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Abstract

Structural genomics projects are determining the three-dimensional structure of proteins without full
characterization of their function. A critical part of the annotation process involves appropriate
knowledge representation and prediction of functionally important residue environments. We have
developed a method to extract features from sequence, sequence alignments, three-dimensional
structure, and structural environment conservation, and used support vector machines to annotate
homologous and nonhomologous residue positions based on a specific training set of residue functions.
In order to evaluate this pipeline for automated protein annotation, we applied it to the challenging
problem of prediction of catalytic residues in enzymes. We also ranked the features based on their
ability to discriminate catalytic from noncatalytic residues. When applying our method to a well-
annotated set of protein structures, we found that top-ranked features were a measure of sequence
conservation, a measure of structural conservation, a degree of uniqueness of a residue’s structural
environment, solvent accessibility, and residue hydrophobicity. We also found that features based on
structural conservation were complementary to those based on sequence conservation and that they were
capable of increasing predictor performance. Using a family nonredundant version of the ASTRAL 40
v1.65 data set, we estimated that the true catalytic residues were correctly predicted in 57.0% of the
cases, with a precision of 18.5%. When testing on proteins containing novel folds not used in training,
the best features were highly correlated with the training on families, thus validating the approach to
nonhomologous catalytic residue prediction in general. We then applied the method to 2781 coordinate
files from the structural genomics target pipeline and identified both highly ranked and highly clustered
groups of predicted catalytic residues.
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Identifying residues of importance in the protein prod-
ucts of genes is a challenging and important problem for
informatics, genomics, biochemistry, and drug discovery.
A particular challenge for the computational biologist is
identifying features that are correlated with or, prefera-

bly, govern biochemical/cellular processes and are useful
for prediction. In contrast to previous efforts that define
functional sites broadly (Lichtarge et al. 1996; Elock
2001; Porter et al. 2002), we apply supervised machine
learning methods with the goal of predicting the specific
functional roles of amino acids. To address this, we are
investigating how similarity among amino acid sequence,
evolutionary, and structural descriptors can be used to
quantify specific amino acid functional roles in proteins.
We have developed a pipeline for knowledge-based
annotation of residue function using support vector
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machines (SVMs) and evaluated it on the problem of
automated annotation of catalytic residues in enzymes.
We chose catalytic residues because it is only a partially
understood problem and very challenging, given that
only ;1% of residues in a single enzyme are catalytic
and only a subset of proteins are enzymes. Throughout
this study, we adopt the definition of a catalytic
residue provided by Gutteridge et al. (2003) and use the
Catalytic Site Atlas (CSA) as a gold standard (Porter et al.
2002).

Many approaches for identification of functional resi-
dues rely on broadly identifying residues of importance
based on evolutionary sequence conservation, phyloge-
netic trees, and/or protein structure (Casari et al. 1995;
Lichtarge et al. 1996; Aloy et al. 2001). Few methods are
able to specifically annotate the role certain residues play
in protein function (Ofran and Rost 2003; Ota et al. 2003;
Iakoucheva et al. 2004; Yan et al. 2004), and even less
have incorporated protein structure into their predictions.
These methods have many applications, including anno-
tation of structural genomics targets and predicting
whether mutation will have an effect on that specific
functional role. Annotating a specific functional role is a
challenging endeavor, usually only a subset of functional
residues actually participates in that role (such as catal-
ysis, phosphorylation, ligand stabilization, etc.), and
building good training sets is often difficult.

Some approaches (Gutteridge et al. 2003; Petrova and
Wu 2006) have addressed these questions. Previously, the
Thornton group used a neural network approach to predict
catalytic residues using sequence conservation, residue
type, and structural features (Gutteridge et al. 2003).
They found that features including sequence conserva-
tion, secondary structure, residue type, and solvent
accessibility were important (Bartlett et al. 2002; Jones
and Thornton 2004; Torrance et al. 2005). In our study,
we assembled a diverse set of features based on local
sequence neighborhood, two-dimensional and three-
dimensional structure, and evolutionary conservation.
Then, with the goal of predicting catalytic residues in
unannotated proteins, we developed a prediction model
based on SVMs. SVMs have been extensively used in
various machine learning problems, especially prediction,
as an alternative to standard neural network approaches
(Haykin 1999). Their previously successful applications
include microarray analysis (Brown et al. 2000), disorder
prediction in proteins (Ward et al. 2004), protein secon-
dary structure prediction (Hua and Sun 2001; Zhang et al.
2005), and protein solvent accessibility prediction
(Nguyen and Rajapakse 2005), to name a few. The
popularity of an SVM is due to its high generalization
performance, its intuitive idea, its sound mathematical
foundation, and its few numbers of free parameters to
adjust.

