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Abstract—Machine learning methods are used to discover complex nonlinear relationships in biological and medical data. However,

sophisticated learning models are computationally unfeasible for data with millions of features. Here, we introduce the first feature

selection method for nonlinear learning problems that can scale up to large, ultra-high dimensional biological data. More specifically, we

scale up the novel Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso) to handle millions of features with tens of thousand

samples. The proposed method is guaranteed to find an optimal subset of maximally predictive features with minimal redundancy,

yielding higher predictive power and improved interpretability. Its effectiveness is demonstrated through applications to classify

phenotypes based on module expression in human prostate cancer patients and to detect enzymes among protein structures. We

achieve high accuracy with as few as 20 out of one million features—a dimensionality reduction of 99.998 percent. Our algorithm can

be implemented on commodity cloud computing platforms. The dramatic reduction of features may lead to the ubiquitous deployment

of sophisticated prediction models in mobile health care applications.

Index Terms—Feature selection, kernel methods, Hilbert-Schmidt independence criterion, biomarker discovery
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1 INTRODUCTION

LIFE sciences are going through a revolution thanks to the
possibility to collect and learn from massive biological

data [1]. Efficient processing of such “big data” is extremely
important for many medical and biological applications,

including disease classification, biomarker discovery, and
drug development. The complexity of biological data is dra-
matically increasing due to improvements in measuring
devices such as next-generation sequencers, microarrays
and mass spectrometers [2]. As a result, we must deal with
data that includes many observations (hundreds to tens of
thousands) and even larger numbers of features (thousands
to millions). Machine learning algorithms are charged with
learning patterns and extracting actionable information
from biological data. These techniques have been used suc-
cessfully in various analytical tasks, such as genome-wide
association studies [3] and gene selection [4].

However, the scale and complexity of big biological data
pose new challenges to existing machine learning algo-
rithms. There is a trade-off between scalability and com-
plexity: linear methods scale better to large data, but cannot
model complex patterns. Nonlinear models can handle
complex relationships in the data but are not scalable to the
size of current datasets. In particular, learning nonlinear
models requires a number of observations that grows expo-
nentially with the number of features [4], [5]. Biological data
generated by modern technology has as many as millions of
features, making the learning of nonlinear models unfeasi-
ble with existing techniques. To make matters worse, cur-
rent nonlinear approaches cannot take advantage of
distributed computing platforms.

A promising approach to make nonlinear analysis of big
biological data computationally tractable is to reduce the
number of features. This method is called feature selection
[4]. Biological data is often represented by matrices where
rows denote features and columns denote observations.
Feature selection aims to identify a subset of features (rows)
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to be preserved, while eliminating all others. There are two
reasons why the predictive capability of the data may be
preserved or even improved when many features are
excluded. First, measurements generate many features auto-
matically and their quality is hard to control [6]. Second,
biological features are often highly redundant, so that the
number of useful features is small. For example, among mil-
lions of Single Nucleotide Polymorphisms (SNPs), only a
few are useful to predict a certain disease [5]. Although
state-of-the-art feature selection algorithms, such as mini-
mum redundancy maximum relevance (mRMR) [7], have been
proven to be effective and efficient in preparing data for
many tasks, they cannot scale up to biological data with mil-
lions of features. Moreover, mRMR uses greedy search strat-
egies such as forward selection/backward elimination and
tends to produce locally optimal feature sets.

Here we propose a novel feature selection framework for
big biological data that makes it possible for the first time to
identify very few relevant, non-redundant features among
millions. The proposed method is based on two compo-
nents: Least Angle Regression (LARS), an efficient feature
selection method [8], and the Hilbert-Schmidt Indepen-
dence Criterion (HSIC), which enables the selection of fea-
tures that are non-linearly related [9]. These properties are
combined to obtain a method that can exploit nonlinear fea-
ture dependencies efficiently, and furthermore enables dis-
tributed implementation on commodity cloud computing
platforms. We name our algorithm Least Angle Nonlinear
Distributed (LAND) feature selection. Experiments demon-
strate that the proposed method can reduce the number of
features in real-world biological datasets from one million
to tens or hundreds, while preserving or increasing predic-
tion accuracy for biological applications.

The following sections present the proposed LAND
method in detail and show performance evaluation of LAND
on three large, high-dimensional datasets related to the prob-
lems of discovering mutations in the tumor suppressor pro-
tein p53, classifying cancer phenotypes in a cohort of human
prostate cancer patients, and detecting enzymes among pro-
tein structures. While existing feature selection methods can-
not consider nonlinear dependencies among features in these
problems, we show that our approach can reduce the
dimensionality by five orders ofmagnitude.

