently working with only a very small
proportion of the complete dataset of functional SNPs within regu-
latory regions. Second, although the definition of functional features
is proceeding apace, it is hard to escape the conclusion that func-
tional SNPs have been disproportionately derived from those genes
that have been functionally well characterized [including, of course,
disease genes; Osada et al., 2009]. With the features (both gene based
and SNP based) employed in this study, we were able to successfully
identify functional SNPs with a high degree of confidence. How-
ever, in this study, we can only predict rfSNP by genome location.
Our method would not be able to distinguish the direction of the
nucleotide changes that would result in a functional effect (i.e., A
to T vs. A to C). As more biological knowledge becomes available,
improvements (e.g., discovery of new TEBS) to existing SNP-based
features will increase classification performance, thereby reducing
the dependency of classification methods on those gene-based fea-
tures that tend to be biased or suffer from sparseness.

In order to improve the prediction of disease-related SNPs, ad-
ditional novel features still need to be identified. Previous studies
have suggested that disease genes may possess specific properties
that can serve to distinguish them from nondisease genes such as
longer sequence length and a lower nucleotide substitution rate
[Cooper and Mort, 2010; Khaitovich et al., 2004; Lopez-Bigas and
Ouzounis, 2004]. These features were not included in the current
analysis but the addition of evolutionary attributes and other dis-
ease gene-specific properties could easily be incorporated so as to
improve the predictive performance in the context of the mono-
genic disease-causing SNPs. Similarly, the topological parameters of
a gene within a network or pathway represent promising features
for the prediction of CS [Hahn and Kern, 2005; Zhu et al., 2007].
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A Survey of Disease-Related SNPs and Disease Genes

The functional SNPs investigated in this study will only be pre-
dicted to give rise to changes in gene expression rather than to
protein structure or function. However, the consequences of an
expression change may include either a deleterious gene dosage al-
teration [Anneren and Edman, 1993; Stayner et al., 2006; Toivonen
et al., 2003] or a change in the functional role of the associated
gene product in the context of a given biological pathway or protein
interaction network [Cunningham et al., 2005; Tepper et al., 2005].
Our studies are suggestive of both these possibilities. The prediction
of monogenic disease-related functional SNPs (MS) was most accu-
rate, with the expression-based features contributing highly to the
performance (Table 3 and Fig. 2; for complete statistical summary
for each features, see Supp. Table S4). Thus, the gene expression
level appears likely to exert an important (and direct) influence
on the genotype-phenotype relationship in monogenic disease. The
fact that the codon-usage feature works well only for MS predic-
tion, taken together with the observation that MS were generally
located within core promoter regions and hence were significantly
closer to the TSSs than was the case for CS and putatively neu-
tral SNPs (Wilcoxon tests, p < 0.001, Bonferroni-corrected), also
points in the same direction. However, compared to MS, the effect
of expression-based features is less pronounced for complex disease
(CS) yet (although still good) protein—protein interaction complex-
ity works well (Table 4 and Fig. 2). This suggests that there may be
underlying differences in the mechanism(s) by which a given SNP
exerts its functional effect between monogenic and complex dis-
eases. The disruption of protein—protein interactions and biological
pathways induced by a change in gene expression may underlie a
high proportion of complex disease regulatory SNPs.

The evolutionary conservation of sequences flanking SNPs was
shown to be an effective predictive feature for the MS set. Although
not statistically significant owing to the small sample size, the SNP
diversity (Table 1) of MS (median: 0.082) was lower by comparison
to the putatively neutral SNPs (median: 0.367) and CS (median:
0.341). Taken together, this is indicative of MS being under strong
negative selection. Although we could not rule out the possibility
that CS are under balancing selection (either heterozygote advantage
or environmental heterogeneity), based on the observation of a
lower derived allele frequency and higher SNP diversity as compared
to MS, CS appear more likely to have evolved neutrally because the
CS-flanking sequences were not evolutionarily conserved, consistent
with previous analyses of gene promoter regions [Keightley et al.,
2005; Khaitovich etal., 2004]. Detailed disease gene categorization is
required to determine whether the paucity of evidence for selection
was due to genetic drift, slightly deleterious conditions, or to diseases
with late onset.

Owing to the lower level of sequence conservation and greater dis-
tance to the core promoter exhibited by CS (in comparison to MS),
SNP-based features are not as discriminating for CS as with MS.
There are some good gene-based features for CS prediction (e.g.,
protein—protein interaction complexity), but we could only spec-
ulate that genes with certain attributes were more likely to harbor
functional SNPs. Generally speaking, CS appear much more difficult
to predict. It is the tacit assumption of most promoter studies that
the location of known TEBS or other functional annotations would
be useful in the identification of regulatory mutations and polymor-
phisms [Andersen etal., 2008; Conde et al., 2004; Lapidot et al., 2008;
Mottagui-Tabar et al., 2005]. In this study, functional annotations
such as TFBS actually display very limited predictive power (AUC =
0.504) in terms of discriminating functional regulatory SNPs from
putatively neutral SNPs. Possible reasons for this might be: (1) our
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Figure 2. Features that exhibit differences between different datasets. MS: SNPs associated with, or causing, monogenic disease; CS: SNPs
associated with complex disease; FS: SNPs with demonstrated functional significance but without any reported disease association; Negative:

Neutral SNPs.

knowledge of the structure and function of regulatory elements in
our genome is still very inadequate (the information employed in
this study might not be representative) due to data sparseness (small
percentage of data points actually has been annotated), and/or (2)
more detailed positional information is required in relation to SNPs
located within the regulatory elements since such elements can be
redundant, and not every base within a given regulatory element is
critical to its function. Consistent with previous studies [Buckland
et al., 2005; Guo and Jamison, 2005; Montgomery et al., 2007], the
distance to the TSS was one of the best performing features. Al-
though the promoter was generally considered to be very important
for gene regulation, the influence of a particular SNP may be quite
complex because multiple regulatory elements can overlap and the
effect of different promoter variants can be additive. To test if the
distance to the TSS is a dominant feature in making rSNP predic-
tions, we evaluated our model with the full feature set but excluding
just this feature. The result showed that performance dropped only
slightly from an AUC of 0.903 to an AUC of 0.895, suggesting that
other features used in our model appear able to compensate for the
information provided by this important feature.

Finally, we observed that the MS-associated genes had (1) a higher
level of gene expression and (2) greater variance of gene expression
than the putatively neutral SNPs. Initially, this seemed to be contra-
dictory since these two attributes are generally negatively correlated.
Genes exhibiting a high expression level are usually expressed less
variably [Subramanian and Kumar, 2004] and are could be less likely

to be involved in disease because of their essential nature (on the
basis that mutations in such genes would have tended not to come
to clinical attention [Cooper et al., 2010]). One explanation for their
co-occurrence might be differences in the clinical severity of differ-
ent monogenic diseases. Some monogenic diseases are very severe
clinically (either because the gene is critically important to health or
because the mutation might have a strong impact on gene function),
while others may not be. However, a lower mean expression level
and a higher expression variance were found for complex disease,
consistent with the view that complex disease is generally less severe
and has a tendency to be associated with tissue-specific expression
[Winter et al., 2004].

In conclusion, we have developed a method for predicting disease-
associated functional SNPs within gene-regulatory regions. We
found gene-based features were useful in making such predictions,
possibly because such features represent a proxy for the disease
mechanism. Finally, we identify a number of putative regulatory
SNPs that we believe are likely to be of potential functional/clinical
significance and which therefore represent good candidates for in
vitro analysis as well as inclusion in future GWAS.
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