We describe a method for automated catalytic site
annotation and evaluate features in our predictor for their
ability to discriminate these residues. Of these features,
we find that structural features of residue environments
such as solvent accessibility, in addition to sequence
conservation, are important to prediction of catalytic
residues. Encouragingly, we find that higher SVM scores
are closer to the catalytic machinery of enzymes, and that
the method is able to make predictions on novel folds at a
small cost to accuracy.

The utility of this method can be illustrated along with
other structure and functional inference tools such as
ProFunc (Laskowski et al. 2005), DALI (Holm and
Sander 1993), Structure-Based Local Environment Search
Tool (S-BLEST) (Mooney et al. 2005), and PSI-BLAST
(Altschul et al. 1997) by application to known structures
of partially characterized function. To do this, we applied
the method to 2781 structures determined as part of the
structural genomics projects (Chandonia and Brenner
2006) and scored all residues. We identified highly
ranked residues and found that they tend to be clustered
with other highly ranked residues, and we further char-
acterized several of the top hits in concert with the
previously mentioned function analysis tools.

Results

Method training and evaluation

Our approach was to first identify features we believe
might be important for prediction and then use those
features to compare the experiments of the Thornton
group (Gutteridge et al. 2003) using an SVM. After
validation of the method on the previously mentioned
data set, prediction was performed upon a 40% non-
redundant set of proteins (ASTRAL 40 v1.65 data set)
(Chandonia et al. 2004) with an annotation in CSA. We
chose to use ASTRAL 40 because its sequences are well
annotated and classified into the SCOP hierarchy (Murzin
et al. 1995). This allowed us to evaluate how well our
predictors perform on proteins from new structural
families, new structural superfamilies, and new folds
and to understand the relationship between the features
that are useful in each of these situations.

We developed three data sets for evaluation based on
fold, superfamily, and family. In order to avoid a bias
from imbalanced protein domain distribution between
classes (families, superfamilies, and folds), we randomly
selected one protein domain from each class. In the first
case, the data set was determined by selecting a random
protein member from each family. In the second case, the
data set was constructed by selecting a random member
from each superfamily. Similarly, the final case was
constructed by selecting a random member from each
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fold. We then performed 10-fold cross-validation on each
set, where no protein had residues in both testing and
training.

As expected, we find that our results are similar to
those of the Thornton group with a slight increase in both
sensitivity and precision (sensitivity, 65.3%; precision,
14.4% vs. 56.0% and 14.0% without clustering). How-
ever, because we are applying our method to the
ASTRAL 40 v1.65 data set, we are able to evaluate
how well we can predict catalytic sites when varying
degrees of structural similarity are present between the
query sequence and the training set. This performance
can likely be further improved if structural clustering
methods are employed (Gutteridge et al. 2003), but for
our purposes, the raw SVM scores are sufficient. When
training by SCOP structural family, we find that we
achieve 57.0% sensitivity and 18.5% precision for
10-fold cross-validation on the ASTRAL 40 nonredundant
database (Table 1). This sensitivity reduces to 51.1% when
trained on the fold level, suggesting, not surprisingly, that
family neighbors are important for improved prediction. On
the other hand, the performance drop is relatively small,
which is encouraging for the annotation of the new folds.
We confirmed this also by plotting the receiver operating
characteristics (ROC) (Fawcett 2003) curves of family,
superfamily, and fold level experiments (Fig. 1). To
calculate the contribution of structural features, we estimate
the performance using only sequence related features.
We used the same experiment protocol as before on
family level experiments but used only sequence features.
Sequence only features have 16.6% sensitivity, 15.1%
precision, and 86.6% area under the ROC curve (AUC).

Feature ranking was performed on each data set using
the AUC (Fawcett 2003). To do this, we constructed an
ROC for each feature independently and then ranked
them according to the decreasing AUC values. Overall, in
all sets we find that the best features are conservation in a
sequence alignment, structural conservation score (SCS)
using S-BLEST (Mooney et al. 2005), solvent accessi-
bility, and residue class. Not surprisingly, the most
important structural features are those calculated for the

catalytic residue itself, while those related to its sequence
and spatial neighbors were less discriminatory. Top-
ranked features are shown in Table 2. Next, we evaluated
whether the best features when training between families
and training between folds are highly correlated (Fig. 2).
The X-axis in Figure 2 is a feature ranking based on the
family level data set, and Y-axis is the corresponding
feature’s ranking based on the fold level data set. We find
that the features are highly correlated, with the best
features having the least difference.