These results are achieved in minutes to hours of cluster
computing time. The selected features are relevant and non-
redundant, making it possible to obtain accurate and inter-
pretable models that can be run on a laptop computer.

Contribution:

� We scale up the novel Hilbert-Schmidt Indepen-
dence Criterion Lasso (HSIC Lasso) [10] to handle
ultra high-dimensional and large-scale datasets. To
the best of our knowledge, this is the first minimum
redundancy maximum relevance feature selection
method that can handle tens of thousand data sam-
ples with millions of features.

� Wepropose the first implementation of nonlinear fea-
ture selection on distributed computing platforms.

� We demonstrate that LAND feature selection outper-
forms state-of-the-art methods on three real-world,
large, high-dimensional datasets.

2 RELATED WORK

In this section, we review existing nonlinear feature selec-
tion methods and show their drawbacks.

Maximum Relevance (MR) feature selection is a popular
approach that selects m features with the largest relevance
to the output [7]. The feature screening method [11] is also
an MR-method. Usually, mutual information and kernel-
based independence measures such as HSIC are used as rel-
evance score [9]. MR-based methods are simple yet efficient
and can be easily applicable to high-dimensional and large
sample problems. However, since MR-based approaches
only use input-output relevance and not use input-input
relevance, they tend to select redundant features, so that the
selected features can be very similar to each other. This may
not help in improving overall classification/regression
accuracy and interpretability.

Minimum Redundancy Maximum Relevance [7] was
proposed to deal with the feature redundancy problem; it
selects features that have high relevance with respect to an
output and are non-redundant. It has been experimentally
shown that mRMR outperforms MR feature selection meth-
ods [7]. Moreover, there exists an off-the-shelf C++ imple-
mentation of mRMR, and it can be applicable to a large and
high dimensional feature selection. Fast Correlation Based
Filter (FCBF) can also be regarded as an mRMR method,
which uses symmetric uncertainty to calculate dependen-
cies of features and finds the best subset via backward selec-
tion with sequential search [12]. It has also been reported
that FCBF compares favorably with mRMR [13]. However,
both mRMR and FCBF use greedy search strategies, such as
forward selection/backward elimination, which tend to
produce locally optimal feature sets.

Convex relaxed versions of mRMR called Quadratic Pro-
gramming Feature Selection (QPFS) [14] and spectral relaxa-
tion (SPEC) [15] were proposed to obtain a globally optimal
feature set. An advantage of QPFS and SPEC over mRMR is
that they can find a globally optimal solution by just solving a
QP problem. The authors showed that QPFS compares favor-
ably with mRMR for large sample size but low-dimensional
cases (e.g., d < 103 and n > 104). However, QPFS and SPEC
tend to be computationally expensive for large and high-
dimensional cases, since they need to compute dðd� 1Þ=2
mutual information scores. A Nystr€om approximation
approachwas proposed to deal with the computational prob-
lem in QPFS [14]. It has been shown experimentally that
QPFS with Nystr€om approximation compares favorably with
mRMR both in accuracy and time. However, for large and
high-dimensional problems, the computational cost for
mutual information is still very high.

Feature selection based on forward/backward elimina-
tionwith HSIC (FOHSIC/BAHSIC) is also awidely used fea-
ture selection method [16]. An advantage of HSIC-based
feature selection over mRMR is that the HSIC score can be
accurately estimated. Moreover, HSIC can be implemented
very easily. However, similar to mRMR, features are selected
using a greedy search algorithm leading to locally optimal
feature sets. HSFS [17] is a continuously relaxed version of
FOHSIC/BAHSIC, designed to obtain a better feature set
that could be solved by limited-memory BFGS (L-BFGS) [18].
However, HSFS is a non-convex method; restarting from
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many different initial points would be necessary to select
good features, which is computationally expensive.

For small and high-dimensional feature selection prob-
lems (e.g., n < 100 and d > 104), ‘1 regularized approaches
such as Lasso are useful [19], [20]. In addition, Lasso is known
to scale well with both number of samples and dimensional-
ity [19], [20]. However, Lasso can only capture linear depen-
dencies between input features and output values. HSIC
Lasso was proposed recently to handle non-linearity [10]. In
HSIC Lasso, with specific choices of kernel functions, non-
redundant features with strong statistical dependence on the
output values can be found in terms of HSIC by simply solv-
ing a Lasso problem. Although empirical evidence shows
that HSIC Lasso outperforms most existing feature selection
methods [10], in general HSIC Lasso tends to be expensive
compared to simple Lasso when the number of samples
increases. Moreover, the statistical properties of HSIC Lasso
are not well studied. Recently, a fewwrapper feature selection
methods were proposed, including the feature generating
machine [21] and an SVM based approach [22]. These meth-
ods are state-of-the-art feature selection methods for high-
dimensional and/or large-scale data. However, wrapper
methods are computationally expensive for ultra high-
dimensional and large-scale datasets.

