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9. Lemmas and Proofs

Proof of Theorem 3.1. The only metric property not obviously satisfied by d is the triangle
inequality. Given arbitrary sets A,B,C ∈ X, we have

d(A,B) + d(B,C) = (|A \B|p + |B \ A|p)
1
p + (|B \ C|p + |C \B|p)

1
p

≥ ((|A \B|+ |B \ C|)p + (|B \ A|+ |C \B|)p)
1
p

≥ (|A \ C|p + |C \ A|p)
1
p

= d(A,C).

The first inequality holds due to Minkowski inequality. The second inequality can be deduced
from triangle inequality of the Manhattan distance on binary vectors. �
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Figure 9. The Venn diagram and cardinality related to sets A, B and C.

Proof of Theorem 3.2. As in the unnormalized case we only prove the triangle inequality.
Let A,B,C ∈ X be arbitrary sets. In a special case when at least one of |A ∪ B| = 0 and
|B∪C| = 0 holds, the triangle inequality holds. To avoid division by zero, we next assume all
denominators are positive; i.e., we only consider the cases when |A∪B| 6= 0 and |B∪C| 6= 0.
Let the cardinality of different sets shown in Figure 9 be denoted by a, b, . . ., g. Let τ =
|A ∪B ∪ C| = a+ b+ · · ·+ g and hp(x, y) = (xp + yp)1/p.
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dN(A,B) + dN(B,C) = hp(a+ d, b+ f)
τ − c + hp(b+ e, c+ d)

τ − a
≥ hp(a+ d, b+ f)

τ
+ hp(b+ e, c+ d)

τ

≥ hp(a+ d+ b+ e, b+ f + c+ d)
τ

= hp

(
a+ d+ b+ e

τ
,
b+ f + c+ d

τ

)

≥ hp

(
a+ d+ b+ e− b

τ − b ,
b+ f + c+ d− b

τ − b

)

≥ hp(a+ d+ e, f + c+ d)
τ − b

≥ hp(a+ e, f + c)
τ − b

= dN(A,C).

The second inequality holds due to Minkowski inequality. The third inequality holds since
we subtracted the same nonnegative number b from both the numerator and denominator of
the fraction with the fraction itself remaining in [0, 1] after the subtraction (the numerator
is nonnegative before and after the subtraction). Hence, dN is a metric. It follows that dN

is bounded in [0, 1] via the Minkowski inequality. �

Proof of Theorem 3.3 and Theorem 3.4. The metrics d and dN defined in Eqs. 6-7 can be
reduced to be applied on vectors in Rk by rewriting x = (x1, x2, . . . , xk) as a map f(t) :=∑
xi1i−1<t≤i, where 1(·) is an indicator function. Since d and dN are metrics, proved in

Theorem 3.5 and Theorem 3.6, we obtain that d and dN on Rk are also metrics. �

Lemma 9.1. For any two real functions f and g, we have (f + g)+ ≤ f+ + g+, and,
(f + g)− ≤ f− + g−.

Proof. We will prove (f + g)+ ≤ f+ + g+ first. Since

f+ + g+ = max(f, 0) + max(g, 0) ≥ f + g,

and
f+ + g+ = max(f, 0) + max(g, 0) ≥ 0,

we have that f+ + g+ ≥ max(f + g, 0) = (f + g)+.
Notice that f− = (−f)+. To prove (f + g)− ≤ f− + g−, we have (f + g)− = (−f − g)+ ≤

(−f)+ + (−g)+ = f− + g−. �

Lemma 9.2. For any real functions f , g we have

f+ + g+ = min(|f |, |g|)1{fg<0} + (f + g)+.
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Proof. For fg ≥ 0, it is not hard to see that f+ + g+ = (f + g)+. When fg < 0, without
loss of generality, suppose that f < 0 and g > 0. Then we have

f+ + g+ − (f + g)+ = g − (f + g)+

=




g, if |f | > |g|
−f, if |f | ≤ |g| = min(|f |, |g|).