We also wanted to compare usefulness of structural
conservation versus sequence conservation to catalytic
site prediction and then evaluated whether these features
were complementary. First, we computed the AUC of
SVM prediction using only the information per position
score feature at the family level. We employed 10-fold
cross-validation experiments on the data set and collected
SVM prediction scores to compute the AUC. Next, the
AUC was computed using the information per position
score from the output of PSI-BLAST and SCS features
from S-BLEST. We find that the SCS feature increases
the AUC value (0.87) compared with the case when
sequence conservation was used alone (0.84). This anal-
ysis suggests that the structural conservation-based fea-
tures can improve prediction over using sequence
conservation alone. Figure 3 shows the distributions of
these two features for catalytic and noncatalytic resi-
dues. For the information per position score, 83% of cata-
lytic residues have scores $0.2, while 87% of noncatalytic
residues have scores #0.2. For the SCS, 76% of cata-
lytic residues have scores #0.7, while 88% of noncatalytic
residues have scores $0.7.

Table 1. Tenfold cross-validation performance by data set

Data set Sensitivity (%) Precision (%) AUC (%)

Family 57.02 18.51 92.90

Superfamily 53.93 16.90 91.35

Fold 51.11 17.13 91.44

SCOP family based data collection is done by randomly picking one
protein from each family. This approach is also applied for SCOP
superfamily-based and SCOP fold-based data collection. The SVM is
used to do 10-fold cross-validation evaluation on resultant data sets. As
samples in test set are distantly related to those in training set, it is more
difficult to predict, thus resulting in reduced performance.

Figure 1. ROC curves for different data sets based on SCOP family,

superfamily, and fold. This plot is analogous to the data in Table 1.
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For each residue, the SVM outputs a likelihood that a
residue is catalytic. We computed the distance between
the Ca atom of the residue being evaluated and the Ca
atom of the closest catalytic residue in the protein. We
find that high scoring noncatalytic residues are approx-
imately 7 Å away from a catalytic residue, while residues
near the decision threshold are nearly twice that far
(Fig. 4). The tradeoff between decision threshold and
precision is presented in Figure 5, and shows that precision
can be increased significantly with higher score thresholds.

Using the fold data set, Figure 6 shows the performance
of the different types of catalytic residues (left) and the
distribution of all the residue type frequencies (right).
Histidine is a rare residue type, but it has the highest
catalytic residue frequency and sensitivity. That is,
histidine constitutes only 2.6% of all residues but 18%
of all catalytic residues in fold data set. On the contrary,
lysine has the highest residue frequency (9%) but con-
stitutes only 1% of catalytic residues. Figure on the left

suggests that rare or hydrophobic catalytic residue types
are very difficult to predict and consequently have very
low sensitivity and precision.

Analysis of solved structural genomics targets

In an effort to illustrate the utility of this method, we
applied it to all solved structural genomics targets listed
on the structural genomics website. These included 5143
chains contained in 2781 unique Protein Data Bank
(PDB) identification numbers. The highest scoring resi-
dues are dominated by divalent ion binding sites or
similar, as can be seen from the examples below. The
top scoring residues are shown in Table 3.

Overall, the highest scoring residue from all structural
genomics targets was histidine 145 from pdb:1XM7 chain
A, the crystal structure of the hypothetical protein
aq_1665 from Aquifex aeolicus as determined by the Mid-
west Structural Genomics Center (R. Zhang, M. Zhou,
F. Collart, and A. Joachimiak, in prep.). This protein was
originally deposited in October 2004, and its function is
listed with only ‘‘hydrolase activity.’’ ProFunc (Laskowski
et al. 2005) identifies this protein as a purple acid phos-
photase. Similarity matches on ProFunc include hits to
the calcineurin-like phosphoesterases (InterPro), metallo-
dependent phosphatases (InterPro), and apo structure of
methanococcus jannaschii phosphodiesterase mj0936
pdb:2AHD (SSM [Krissinel and Henrick 2004] and DALI).
S-BLEST (Mooney et al. 2005) identifies a region that
includes residues 49, 77, 111, and 145 as being closely
associated with its likely SCOP superfamily (as determined

Table 2. The most highly ranked features used

Rank AUC Source Description

1 0.847 PSI-BLAST PSSM

2 0.845 PSI-BLAST Information per position (IPP)

3 0.837 PSI-BLAST Weighted observed percentage

4 0.762 S-BLEST SCS

5 0.688 Shell 1 Residue class2 is nonpolar

6 0.688 Shell 1 Residue class1 is hydrophobic

7 0.686 Shell 2 Residue class1 is hydrophobic

8 0.684 Shell 2 Mobility

9 0.681 Shell 2 Residue class2 is nonpolar

10 0.681 Shell 2 Charge with His

11 0.665 PSI-BLAST IPP adjacent (N � 1)

12 0.665 Shell 4 Solvent accessibility

13 0.661 Shell 3 Solvent accessibility

14 0.659 Shell 4 Residue class1 is polar

15 0.657 PSI-BLAST IPP adjacent (N + 1)

16 0.651 PSI-BLAST IPP adjacent (N � 2)

17 0.650 Shell 3 Charge with His

18 0.641 PSI-BLAST IPP adjacent (N � 3)