Sparse Additive Models (SpAM) are useful for high-
dimensional feature selection problems [23], [24], [25], [26]
and can be efficiently solved by a backfitting algorithm [23],
resulting in globally optimal solutions. Also, statistical prop-
erties of the SpAM estimator are well studied [23]. A poten-
tial weakness of SpAM is that it can only deal with additive
models and may not work well for non-additive models.
Hierarchical Multiple Kernel Learning (HMKL) [27], [28] is a
nonlinear feature selectionmethod that can fit complex func-
tions such as non-additive functions. However, the computa-
tion cost of HMKL is rather expensive. In particular, since
HMKL searches among ðmþ 1Þd combinations of kernels (m
is the total number of selected kernels), the computation cost
heavily depends on the dimensionality d.

3 LEAST ANGLE NONLINEAR DISTRIBUTED

FEATURE SELECTION

We first formulate the supervised feature selection problem
and propose the Least Angle Nonlinear Distributed (LAND)
feature selection.

3.1 Problem Formulation

Let XX ¼ ½xx1; . . . ; xxn� ¼ ½uu1; . . . ; uud�> 2 Rd�n denote the input
data, a matrix where a column xxi 2 Rd represents an obser-
vation vector composed of d elements (features) and a row
uuj 2 Rn represents a feature vector composed of n elements
(observations). Let yy ¼ ½y1; . . . ; yn�> 2 Rn denotes the output
data or labels so that yi 2 Y is the label for xxi. The output
domain Y can be either continuous (as in regression prob-
lems) or categorical (as in classification problems).

The goal of supervised feature selection is to find m fea-
tures (m � d) that are most relevant for predicting the out-
put yy for observationsXX.

To efficiently solve a large and high-dimensional feature
selection problem, next we propose a nonlinear extension of
LARS [8] leveraging HSIC [9]. Then, we introduce an

approximation to reduce the memory and computational
requirements of the algorithm. This approximation enables
our feature selection method to be deployed on a distrib-
uted computing platform, scaling up to big biological data.

3.2 HSIC Lasso with Least Angle Regression
(LAND)

Let us define the kernel (similarity) matrix of the kth feature
observations

½KKðkÞ�ij ¼ Kðuki; ukjÞ; i; j ¼ 1; . . . ; n;

and outputs

½LL�ij ¼ Lðyi; yjÞ; i; j ¼ 1; . . . ; n;

where uki is the ith element of kth feature vector uuk and
Kðu;u0Þ andLðy; y0Þ are kernel functions. In principle, any uni-
versal kernel function such as the Gaussian or Laplacian ker-
nels can be used [9]. Here, we first normalize feature uu to have
unit standard deviation and then use theGaussian kernel

Kðu;u0Þ ¼ exp �ðu� u0Þ2
2s2

u

 !
;

where su is the kernel width.
For the outputs, in regression cases (y 2 R) we similarly

normalize y to have unit standard deviation and then use
the Gaussian kernel

Lðy; y0Þ ¼ exp �ðy� y0Þ2
2s2

y

 !
:

In this paper, we use su ¼ 1 and sy ¼ 1. In classification
cases (i.e., y is categorical) we use the delta kernel, which
has been shown to be useful for multi-class problems [16]:

Lðy; y0Þ ¼ 1=ny if y ¼ y0

0 otherwise;

�
where ny is the number of observations in class y.

HSIC Lasso [10] is formulated as an optimization problem:

min
aa2Rd

eLL�
Xd
k¼1

ak
eKKðkÞ

�����
�����
2

F

þ �kaak1;

s:t: a1; . . . ;ad � 0;

(1)

where � � 0 is a regularization parameter, k � k1 is the ‘1

norm, k � kF is the Frobenius norm (kMMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðMMMM>Þ

q
),

and eKK and eLL are the normalized kernel matrices such that
11>n eKK11n ¼ 11>n eLL11n ¼ 0 and k eKKk2F ¼ keLLk2F ¼ 1. In this paper,
we employ least angle regression [8] to solve Eq. (1) (See
Algorithm 1), and we name this LARS variant Least Angle
Nonlinear Distributed (LAND) feature selection. Note that,
LAND is a LARS variant of the novel Hilbert-Schmidt Inde-
pendence Criterion Lasso (HSIC Lasso) [10], [29]. The differ-
ence between HSIC Lasso and LAND is the optimization
technique. In LAND, since we select features one by one,
we find a local optimal set. However, in practice, we found
that feature selection performance of LAND and HSIC
Lasso is basically equivalent (See experimental section).