�

Lemma 9.3. For any real functions f, g and h, we have
(f − g)+ + (g − h)+ − {max(|g|, |f − g|, |g − h|)−max(|f |, |h|, |f − h|)}+ ≥ (f − h)+.

Proof. By Lemma 9.2, it is equivalent to show
min(|f − g|, |g − h|)1{(f−g)(g−h)<0} ≥ {max(|g|, |f − g|, |g − h|)−max(|f |, |h|, |f − h|)}+.

Since min(|f − g|, |g − h|)1{(f−g)(g−h)<0} ≥ 0, it suffices to show that it is no less than
max(|g|, |f − g|, |g − h|)−max(|f |, |h|, |f − h|).

Consider the case (f − g)(g − h) ≥ 0 first. We have f ≥ g ≥ h or f ≤ g ≤ h. g is located
between f and h, therefore |g| ≤ max (|f |, |h|) and max(|f − g|, |g − h|) ≤ |f − h|. Then we
have

|g| −max(|f |, |h|, |f − h|) ≤ |g| −max(|f |, |h|) ≤ 0,
and

max(|f − g|, |g − h|)−max(|f |, |h|, |f − h|) ≤ max(|f − g|, |g − h|)− |f − h| ≤ 0.
This shows that

max(|g|.|f − g|, |g − h|)−max(|f |, |h|, |f − h|) ≤ 0 = min(|f − g|, |g − h|)1{(f−g)(g−h)<0}

When (f − g)(g − h) ≤ 0, we have the following two cases
(1) min(|f − g|, |g − h|) = |f − g|
(2) min(|f − g|, |g − h|) = |g − h|

For case 1, we want to show that |f − g| ≥ max(|g|, |g − h|)−max(|f |, |h|, |f − h|). This is
true since

|f − g| ≥ |g| − |f | ≥ |g| −max(|f |, |h|, |f − h|),
and

|f − g| ≥ |g − h| − |f − h| ≥ |g − h| −max(|f |, |h|, |f − h|).
Combining those two inequalities we get |f − g| ≥ max(|g|, |g − h|)−max(|f |, |h|, |f − h|).
For case 2, we want to show |g− h| ≥ max(|g|, |f − g|)−max(|f |, |h|, |f − h|). By the same
analogy, since

|g − h| ≥ |g| − |h| ≥ |g| −max(|f |, |h|, |f − h|),
and

|g − h| ≥ |f − g| − |f − h| ≥ |f − g| −max(|f |, |h|, |f − h|),
we have |g − h| ≥ max(|g|, |g − h|) − max(|f |, |h|, |f − h|). Therefore this inequality still
holds for (f − g)(g − h) ≤ 0. �
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Lemma 9.4. For any two real functions f and g, we have

max(f, g) = f + (g − f)+.

Lemma 9.5. Any Cauchy sequence {fn} in (L(R), dN) is bounded in L1; i.e.,
∫ |fn| dx < M

for some constant M > 0.

Proof. We instead prove the contrapositive version of the above statement. Suppose {fn} is
a sequence in (L(R), dN) that is unbounded in L1, or equivalently

∫ |fn| dx =∞ as n→∞.
Thus, we have

dN(fn, fm) =((
∫

(fn − fm)− dx)p + (
∫

(fn − fm)+ dx)p)
1
p

∫
max(|fn|, |fm|, |fm − fn|) dx

≥((
∫

(fn − fm)− dx)p + (
∫

(fn − fm)+ dx)p)
1
p

∫ |fm|+ |fn|) dx

For any integer N0 > 0, pick n to be N0 and we have that dN(fN0 , fm) is given by

((
∫

(fN0 − fm)− dx)p + (
∫

(fN0 − fm)+ dx)p)
1
p

∫ |fm|+ |fN0 |) dx
=((

∫
(Am −Bm)− dx)p + (

∫
(Am −Bm)+ dx)p)

1
p

where

Am = fN0∫ |fm|+ |fN0|) dx
, Bm = fm∫ |fm|+ |fN0|) dx

and {Am} and {Bm} are sequences of functions. Fixing N0 and sending n to ∞ we have
that