19 0.640 Shell 2 Atom name is any

20 0.640 Shell 3 Mobility

21 0.640 Shell 2 Hydrophobicity

22 0.639 Shell 1 Residue class1 is charged

23 0.637 Shell 4 Residue class2 is polar

24 0.632 PSI-BLAST IPP adjacent (N + 2)

25 0.632 Shell 3 Residue class1 is polar

26 0.632 Shell 4 Atom name is O

27 0.629 Shell 4 Secondary structure2 is beta

28 0.626 Shell 3 Secondary structure2 is beta

29 0.622 PSI-BLAST IPP adjacent (N � 4)

30 0.620 Shell 3 Amine

Features are ranked based on the area under the ROC curve using the
family data set described in the text. Among 314 features, the top 30
features are listed. Score is the area under the ROC curve (AUC) value.
Source describes the source of the feature, and Shell i is the ith shell of the
S-BLEST vector.

Figure 2. Feature ranking correlation between family-based and fold-

based data sets. Each of 314 features was ranked based on their class

discriminating value, by determining the AUC value. Several S-BLEST

features are not informative (constant in both catalytic and noncatalytic

residues), and these were removed from this plot.
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by S-BLEST), metallo-dependent phosphatases (d.159.1).
This region appears to form a large cleft and is solvent
accessible. The catalytic residue predictor described here
identifies four residues with very high prediction scores.
These residues are spatially tightly clustered and are
histidine 145 (SVM score of 4.5), aspartate 50 (3.5),
histidine 111 (3.4), and aspartate 7 (3.3). All of these
residues are located in the region described by S-BLEST. It
is interesting that the crystal structure does not contain a
metal ion at this site. Figure 7a shows the region on a
ribbon representation of chain A.

The second highest scoring residue from all structural
genomics targets was aspartate 189 from pdb:2AZ4 chain
A, crystal structure of a hypothetical protein from Enter-
ococcus faecalis V583 as determined by the Midwest
Structural Genomics Center (R. Zhang, N. Maltseva,
S. Moy, F. Collart, M. Cymborowski, W. Minor, and
A. Joachimiak, in prep.). This protein was originally depos-
ited in September 2005 without any functional annota-
tion. ProFunc again sheds light onto potential functions of
this protein. The superfamily is predicted to be metallo-
hydrolase/oxidoreductase (superfamily) and several hits
to the Zn-dependent hydrolase of metallo-b-lactamase
superfamily (SSM and DALI). S-BLEST identifies a region
from the metallo-hydrolase/oxidoreductases superfamily
(d.157.1). Using these proteins, a region roughly defined
by the most associated residue environments centered at
residues 92, 94, 167, 168, 169, and 189 is found to be
closely associated to this superfamily, metallo-hydrolase/
oxidoreductases (d.157.1). The catalytic residue predictor
identifies several residues that are scored very highly and
again are tightly clustered, aspartate 189 (4.2), histidine
94 (3.8), histidine 92 (3.5), histidine 167 (3.3), and histidine
97 (3.2). This region is adjacent to two Zn2+ atoms that
directly interact with these residues. Figure 7b shows the
region on a ribbon representation of chain A.

The third highest scoring residue from all structural
genomics targets was histidine 9 from pdb:1ZZM chain
A, the crystal structure of YJJV, TATD Homolog from
Escherichia coli k12 as determined by the New York
Structural Genomics Research Consortium (NYSGRC;
www.nysgrc.org). This protein was deposited June 2005
with no annotated function. S-BLEST identifies two
structurally similar structures from ASTRAL 40 v1.69,
both from the TIM b/a-barrel (c.1.9) superfamily. Again,
several residues surrounding a metal ion binding site
are high scoring, histidine 9 (4.1), histidine 133 (3.5),

Figure 4. SVM predicted score vs. distance (Å) to the closest catalytic

residue. The SVM outputs a predicted score for each residue. Distance (Å)

between the residue and the closest catalytic residue is computed. The

predicted score x is binned by rounding x to one decimal place (X-axis).

The distances in each bin are averaged (Y-axis). Averaged distances are

then fitted by a linear regression. Averaged distance decreases almost

linearly as predicted score increases.

Figure 3. Information per position score from PSI-BLAST and SCS from S-BLEST distributions for catalytic and noncatalytic

residues.
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glutamate 97 (3.4), and histidine 11 (3.3). Figure 7c
shows the region on a ribbon representation of chain A.