1354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 7, JULY 2018



The solution of the LAND problem enables the selection
of the most relevant, least redundant features. To illustrate
why, we can rewrite the objective function in Eq. (1) as:

1� 2
Xd
k¼1

akNHSICðuuk; yyÞ þ
Xd
k;l¼1

akalNHSICðuuk; uulÞ; (2)

where NHSICðuu; yyÞ ¼ trð eKKeLLÞ is the normalized version of
HSIC [30], an independence measure such that NHSICðuu;
yyÞ ¼ 1 if uu ¼ yy and NHSICðuu; yyÞ ¼ 0 if and only if the two
random variables uu and yy are independent (see proof in Sec-
tion 3.5). The un-normalized HSIC was employed in the
original paper [10]. However, HSIC takes some positive
value when input and output variables are dependent. That
is, HSICðuuk; yyÞ > HSICðuuk0 ; yyÞ may not mean that uuk is
more strongly associated with yy than uuk0 . Therefore, it is nat-
ural to normalize HSIC for feature selection problems.

If output yy has high dependence on the kth feature uuk,
NHSICðuuk; yyÞ is large and thus ak should also be large, mean-
ing that the feature should be selected. On the other hand, if
uuk and yy are independent, NHSICðuuk; yyÞ is close to zero; ak

should thus be small and the kth feature will not be selected.
Furthermore, if uuk and uul are strongly dependent on each
other, NHSICðuuk; uulÞ is large and thus either ak or al will be
small; only one of the redundant featureswill be selected.

In practice, LAND iteratively selects non-redundant fea-
tures with a strong relevance for determining the output. To
select the kth feature we first need to consider its relevance
with respect to the output, indicated by NHSICðuuk; yyÞ. Sec-
ond, a feature is discounted based on its redundancy with
respect to previously selected features, given byP

i:ai > 0 aiNHSICðuuk; uuiÞ. Hence we define the selection score
of the kth feature as ck ¼ NHSICðuuk; yyÞ �

P
i:ai > 0 aiNHSIC

ðuuk; uuiÞ. After the feature is selected, we update the a

coefficients.
A key challenge of solving problem (1) is that it requires

huge memory (Oðdn2Þ) to store all kernel matrices eKKðkÞ. For
example in the enzyme dataset described below (d ¼
1,062,420, n ¼15,328), the naive implementation requires
more than a petabyte ofmemory, which is not feasible.More-
over, the computing time for matrix multiplications scales as
Oðmdn3Þ, making it unfeasible when both d and n are large.
We address these issues by applying a kernel approximation.

3.3 Nystr€om Approximation for NHSIC

The Nystr€om approximation [31] allows us to rewrite
NHSICðuu; yyÞ ¼ trð eKKeLLÞ 	 trðFFFF>GGGG>Þ, where, in the regres-
sion case,

FF ¼ GGKKnbKK
�1=2
bb =ðtrððKK�1=2

bb KK>
nbKKnbKK

�1=2
bb Þ2ÞÞ1=4;

GG ¼ GGLLnbLL
�1=2
bb =ðtrððLL�1=2

bb LL>
nbLLnbLL

�1=2
bb Þ2ÞÞ1=4:

Here, FFFF> is a low-rank approximation of eKK, such that
KKnb 2 Rn�b and ½KKnb�ij ¼ Kðui; ub;jÞ, where uub 2 Rb is a basis
vector (see the experimental section for more details). Anal-
ogously,KKbb 2 Rb�b, LLnb 2 Rn�b, and LLbb 2 Rb�b. The param-
eter b is an upper bound on the rank of the KKnb and LLnb

matrices. The higher b, the better the approximation, but the
higher the computational and memory costs. If the number
of observations n is very large, we can make the problem
tractable by using b � n without sacrificing the predictive

power of the selected features, as shown the next section.
The resulting complexity of kernel computation and multi-
plication for selecting m features is Oðdbnþmdb2nÞ ¼
Oðmdb2nÞ. Moreover, for each dimension, we only need to
store the FF 2 Rb�n matrix, yielding space complexityOðdbnÞ.
The approximation reduces the overall time complexity of
the algorithm by a factor Oðn2=b2Þ and the memory
requirements by a factor Oðn=bÞ (see Table 1). Note that
the original HSIC Lasso formulation in Eq. (1) can find a
globally optimal solution without the Nystr€om approxima-
tion. However, in practice, since each kernel Gram matrix
(i.e., KKðkÞ) is computed from only one feature, we can
accurately approximate each kernel Gram matrix by the
Nystr€om approximation. Thus, we can empirically find a
good solution if we set the number of bases in the Nystr€om
approximation relatively large (in this paper, we found b =
10, 20 works well).