∫ |Am| dx→ 0 and
∫ |Bm| dx→ 1 as m→∞. Therefore, we could choose m > N0 such

that
∫ |Am| dx < 1/10 and

∫ |Bm| dx > 9/10. Then between
∫
B−m dx and

∫
B+

m dx there is at
least one greater than 9/20. Without loss of generality, suppose

∫
B−m dx > 9/20, then

dN(fN0 , fm) ≥ (
∫

(Am −Bm)+ dx)p)
1
p

=
∫

(Bm − Am)− dx
≥ ∫ (Bm)− dx− ∫ (Am)− dx
≥ ∫ (Bm)− dx− ∫ |Am| dx

>
7
20

With this we have shown that for any N0 > 0, there exist m,n ≥ N0 such that dN(fn, fm) >
7/20; i.e., {fn} is not a Cauchy sequence in (L(R), dN). Thus, we have proved the claim. �

Proof of Theorem 6.1. To show that d is a metric is analogous to the proof of Theorem 3.1.
Let A,B,C be arbitrary consistent subgraphs of the ontology. Instead of |A \ B|, we use∑

v∈A\B ia(v) and similarly for the other cardinalities. The proof follows line for line after
these substitutions to the proof of Theorem 3.1.
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To prove dN in Theorem 6.2 is a metric, we follow a similar argument to the proof of
Theorem 3.2. The analogues of a, b, c, d, e, f, g here are

a =
∑

v∈A\(B∪C)
ia(v), b =

∑

v∈B\(A∪C)
ia(v), c =

∑

v∈C\(A∪B)
ia(v), d =

∑

v∈A∩C\B
ia(v),

e =
∑

v∈A∩B\C
ia(v), f =

∑

v∈B∩C\A
ia(v), g =

∑

v∈A∩B∩C

ia(v).

With these substitutions, the proof is exactly the same as that of Theorem 3.2. Invoking
the Minkowski inequality, we obtain that

dN(F,G) ≤ ru(F,G) +mi(F,G)
∑

v∈F∪G ia(v) ≤
∑

v∈F∪G ia(v)
∑

v∈F∪G ia(v) = 1 .

Since dN is nonnegative, we obtain that dN ∈ [0, 1]. �

Proof of Theorem 3.5. Since dN is non-negative, the equations dN(f, g) = dN(g, f) and
dN(f, g) = 0 hold if and only if f = g almost everywhere, it suffices to show that d sat-
isfies the triangle inequality. Let f , g, and h be in L(R). Then we have

D(f, g) + D(g, h)

=
((∫

(f(x)− g(x))+dx

)p

+
(∫

(f(x)− g(x))−dx

)p) 1
p

+
((∫

(g(x)− h(x))+dx

)p

+
(∫

(g(x)− h(x))−dx

)p) 1
p

≥
((∫

(f(x)− g(x))+ + (g(x)− h(x))+dx

)p

+
(∫

(f(x)− g(x))− + (g(x)− h(x))−dx

)p) 1
p

≥
((∫

(f(x)− g(x) + g(x)− h(x))+dx

)p

+
(∫

(f(x)− g(x) + g(x)− h(x))−dx

)p) 1
p

≥
((∫

(f(x)− h(x))+dx

)p

+
(∫

(f(x)− h(x))−dx

)p) 1
p

= D(f, h).
Therefore, d is a metric. �

Proof of Theorem 3.6. It is easy to check that dN is non-negative, dN(f, g) = dN(g, f) and
dN(f, g) = 0 if and only if f = g almost everywhere. Therefore, it remains to be shown that
the inequality dN(f, g) + dN(g, h) ≥ dN(f, h) is satisfied.