The final example is crystal structure of conserved
hypothetical protein from Pseudomonas aeruginosa
PAO1 from pdb:1Z7A chain E (although other chains in
this file had similarly high scores) as determined by the
Midwest Structural Genomics Center (C. Chang, T. Skarina,
A. Savchenko, A. Edwards, and A. Joachimiak, in prep.). In
this case, the score is high, but not among the top proteins.
Again, a cluster of histidine and charged residues is iden-
tified, and here there is no bound ion. Similarity searches
on ProFunc predict this to be a polysaccharide deacetylase

(HMMPfam), a glycoside hydrolase/deacetylase (super-
family), and DALI associates this domain with several
carbohydrate esterase structures. S-BLEST does not find
any significant similarity to any known structural environ-
ments in ASTRAL 40 v1.69, although carbohydrate metab-
olism and esterase activity are represented in the top hits.
The highly ranked residues are histidine 126 (3.1), histidine
259 (3.0), and glutamate 36 (2.3). Figure 7d shows the
region on a ribbon representation of chain A.

Discussion

Structural genomics projects are experimentally deter-
mining structures of proteins of novel folds without full
or even partial characterization of their function. While
many methods predict the function and functionally
important regions of these structures, few methods iden-
tify residues that are participating in specific functional
roles. Nonhomologous site prediction methods, that is,
methods that do not transfer function via sequence
homology alone, are critical for this hypothesis gener-
ation in functionally uncharacterized proteins and identi-
fication of residues playing specific functional roles.

In this study we investigated influence of various
sequence, structural, and evolutionary features to the
problem of annotation of catalytic residues and then
developed a model for automated identification of cata-
lytic residues in unannotated protein structures. We find
that catalytic residues can be predicted on enzymes that
come from new folds with a small cost to both sensitivity
and precision over proteins from previously characterized
families. In an effort to enable researchers to access our
method, we have developed a Web site and coordinate

Figure 5. Precision of prediction as decision threshold is shifted. After

the SVM predicted scores are sorted in descending order, the top k scores

(X-axis) are used to compute the precision (Y-axis), where k ¼ 1,. . .,5000.

Figure 6. Performance by the different types of catalytic residues. Plot on the left considers only catalytic residues. Light bars show

the distribution of different types of catalytic residues. Dark bars show sensitivity. Numbers above each residue type letter in the left

panel represent precisions of corresponding residue type. Plot on the right shows frequencies of different residue types.
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Table 3. The most highly ranked residues from the data set of solved structural genomics targets

PDB_ID CHAIN RES_NUM RES_TYPE SVM_SCORE PDB_TITLE

1XM7 A 145 H 4.51 STRUCTURAL GENOMICS, THE CRYSTAL STRUCTURE OF THE

HYPOTHETICAL PROTEIN AQ_1665 FROM AQUIFEX AEOLICUS

1XM7 B 145 H 4.32 STRUCTURAL GENOMICS, THE CRYSTAL STRUCTURE OF THE

HYPOTHETICAL PROTEIN AQ_1665 FROM AQUIFEX AEOLICUS

2AZ4 A 189 D 4.18 CRYSTAL STRUCTURE OF A HYPOTHETICAL PROTEIN FROM

ENTEROCOCCUS FAECALIS V583

1ZZM A 9 H 4.13 CRYSTAL STRUCTURE OF YJJV, TATD HOMOLOG FROM

ESCHERICHIA COLI K12, AT 1.8 Å RESOLUTION

2AZ4 B 189 D 4.08 CRYSTAL STRUCTURE OF A HYPOTHETICAL PROTEIN FROM

ENTEROCOCCUS FAECALIS V583

1S3L B 320 H 4.03 STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF A

NOVEL ARCHAEAL PHOSPHODIESTERASE

1S3L A 120 H 4.03 STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF A

NOVEL ARCHAEAL PHOSPHODIESTERASE

1Z2I A 125 H 4.02 CRYSTAL STRUCTURE OF AGROBACTERIUM TUMEFACIENS

MALATEDEHYDROGENASE, NEW YORK STRUCTURAL

GENOMICS CONSORTIUM

1ZKP C 155 D 4.01 1.5 Å RESOLUTION CRYSTAL STRUCTURE OF A METALLO

BETALACTAMASE FAMILY PROTEIN, THE ELAC HOMOLG OF

BACILLUS ANTHRACIS, A PUTATIVE RIBONUCLEASE

2FFI A 18 H 4.01 CRYSTAL STRUCTURE OF PUTATIVE 2-PYRONE-4,6-

DICARBOXYLICACID HYDROLASE FROM PSEUDOMONAS

PUTIDA, NORTHEAST STRUCTURAL GENOMICS TARGET PPR23.