In the classification case, we can use the above technique
to approximate the kernel matrix FF and compute GG as

GGk;j ¼
1ffiffiffiffi
nk

p if k ¼ yj

0 otherwise;

(
where GG 2 RC�n and C is the number of classes. The
computational complexity of kernel computation and multi-
plication is Oðmbdnðbþ CÞÞ and the memory complexity is
Oðdnðbþ CÞÞ. These too are dramatic reductions in compu-
tational time and memory.

3.4 Distributed Computation

While the Nystr€om approximation is useful for data with
many observations (large n), the computational cost of
LAND makes it unfeasible on a single computer for ultra
high-dimensional cases, i.e., when the number of features is
extremely large (e.g., d � 106). Fortunately, we can compute
the kernel matrices fFFkgdk¼1 in parallel. The selection scores
ck can be computed independently as well. These properties
make it possible to further speed up LAND with a distrib-
uted computing framework. The resulting computational
complexity is Oðmdb2n=MÞ, whereM is the number of map-
pers (Table 1).

The proposed LAND algorithm is implemented on a
cluster for scalability to large datasets. Map-Reduce is a
widely adopted distributed computing framework. It con-
sists of a map procedure that breaks up the problem into
many small tasks that can be performed in parallel, and dis-
tributes these tasks to multiple computing nodes (mappers).
A reduce procedure then is executed on multiple nodes
(reducers) to aggregate the computed results. For example,
we denote the map function with inputs fFFkgdk¼1; GG and the
corresponding reduce function as

TABLE 1
Summary of Computational Complexity and Memory Size

of Different Implementations of LAND

Method Kernel Multiplication Memory

Na€ıve Oðdn2Þ Oðmdn3Þ Oðdn2Þ
Nystr€om OðdbnÞ Oðmb2dnÞ OðdbnÞ
Map-Reduce Oðdbn=MÞ Oððmb2=MÞdnÞ OðdbnÞ
The total time complexity is obtained by adding the kernel computation and
multiplication times, which are dominated by the latter.
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mapðfFFkgdk¼1; GG : hk; trððFF>
k GGÞ2ÞiÞ

reduceðhk; trððFF>
k GGÞ2Þi : fk ¼ trððFF>

k GGÞ2ÞÞ
where the map function returns key-value pairs and the
reduce function stores the key-value pairs into a vector fk.

We employ two Map-Reduce frameworks. Hadoop
(hadoop. apache.org) is used for computing FFk’s in the
Nystr€om approximation. Spark (spark.apache.org) reduces
the data access cost by storing intermediate results in mem-
ory, and is used for the iteration operations. Our Map-
Reduce implementation is shown in Algorithm 1.

Algorithm 1. LAND (Map-Reduce Spark Version)

Initialize: aa ¼ 00d, A ¼ ½� (active set), and I ¼ f1; 2; . . . ; dg
(non-active set).
Compute GG and store it in memory.
/* Compute fFFkgdk¼1 and store them in memory. */
fFFkgdk¼1 ¼ mapðfuukgdk¼1 :<k; FFk>Þ

/* Compute NHSICðuuk; yyÞ */
mapðfFFkgdk¼1; GG :<k; trðFF>

k GGÞ2>Þ
reduceð<k; trððFF>

k GGÞ2Þ>: fk ¼ trððFF>
k GGÞ2ÞÞ

/* NHSIC coefficient matrix */
RR ¼ ½�
/* Selectm features */
while jAj < m do
/* Compute ck ¼ NHSICðuuk; yyÞ �

Pd
i¼1 aiNHSICðuuk; uuiÞ */

cc ¼ ff �RRaaA

Find feature index: j ¼ argmaxccI ck > 0
Update sets: A ¼ ½A j�; I ¼ Inj
Update coefficients:

aaA ¼ aaA þ bmQQ�1
A 11;

½QQA�i;j ¼ NHSICðuuA;i; uuA;jÞ

bm ¼ min
m

9‘ 2 I : ecc‘ ¼ ccA
ccA ¼ 00;

�

/* Compute fNHSICðuuj; uukÞgdk¼1 */

mapðfFFkgdk¼1; FFj :<k; trðFF>
k FFjÞ2>Þ

reduceð<k; trðFF>
k FFjÞ2>: rk;j ¼ trðFF>

k FFjÞ2>Þ
RR ¼ ½RR rrj�

end while

In Section 4.4, we use b ¼ 20 for the p53 data and the
prostate cancer data, and b ¼ 10 for the enzyme data.