Let f , g, and h be bounded functions in L(R). To begin, let us look at the trivial cases.
Define M(f, g) =

∫
max(|f |, |g|, |f − g|) dx and M∗(f, g, h) =

∫
max(|f |, |g|, |h|, |f − g|, |g −

h|, |f − h|) dx.
a. If

∫
max(|f |, |g|, |f − g|) dx = 0, then f = g almost everywhere. Consequently

dN(f, h) = dN(g, h) and dN(f, g) = 0, so the inequality holds.
b. If

∫
max(|f |, |h|, |f − h|) dx = 0, then dN(f, h) = 0, in which case the inequality is

true due to the non-negativity of dN .
c. If

∫
max(|g|, |h|, |g − h|) dx = 0, then g = h almost everywhere and dN(f, g) =

dN(f, h); thus, the triangle inequality still holds.
Next we consider the case where none of the three denominators is zero.

DN(f, g) +DN(g, h)
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= ((
∫

(f − g)+ dx)p + (
∫

(f − g)− dx)p)
1
p

M(f, g) + ((
∫

(g − h)+ dx)p + (
∫

(g − h)− dx)p)
1
p

M(g, h)

≥
((∫

(f − g)+ dx

M(f, g) +
∫

(g − h)+ dx

M(g, h)

)p

+
(∫

(f − g)− dx
M(f, g) +

∫
(g − h)− dx
M(g, h)

)p) 1
p

≥
((∫

(f − g)+ + (g − h)+ dx

M∗(f, g, h)

)p

+
(∫

(f − g)− + (g − h)− dx
M∗(f, g, h)

)p) 1
p

= (Ip + Jp)
1
p ,

where

I =
∫

(f−g)++(g−h)+ dx

M∗(f,g,h) and J =
∫

(f−g)−+(g−h)− dx

M∗(f,g,h) .

Let Γ(f, g, h) =
∫

(max(|g|, |f − g|, |g − h|) − max(|f |, |h|, |f − h|))+ dx. By subtracting
Γ(f, g, h) from the numerator and denominator of I at the same time, it follows that

I ≥
∫

(f − g)+ + (g − h)+ dx− Γ(f, g, h)
M∗(f, g, h) − Γ(f, g, h)

=
∫

(f − g)+ + (g − h)+ dx− Γ(f, g, h)
M(f, h)

≥
∫

(f − h)+ dx

M(f, h) .

The first of the above inequalities holds since we are subtracting a non-negative number no
greater than the non-negative numerator from the top and bottom while the fraction stays
in [0, 1]. The equality holds due to Lemma 9.4 and the last inequality due to Lemma 9.3.
By analogy it can be shown that

J ≥
∫

(f − h)− dx
M(f, h) .

Thus, we have dN(f, g) + dN(g, h) ≥ dN(f, h).
For general functions f, g, h ∈ L(R), we can exclude the set (|f | =∞)∪ (|g| =∞)∪ (|h| =
∞), since the set where the functions are infinite is of measure zero. Thus, the theorem
would proceed the same way since Lemma 9.2 and Lemma 9.3 still hold for |f |, |g|, |h| <∞.

We now show that dN ∈ [0, 1]. Since dN(·, ·) is nonnegative, we only need to show that it
is bounded by 1. Applying the Minkowski inequality we have that

(
(
∫

(f − g)+ dx)p + (
∫

(f − g)− dx)p
) 1

p

≤
∫

(f − g)+ dx+
∫

(f − g)− dx

=
∫
|f − g| dx.

Thus the numerator is bounded by the denominator and the fraction is no greater than 1.
With 0

0 := 0 for dN(·, ·), we have shown that this metric is in [0, 1]. �
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Proof of Proposition 4.1. Since the proposition holds for p = 1 and p =∞, we only consider
cases when p > 1. Consider x,y ∈ Rk. First we show that dM(x,y) ≤ d(x,y). We have that

dM(x,y)p =
∑
|xi − yi|p

=
∑

i:xi≥yi

|xi − yi|p +
∑

i:xi<yi

|xi − yi|p

≤ (
∑

i:xi≥yi

xi − yi)p + (
∑

i:xi<yi

yi − xi)p

= d(x,y)p

The inequality holds since the bases of the exponents are positive. Now we show the other
inequality holds, that is