1ZTC C 71 H 3.98 CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN (TM0894)

FROM THERMOTOGA MARITIMA AT 2.10 Å RESOLUTION

1UUF A 40 C 3.95 CRYSTAL STRUCTURE OF A ZINC-TYPE ALCOHOL

DEHYDROGENASE-LIKEPROTEIN YAHK

1ZKP B 155 D 3.92 1.5 Å RESOLUTION CRYSTAL STRUCTURE OF A METALLO

BETALACTAMASE FAMILY PROTEIN, THE ELAC HOMOLG OF

BACILLUS ANTHRACIS, A PUTATIVE RIBONUCLEASE

1YIX A 7 H 3.91 CRYSTAL STRUCTURE OF YCFH, TATD HOMOLOG FROM

ESCHERICHIA COLI K12, AT 1.9 Å RESOLUTION

1ZKP A 155 D 3.91 1.5 Å RESOLUTION CRYSTAL STRUCTURE OF A METALLO

BETALACTAMASE FAMILY PROTEIN, THE ELAC HOMOLOG OF

BACILLUS ANTHRACIS, A PUTATIVE RIBONUCLEASE

1ZKP D 155 D 3.91 1.5 Å RESOLUTION CRYSTAL STRUCTURE OF A METALLO

BETALACTAMASE FAMILY PROTEIN, THE ELAC HOMOLG OF

BACILLUS ANTHRACIS, A PUTATIVE RIBONUCLEASE

1M65 A 40 H 3.91 YCDX PROTEIN

1ZTC D 71 H 3.88 CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN (TM0894)

FROM THERMOTOGA MARITIMA AT 2.10 Å RESOLUTION

2FFI B 18 H 3.88 CRYSTAL STRUCTURE OF PUTATIVE 2-PYRONE-4,6-

DICARBOXYLICACID HYDROLASE FROM PSEUDOMONAS

PUTIDA, NORTHEAST STRUCTURAL GENOMICS TARGET PPR23.

1ZTC A 71 H 3.87 CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN (TM0894)

FROM THERMOTOGA MARITIMA AT 2.10 Å RESOLUTION

1ZTC B 71 H 3.87 CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN (TM0894)

FROM THERMOTOGA MARITIMA AT 2.10 Å RESOLUTION

1Z2I C 125 H 3.86 CRYSTAL STRUCTURE OF AGROBACTERIUM TUMEFACIENS

MALATEDEHYDROGENASE, NEW YORK STRUCTURAL

GENOMICS CONSORTIUM

1XM8 A 131 D 3.85 X-RAY STRUCTURE OF GLYOXALASE II FROM ARABIDOPSIS

THALIANAGENE AT2G31350

1XM8 B 131 D 3.85 X-RAY STRUCTURE OF GLYOXALASE II FROM ARABIDOPSIS

THALIANAGENE AT2G31350

2A9V D 80 C 3.85 CRYSTAL STRUCTURE OF (NP_394403.1) FROM THERMOPLASMA

ACIDOPHILUM AT 2.45 Å RESOLUTION

2A9V B 80 C 3.84 CRYSTAL STRUCTURE OF (NP_394403.1) FROM THERMOPLASMA

ACIDOPHILUM AT 2.45 Å RESOLUTION

(continued)
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submission method at http://sblest.org/crp/. Observing the
usefulness of the features we use, we can apply the same
attributes on other similar residue-based data sets.

Across all experiments, the best features are based on
sequence conservation, structural conservation, or struc-
tural uniqueness. This finding is similar to those that have
been seen in other methods that predict catalytic residues
(Gutteridge et al. 2003) and predictions of other func-
tional sites including deleterious mutation prediction
(Saunders and Baker 2002). Although these are the best
features, many noncatalytic residues are sequence and
structurally conserved (Fig. 3). This must be taken into
account when hypothesizing that a conserved residue is
catalytic, because catalysis is an interplay of several
features and is more complicated than conservation in
sequence alignments.

Not all residue types are equally predictable. As
observed in Figure 6, hydrophobic residues are very
difficult to predict. This is likely due to the large fraction
of hydrophobic residues in proteins, and the very small
fraction of hydrophobic catalytic residues. When retrain-
ing with only hydrophobic catalytic residues, we got poor
results (data not shown), and it may be because catalytic
residues (1 in 600) were much rarer in the training set and
they were not distinguishable to the vast majority of
noncatalytic residues.

It is truly an important endeavor for computational
biology to develop new features for the prediction of
important sites in proteins. While sequence, sequence
conservation, and structural information have been well
characterized for these problems, structural conservation
has been difficult to quantify. It seems logical that
quantifying structural conservation around a site in a
protein could improve the ability to predict that site, as
structural conservation adds information not present in
the other features. Indeed, when we test whether knowl-
edge that another similar structural site exists in a non-
redundant database, our prediction accuracy improves
over conservation in a multiple sequence alignment. This
approach to measuring conservation is very simple

(matching feature vectors) and likely could be improved
with more sophisticated approaches that take into account
all significant environments simultaneously.