3.5 Relation to High-Dimensional Feature
Screening Method

Let us establish a relation between the proposed method,
LAND, and the feature screening method [2]. Feature
screening is a maximum relevance [15] approach used
widely in the statistics community. It aims to select a subset
of features with the goal of dimensionality reduction, with-
out affecting the statistical properties of the data. The idea is
to rank the covariates between the input variables uu and the
output response yy according to some degree of dependence.
For example, one can choose NHSIC as an independence
measure and rank the d features uu1; . . . ; uud according to the

values of NHSICðuuk; yyÞ. The top m features are then
selected. This MR-NHSIC baseline can be regarded as a fea-
ture screening method.

Proposition 1. If any pair of features uuk and uuk0 are assumed to
be independent, then there exists a pair ð�;mÞ such that the top
m features obtained by the feature screening method [2] are the
same of those obtained by solving Eq. (1).

Proof. According to Theorem 4 by Gretton et al. [14],
HSICðuuk; uuk0 Þ ¼ 0 if and only if two features uuk and uuk0 are
independent. Hence, if the pair of features uuk and uuk0 is
independent, we have the following result using the defi-
nition of NHSIC:

NHSICðuuk; uuk0 Þ ¼ trð �KKðkÞ �KKðk0ÞÞ

¼ HSICðuuk; uuk0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð �KKðkÞ �KKðkÞÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð �KKðk0Þ �KKðk0ÞÞ

q
¼ 0 if k 6¼ k0

1 if k ¼ k0;

� (3)

whereHSICðuuk; uuk0 Þ ¼ trð �KKðkÞ �KKðk0ÞÞ. Note that,NHSICðuuk;
uukÞ ¼ 1. Since the two features uuk and uuk0 are assumed to

be independent (i.e., kPd
k¼1 ak

eKKðkÞk2F ¼ kaak22) and k�LLk2F ¼
NHSICðyy; yyÞ ¼ 1 by the definition of NHSIC (Eq. (3)), the
optimization problem in Eq. (1) is equivalent to:

max
aa2Rd

Xd
k¼1

akNHSICðuuk; yyÞ � 1

2
kaak22 �

�

2
kaak1;

s:t: a1; . . . ;ad � 0:

(4)

Next we prove by contradiction that the largest NHSIC
values correspond to the largest ak values in the solution
of Eq. (4). Suppose there exists a pair ði; jÞ such that
NHSICðuui; yyÞ > NHSICðuuj; yyÞ and ai < aj. Then one can
simply switch the values of ai and aj to obtain a higher
value in the objective function of Eq. (4). This contradic-
tion proves that the largest ak correspond to the largest
values of NHSICðuuk; yyÞ. tu
The above proposition draws the connection to high-

dimensional feature screening [11]. Since the feature screen-
ing method tends to select redundant features, an iterative
screening approach is used to filter out redundant features.
Fig. 4 shows the obtained ð�;mÞ pairs of the ASU datasets
by LAND.

4 EXPERIMENTS

We first illustrate LAND on synthetic data and small-scale
benchmark datasets. Then, we evaluate LAND using three
biological datasets with d ranging from thousands to over a
million features.

4.1 Evaluation Metrics

We employ the average area under the ROC curve (AUC) as
a measure of accuracy that is robust with respect to unbal-
anced classes [32]. Values above 0.5 indicate better-than-
random performance; one signifies perfect accuracy.

Let us also define the dimensionality reduction as 1� m
d

where zero represents the original full set of features and
higher values indicate smaller sets of selected features.
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Finally, to check whether an algorithm can successfully
select non-redundant features, we define the independence rate:

I ¼ 1� 1

mðm� 1Þ
X

uuk;uul;k> l

jrk;lj;

where rk;l is the Pearson correlation coefficient between the
kth and lth features. A large I means that the selected fea-
tures are more independent, or less redundant. In fact, I is
closely related to the redundancy rate [20]. Note that, we
employed the linear independence rate, but not nonlinear
one such as mutual information or HSIC, since we want to
compare all nonlinear feature selection methods fairly. For
example, we may be able to get higher independence rate
for proposed method than the others if we use HSIC as an
independence measure.