d(x,y)p = (
∑

i:xi≥yi

xi − yi)p + (
∑

i:xi<yi

yi − xi)p

≤ {[k1/P ∗(
∑

i:xi≥yi

(xi − yi)p)1/p]p + [k1/P ∗(
∑

i:xi<yi

(yi − xi)p)1/p]p}

= kp/p∗ ∑ |xi − yi|p

= kp/p∗
dM(x,y)p,

with p∗ = p/(p−1). The inequality holds since |∑m
i=1 ai| = |(1, . . . , 1)·a| ≤ ‖(1, . . . , 1)‖p∗‖a‖p,

where ‖ · ‖p represents the Lp norm, thanks to Hölder’s inequality. �

Proof of Theorem 3.7. By definition, a metric space (X, d) is complete if all Cauchy se-
quences in X converge in X; that is, if the limit point of every Cauchy sequence in X
remains in X. Let us first consider a Cauchy sequence in (L(R), d), where for a given ε > 0,
there exists some N > 0 such that d(fn, fm) < ε for all n,m ≥ N ; i.e., (

∫
(fn − fm)− dx)p +

(
∫

(fn− fm)+ dx)p < εp. It follows that
∫

(fn− fm)− dx < ε and
∫

(fn− fm)+ dx < ε and thus∫ |fn − fm| dx < 2ε. Therefore, {fn} is a Cauchy sequence in L1 space, where the metric in
L1 is d(f, g) =

∫ |f − g| dx for integrable functions and thus fn converges to a function f in
L1 by the completeness of L1 space.

Now we look at a Cauchy sequence {fn} in (L(R), dN). By Lemma 9.5 we have that∫ |fn| dx ≤ M for all n for some positive constant M . It follows that for any given ε > 0,
there exists some integer N0 > 0 such that dN(fn, fm) < ε for all n,m ≥ N0, or in other
words, d(fn, fm) < 2Mε. Therefore, {fn} is Cauchy in (L(R), d) and by previous results we
know that {fn} has a limit in L1 and therefore (L(R), dN) is complete. �

10. Real-valued and text data

Real-valued data sets were downloaded from UCI machine learning repository. The three
numbers in the parenthesis after each data set listed below correspond to (number of classes,
number of instances, number of features): airfoil (2, 1503, 5), banknote (2, 1372, 4), car-
diotocography (10, 2126, 21), concrete (2, 1030, 8), eyestate (2, 14980, 14), faults (7, 1941,
27), fertility (2, 100, 9), gas (6, 13910, 128), glass (6, 214, 10), housing (2, 506, 13), iono-
sphere (2, 351, 34), iris (3, 150, 4), landsat (6, 6435, 36), leaf (30, 340, 14), pageblock (5,
5473, 10), pendigits (10, 10992, 16), pima (2, 768, 8), retinopathy (2, 1151, 19), seeds (3,
210, 7), segment (7, 2310, 19), shuttle (7, 58000, 9), sonar (2, 208, 60), spambase (2, 4601,
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57), transfusion (2, 748, 4), vertebral (2, 310, 6), waveform (3, 5000, 40), wdbc (2, 569, 30),
wilt (2, 4839, 5), winequality (7, 6497, 11), yeast (10, 1484, 8). Concrete and housing were
converted to binary classification tasks based on the target mean.

Among the ten text document data sets, lifesci5 (5, 9000, 52757) was extracted from a col-
lection of abstracts from 5 life sciences journals: Scientific Reports, Oncotarget, Proceedings
of the National Academy of Sciences of the United States of America, ACS Applied Materials
and Interfaces and PloS One, obtained from the Europe PMC life science database. As for
reuters (4, 2065, 8943), documents were collected by selecting the following four topics ex-
clusively: “interest”, “trade”, “grain” and “crude”. Each of these data sets was pre-processed
by stop-word removal followed by Porter stemming. The remaining pre-processed data sets
were webkb (4, 2803, 7288) downloaded from (Cardoso-Cachopo, 2007), 20newsgroups (20,
4000, 130107) from scikit-learn python library, moviereview (2, 2000, 39659) from (Pang and
Lee, 2004), farm-ads (2, 4143, 54877), NIPS (4, 5811, 11463), TTC3600 (6, 3600, 5692) from
the UCI Machine Learning Repository, sdm06 (27, 930, 99899) from (Dalkilic et al., 2006)
and bbc (5, 2225, 9635) from (Greene and Cunningham, 2006). Note that for the NIPS data
set, we made 4 classes of papers according to their publication year: 1987-1994, 1995-2001,
2002-2008, 2009-2015. All text document data sets used tf-idf as features.