By applying this approach to newly determined struc-
tures of unknown function, we are able to identify likely
active site regions of enzymes and hypothesize about
residues involved in catalytic mechanism. We find that
the highest scoring residues tend to be histidine or
charged residues, near ion binding sites, and tightly
clustered. Since ion binding sites are not necessarily
catalytic sites, this may be a potential area of focus for
removing false positives. Lesser high scoring residues in
other proteins tend to cluster near the active site of the
protein. Obviously, performance of the method must be
taken into account, so specific residue predictions should
be considered hypotheses and not definitive.

In conclusion, the future for prediction of sites in new
folds is possible using a set of bioinformatic features
based on structure and evolution. We find that sequence
conservation, structure conservation, residue class, and
solvent accessibility represent the top features for
prediction. Because the training data are highly imbal-
anced, this is a very challenging and important problem.
As more features are identified, we believe that sensitivity
and precision will improve.

Materials and methods

Data set

The training data set is based on ASTRAL 40 v1.65 and contains
987 protein SCOP domains (Murzin et al. 1995), 396 SCOP
families, 236 SCOP superfamilies, and 189 SCOP folds. The
catalytic residues in this data set are the CSA, which is heavily
imbalanced, containing 2897 catalytic and 267,608 noncatalytic
residues. Although prediction with imbalanced data is an
important problem, in this study we did not try to optimize
performance by evaluating different approaches for imbalanced
data. To overcome this, we undersampled noncatalytic residues
for training data while keeping the original ratio on test data. In
particular, during data set construction, we included all catalytic

Table 3. Continued

PDB_ID CHAIN RES_NUM RES_TYPE SVM_SCORE PDB_TITLE

2GFQ B 140 H 3.83 STRUCTURE OF HYPOTHETICAL PROTEIN PH0006 FROM

PYROCOCCUSHORI KOSHII

1YIX B 7 H 3.81 CRYSTAL STRUCTURE OF YCFH, TATD HOMOLOG FROM

ESCHERICHIA COLI K12, AT 1.9 Å RESOLUTION

2A9V A 80 C 3.80 CRYSTAL STRUCTURE OF (NP_394403.1) FROM THERMOPLASMA

ACIDOPHILUM AT 2.45 Å RESOLUTION

1S3N B 297 H 3.78 STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF A

NOVEL ARCHAEAL PHOSPHODIESTERASE

The top residues are overwhelmingly associated enzymes with metal ion binding sites in the active site. Additionally, the residues are generally either
charged or histidine.
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residues from each protein domain and at most 100 noncatalytic
residues to prevent our system from being more influenced by
the long proteins. After this step, the training data set was still
imbalanced, and we overcame this by giving more weight to
catalytic residues during the training process. The weighting on
catalytic residues was done so that it has similar effect as having
the ratio of 1:6 between the number of catalytic and noncatalytic
residues in training data. This same ratio was used by the
Thornton group (Gutteridge et al. 2003).

Feature encoding

Four classes of features were evaluated, based on sequence,
sequence conservation, structure, and structure conservation. To

construct sequence-based features, we used a protocol similar
to those published for predicting protein phosphorylation sites
(Iakoucheva et al. 2004). For the window of residue type, we
considered window of size 21: 10 residues on the left, 10
residues on the right, and itself. After counting the frequency for
each residue type, the raw frequency was divided by the window
size. Beginning and ending residues do not have enough
flanking residues, and thus, amino acid counts were divided
by the appropriate window sizes to get relative frequencies.

Sequence conservation was evaluated using a position-
specific scoring matrix (PSSM) determined from the output of
PSI-BLAST (Altschul et al. 1997). To do this, the following
automated protocol was employed. Each sequence in ASTRAL
40 was queried against the NCBI NR database using the NCBI
blastpgp program. The output was parsed, and three scores were

Figure 7. Analysis of the top-ranked residues from the solved structural genomics targets. (A) The crystal structure of the hypothetical

protein aq_1665 from Aquifex aeolicus as determined by the Midwest Structural Genomics Center (pdb:1XM7 chain A). Here we

highlight the four top-scored residues: histidine 145 (SVM score of 4.5), aspartate 50 (3.5), histidine 111 (3.4), and aspartate 7 (3.3).

(B) The crystal structure of a hypothetical protein from Enterococcus faecalis V583 as determined by the Midwest Structural Genomics

Center (pdb:2AZ4 chain A). Here we highlight the top-scoring residues: aspartate 189 (4.2), histidine 94 (3.8), histidine 92 (3.5),

histidine 167 (3.3), and histidine 97 (3.2) along with the bound Zn2+ ions. (C) The crystal structure of YJJV, TATD Homolog from

Escherichia coli k12 as determined by the New York Structural Genomics Research Consortium (NYSGRC) (pdb:1ZZM chain A).