4.2 Synthetic Dataset

We consider a regression problem from a 2000-dimensional
input, where input data ðX1; . . . ; X2000Þ includes three
groups of variables. The first group of three variables
ðX1; X2; X3Þ are relevant for the output Y , which is gener-
ated according to the following expression:

Y ¼ X1 
 expðX2Þ þX3 þ 0:1 
 E;
where E � Nð0; 1Þ. All variables are normally distributed.
In particular, for the first 1,000 variables, ðX1; . . . ; X1000Þ> �
Nð001000; II1000Þ. Here, Nðmm;SSÞ denotes the multi-variate
Gaussian distribution with mean mm and covariance matrix
SS. We define the remaining 1,000 variables as: X1001 ¼ X1 þ
0:01 
 E; . . . ; X1003 ¼ X1003 þ 0:01 
 E. The second group of
variables ðX4; . . . ; X1000Þ and ðX1004; . . . ; X2000Þ are uncorre-
lated with the output, and therefore irrelevant. The third
group X1001, X1002, and X1003 are redundant features of X1,
X2;, andX3, respectively.

Fig. 1A shows the regularization path for 10 features, and
this illustrates that LAND can select non-redundant fea-
tures. Note that, the values of feature 1,408, 938, and 1,958
are quite small compared to important features. Fig. 1B
plots the computational time for LAND on a Xeon 2.4 GHz
(16 cores) with 24 GB memory. As can be seen, the computa-
tional cost of LANDwithout using the Nystr€om approxima-
tion and distributed computing increases dramatically with
the number of observations. Moreover, since LAND needs
Oðdn2Þ memory space, it is not possible to solve LAND
even if the number of observations is small (n ¼ 1;000).

Thus, the Nystr€om approximation and distributed compu-
tation are necessary for the proposed method to solve high-
dimensional and large sample cases.

4.3 Benchmark Datasets

Here, we evaluate the accuracy of LAND using real-world
benchmark datasets (see Table 2 for details).

4.3.1 Classification

We first consider classification benchmarks1 with relatively
small d and n, allowing us to compare LAND with several
baseline methods that are computationally slow. For these
classification experiments, we use 80 percent of samples for
training and the rest for testing. In each experiment, we
apply feature selection on the training data to select the top
m ¼ 10; 20; . . . ; 50 features and then measure accuracy using
the selected features in the test data. We run the classifica-
tion experiments 100 times by randomly selecting training
and test samples and report the average classification accu-
racy. Since all datasets are multi-class, we use multi-class
kernel logistic regression (KLR) [33]. For KLR we use a
Gaussian kernel where the kernel width and the regulariza-
tion parameter are chosen based on 3-fold cross-validation.

Figs. 2A, 2B, 2C, 2D, 2E, and 2F show the average classifi-
cation accuracy versus the number of selected features.
Fig. 3 shows the confusion matrices of the LAND algorithm.
With the single exception of the CLL-SUB benchmark,
LAND compares favorably with all baselines, including
HSIC Lasso, a state-of-the-art high-dimensional feature
selection method. For (simple) image classification tasks
such as AR10P and PIE10P, we can get high classification
accuracy. However, for biology related data (i.e., TOX, CLL-
SUB), the classification accuracy tends to be lower than that
of the image datasets (PIE10P, PIX10P, ORL10P). This is
basically due to the difficulty of biological classification
problems. To improve the performance, we may need to
learn features from data (e.g., Deep learning). However,
learning features from small number of samples are notori-
ously hard, and an open question in deep learning.

4.3.2 Regression

TRIM32 Data: Our benchmark is the Affymetric GeneChip
Rat Genome 230 2.0 Array dataset [34]. In this dataset, there
are 120 rat subjects (n ¼ 120). The real-valued expression for

Fig. 1. Performance of LAND on synthetic data. (A) The regularization
path, which describes the transition of parameters over the regulariza-
tion parameter � in Eq. (1). (B) Computational time (without using the
Nystr€om approximation and the distributed implementation) versus the
number of observations n, for different values of the dimensionality d.

TABLE 2
Summary of Benchmark Datasets

Type Dataset Features (d) Samples (n)

AR10P 2,400 130
PIE10P 2,400 210

Classification PIX10P 10,000 100
ORL10P 10,000 100
TOX 5,748 171

CLL-SUB 11,340 111

TRIM32 31,098 120
Regression Doxorubicin 13,321 99

Gemcitabine 13,321 99
Docetaxel 13,321 99

1. http://featureselection.asu.edu/datasets.php
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over 30 thousand genes (d ¼ 31;098) in themammalian eye is
important for eye disease. In this paper, we focus on finding
genes that are related to the TRIM32 gene [34], [35], which
was recently found to cause the Bardet-Biedl syndrome.