11. Protein function data

Protein function data were downloaded from the UniProt database (July 2015). In par-
ticular, we collected protein functions for the following model organisms where sufficient an-
notations are available: Homo sapiens, Mus musculus, Arabidopsis thaliana, Saccharomyces
cerevisiae, and Escherichia coli. Only those annotations with (experimental) evidence codes
EXP, IDA, IMP, IPI, IGI, IEP, TAS, and IC were considered. Table 1 summarizes the
data sets: here the genome size corresponds to the total number of proteins available for
each species in UniProt. The following three columns show the number of proteins that are
annotated in the three domains of Gene Ontology accordingly.

Organism Genome size MFO BPO CCO
H. sapiens 20,193 11,979 11,398 12,691

M. musculus 16,733 6,728 7,702 7,322
A. thaliana 14,305 4,266 5,749 5,950
S. cerevisiae 6,720 4,051 4,676 4,102

E. coli 4,433 2,272 2,331 2,119
Table 1. Data set sizes for the five organisms used in this work. The genome
size refers to the number of protein sequences available in UniProt for each
species. Other numbers refer to the proteins with experimental annotations in
each of the three concept hierarchies.

The conditional probability tables were estimated using the maximum likelihood approach
from the entire set of functionally annotated proteins in UniProt. This set included 72977
proteins from 1576 species with MFO terms, 92874 proteins from 1503 species with BPO
terms, and 89693 proteins from 862 species with CCO terms.
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12. Calculation of protein sequence similarity

The sequence similarity of two protein sequences was measured as the ratio of the num-
ber of identical characters in the alignment and the length of the longer protein sequence.
Sequence alignment was obtained using a Needleman-Wunsch algorithm with BLOSUM62
similarity matrix, gap opening penalty of 11 and gap extension penalty of 1.

13. Phylogenetic clustering

The functional phylogenetic trees with respect to a group of organisms are generated using
single-linkage hierarchical clustering (Tan et al., 2006). This algorithm starts by considering
every data point (species) to be a cluster of one element and in each step merges the two
closest clusters. The algorithm continues until all original data points belong to the same
cluster. The distance between species is based on pairwise distances between functionally
annotated proteins as described below. For simplicity, we use normalized semantic distance
from Eq. 10 with p = 1 in all experiments.

Without loss of generality, we illustrate the species distance calculation by showing how
to compute the distances between A. thaliana (A) and all other organisms using protein
function data only. An important challenge in this task arises from unequal genome sizes
as well as unequal fractions of experimentally annotated proteins in each species (Table 1),
making most distance calculation techniques unsuitable for this task. We therefore carry out
sampling to compare species using a fixed yet sufficiently large set of N proteins from each
species. The algorithm first samples (with replacement)N = 1000 proteins from each species.
It then counts the number of times the proteins from E. coli (E), H. sapiens (H), M. musculus
(M) and S. cerevisiae (Y) are functionally most similar to proteins in A. thaliana, with ties
resolved uniformly randomly. These counts are used to calculate the directional distances
between A. thaliana and the remaining four species. The procedure is repeated B = 1000
times with different bootstrap samples to stabilize the results. The details of the algorithm
are shown in Algorithm 1.

We experimented with clustering using single linkage, complete linkage, and group-average
strategies for computing distances between clusters. We noticed little change in the resulting
functional phylogenies for either ontology. There was also no dependence on the selection
of N in Algorithm 1, where we evaluated N = 500, N = 1000, and N = 1500. Note that
N was required to be smaller than the smallest set in Table 1, which was E. coli in each
ontology.