Again, the top residues are highlighted along with the bound ion. (D) The crystal structure of conserved hypothetical protein from

Pseudomonas aeruginosa PAO1 as determined by the Midwest Structural Genomics Center (pdb:1Z7A chain E). Here we highlight the

three top-scored residues: histidine 126 (SVM score of 3.1), histidine 259 (SVM score of 3.0), and glutamate 36 (SVM score of 2.3).
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extracted: a PSSM, a weighted observed percentage, and
information per position score of the sequence conservation of
the corresponding residue. For the sequence conservation of
adjacent residues, we considered the window of size 20 (left:
10, right: 10) using the information per position score. Since
N-terminal residues do not have left residues, we used an
average conservation score of the protein to fill in the left
residue scores. Similarly, we used the average for the right
residues for the C-terminal residues.

Features based on protein structure utilized the representation
described using S-BLEST (Mooney et al. 2005). A total of 264
atom-based structural properties are calculated in four radial
shells, each extending 1.875 Å from the Cb atom of the residue
are considered. The properties include atom-based features
(such as the number of carbon atoms in the shell), residue-
based features (such as the number of atoms associated with
alanine residues), secondary structure–based features, solvent
accessibility, charge, and others. The full feature list is
described previously (Bagley and Altman 1995) and is available
upon request from the authors.

Another set of structural features we used are the B-factor,
cysteine bridged pair information, solvent accessibility, and
secondary structure of a residue. The B-factor is extracted from
Ca atom of the residue from a PDB file. We used the definition
of a cysteine bridged pair as if the distance between their sulfur
atoms is within 2.5 Å. The solvent accessibility and secondary
structure features were extracted from DSSP output (Kabsch and
Sander 1983). Secondary structure classifications from DSSP
program were simplified to helix, sheet, or coil/other.

We also included a feature that quantified conservation
and uniqueness of the properties in the S-BLEST features.
S-BLEST calculates a Manhattan distance between two vectors
and determines a Z-score based on the distribution of distances
relative to the query in the database being used. This feature,
which we call the SCS, was the magnitude of the maximum
absolute valued Z-score between the query residue and the top
matched residue in ASTRAL 40 v1.65 using the previously
described S-BLEST method. In order to compute the SCS,
ideally, we need to construct a new database that does not
contain any protein domains which belong to the same SCOP
class (fold, superfamily, and family) for each protein in train-
ing, since these proteins will affect the value of the Z-score.
This was not computationally tractable, so instead, we used the
entire ASTRAL 40 v1.65 database and selected the top matched
residue that does not belong to the same SCOP class (fold,
superfamily, and family) in the training set. We found that this
compromise does not make a significant performance differ-
ence compared with the ideal experimental design (data not
shown).

Performance measures

The overall fraction of catalytic residues in our data set is 1.1%.
Considering this highly imbalanced nature, a simple prediction
accuracy, or equivalently error rate, is not a sufficient prediction
evaluation measure. Using a similar approach that was per-
formed previously (Gutteridge et al. 2003), more sensible measures
are computed from the following quantities: TP, number of
correctly classified catalytic residues; FP, number of noncatalytic
residues incorrectly predicted to be catalytic; FN, number of
catalytic residues incorrectly predicted to be noncatalytic; and
TN, number of correctly classified noncatalytic residues. Our
measure of performance was as follows: Sensitivity ¼ TP/(TP +
FN), and Precision ¼ TP/(TP + FP). We also use a ROC curve to

compare and visualize predictors’ performances. The ROC curve is
a two-dimensional plot of predictor performance (Fawcett 2003).
A single number summarization of ROC curve is its AUC. The
AUC of a predictor is a probability that the predictor ranks a
randomly selected positive sample higher than a randomly picked
negative sample. The area under the ROC curve is also used to
rank the features and identify the best features (Theodoridis and
Koutroumbas 1998).

SVM prediction

For SVM prediction (Vapnik 1995), we used a linear kernel
(Cristianini and Shawe-Taylor 1999). Throughout the experi-
ments, we used default regularization parameter (C). We
employed an SVM for prediction using the SVMlight and its
Matlab interface (Joachims 2002). Since each feature has a
different scaling, examples were normalized to [0, 1] interval.

Feature selection

The ROC curve has various utilities. One of them is to compute
a measure of class discrimination capability of a feature. That is,
for each feature, we rank the feature in a database and compute
the area under the ROC curve. This area is the score of the class
discrimination capability of the feature. Although the AUC
ranges in [0, 1], we adjusted the score by 1 � AUC if AUC < 0.5
since we were interested in relative ordering the samples of this
feature and doing this is equivalent to flipping the sign of the
samples in the corresponding feature. Therefore, the AUC score
ranges in [0.5, 1], and the higher the score the more discrim-
inating the feature is.

Structural genomics targets

Coordinate data for solved structural genomics targets were
extracted from the PDB, using the list of solved structures from
the TargetDB Web site (http://targetdb.pdb.org/). All residues in
all chains were run against the method.
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