14. Additional results

We carried out additional experiments in order to further evaluate proposed distance func-
tions. These experiments investigated the influence of data normalization and performance
assessment criteria. Figure 10-14 show the compairison against both metrics and non-metrics.
The normalization techniques we use include: (i) z-score, i.e., standardization per feature (ii)
min-max, i.e., re-scaling each feature to be within [0, 1] (iii) unit, i.e., re-scaling each data
point to the unit length.

Figures 10-13 show the number of bootstrapped wins for all dissimilarity functions over
30 real-valued data sets under various normalizations. The top-performing distance measure
on these relatively low-dimensional problems was the cityblock distance, which belongs to
both Lp and dp family when p = 1, followed by d2 and d2

N metrics. Importantly, we also find



10 A NEW CLASS OF METRICS FOR LEARNING ON REAL-VALUED AND STRUCTURED DATA

Algorithm 1: (from Section 5.2 ) Computing distances from A. thaliana (A) to
E. coli (E), H. sapiens (H), M. musculus (M), and S. cerevisiae (Y) respectively.

Input : Sets of protein functions X = {ProtX
k , k = 1, . . . , nX}, where nX is

the number of functionally annotated proteins in organism X, for
X ∈ S = {A, E, H, M, Y } and a metric dN on ontologies.

Output: Distances dAE , dAH , dAM and dAY .
begin

Initialize the bootstrapping sample size N > 0 and iteration counts B > 0.
for b = 1, 2, . . . B do

Bootstrap N proteins ProtX
i , i = 1, 2, . . . , N from each organism

X ∈ S.;
for i = 1, 2, . . . , N do

for X ∈ S −A do
d(ProtA

i , X) := min
j∈{1,...,N}

dN (ProtA
i , ProtX

j );

end
I(i) = argmin

X∈S−A
d(ProtA

i , X)

end
for X ∈ S −A do

dX(b) = 1− 1
N · |{I == X}|;

end
end
for X ∈ S −A do

dAX = 1
B

∑B
b=1 dX(b);

end
end

that the dp and dp
N metrics outperform their Lp counterparts when p > 1. Figure 14 shows

another tournament plot for text document data sets under the unit normalization. Similar
to Figure 2 in the main text, we see that d1

N and d2
N are among the best performing functions

over all metric and non-metric dissimilarities. The normalized Euclidean distance performed
well among metrics and Spearman’s distance and normalized cityblock performed well among
non-metrics. These results are provided as a spreadsheet in Electronic Supplementary Ma-
terials. Although the effect of data normalization deserves attention, all conclusions reached
in the main portion of the paper remain unchanged.
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Figure 10. Comparison between dissimilarities for real-valued data using z-
score normalization. The functions are color coded as follows: Lp family (light
blue), normalized Lp family (dark blue), dp family (light green), normalized
dp family (dark green), cosine distance and the correlation coefficients (light
red). All metrics are labeled by an asterisk.

Figure 11. Comparison between dissimilarities for real-valued data using
min-max normalization. The functions are color coded as follows: Lp family
(light blue), normalized Lp family (dark blue), dp family (light green), nor-
malized dp family (dark green), cosine distance and the correlation coefficients
(light red). All metrics are labeled by an asterisk.

Figure 12. Comparison between dissimilarities for real-valued data using
unit normalization. The functions are color coded as follows: Lp family (light
blue), normalized Lp family (dark blue), dp family (light green), normalized
dp family (dark green), cosine distance and the correlation coefficients (light
red). All metrics are labeled by an asterisk.
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Figure 13. Comparison between dissimilarities for real-valued data using
z-score normalization and followed by unit normalization. The functions are
color coded as follows: Lp family (light blue), normalized Lp family (dark blue),
dp family (light green), normalized dp family (dark green), cosine distance and
the correlation coefficients (light red). All metrics are labeled by an asterisk.

Figure 14. Comparison between dissimilarities for text data using unit nor-
malization. The functions are color coded as follows: Lp family (light blue),
normalized Lp family (dark blue), dp family (light green), normalized dp family
(dark green), cosine distance and the correlation coefficients (light red). All
metrics are labeled by an asterisk.
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