For this regression experiment, we use 80 percent of sam-
ples for training and the rest for testing. We again select the
top m ¼ 10; 20; . . . ; 50 features having the largest absolute
regression coefficients in the training data. As earlier, we
run the regression experiments 100 times by randomly

selecting training and test samples, and compute the aver-
age mean squared error. We employ kernel regression [31]
with the Gaussian kernel. The Gaussian width and the regu-
larization parameter are chosen based on 3-fold cross-vali-
dation. In this experiment, most existing methods are too
slow to finish. Thus, we only include the LAND, HSIC
Lasso, linear Lasso, and mRMR results.

Fig. 5 show the mean squared error and the mean corre-
lation over 100 runs as a function of the number of selected

Fig. 2. The results for the benchmark datasets. Mean classification accuracy for six classification benchmark datasets. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean classification accuracy.

Fig. 3. The confusion matrices for the benchmark datasets. Mean classification accuracy for six classification benchmark datasets.
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features. As can be observed, the accuracy obtained with
features selected by LAND is better than Lasso, compara-
ble with mRMR and HSIC Lasso. This is because in this
regression experiment, the HSIC measure of independence
performs better than NHSIC. If we use HSIC instead
of NHSIC, LAND can achieve the same accuracy as HSIC
Lasso.

Sanger Data Sets: We applied LAND to identify potential
driver genes of anti-cancer drug sensitivity in the publicly
available “Sanger Genomics of Drug Sensitivity in Cancer
dataset form the Cancer Genome Project”2. In this dataset,
there are 99 anti-cancer drugs (n ¼ 99). We considered the
real-valued expression for over 10 thousand genes
(d ¼ 13;321) as input and the IC50 values of anti-cancer
drugs to reveal driver genes as output. To evaluate the pro-
posed methods, we identified potential driver genes using
LAND. We focused on three popular anti-cancer drugs:
Doxorubicin, Gemcitabine, and Docetaxel which have
attracted considerable attention for cancer research.

Fig. 6 shows the mean squared error and the mean corre-
lation over 100 runs as a function of the number of selected
features. Similar to the TRIM32 experiment, LAND outper-
forms Lasso and compares favorably with HSIC Lasso.

4.4 High Dimensional and Large-Scale Datasets

In this section, we evaluate LAND using real-world high-
dimensional and/or large-scale datasets. For LAND and
MR-NHSIC, we employed the Yahoo research cluster.

We evaluate all feature selection methods by passing the
selected features to a supervised learning algorithm. For
this purpose we employ gradient boosting decision trees
(GBDT) [36] as an off-the-shelf nonlinear classifier.

4.4.1 Prediction of p53 Transcriptional Activities

We first consider the p53 mutant dataset [37], where the
goal is to predict whether any of n ¼ 31;420 mutations is
active or inactive based on d ¼ 5;408 features. Class labels
are obtained via in vivo assays [37]. For this data, we com-
pared LAND with Lasso, mRMR, and MR-NHSIC baselines

Fig. 4. The (�,m) pair of the benchmark datasets.

Fig. 5. The results for the TRIM32 dataset. (A) Mean squared error for the TRIM32 data. (B) Mean correlation for the TRIM32 data. The horizontal
axis denotes the number of selected features, and the vertical axis denotes the mean squared error (lower is better) and the mean correlation (higher
is better).

2. http://www.cancerrxgene.org
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on the task of selecting m ¼ 100 features. We present results
for LAND using b ¼ 20 � n and setting the basis vector
heuristically to uub ¼ ½�5;�4:47; . . . ; 4:47; 5:0�> 2 R20.

Accuracy and independence rate metrics for features
selected by LAND are compared with those obtained by
three state-of-the-art feature selection baselines. We split the
data into 26,420 observations used for training the learning
algorithm and 5,000 observations for testing. We run the
classification experiments 20 times by randomly selecting
training and test samples, and report the average accuracy
and independence rate metrics. We select the m most rele-
vant features (m ¼ 10; 20; . . . ; 100) and employ 100 trees
with 20 nodes in the GBDT classifier.

untimes are shown in Table 3. Given the small
dimensionality d of this problem, the speed up from distrib-
uted feature selection algorithms is not sufficient to offset
their cluster overhead. Therefore the single-machine linear
algorithm (Lasso) is the most efficient. LAND, however,
selects better features. Fig. 7A shows that high accuracy (80
percent AUC) can be achieved by LAND with a dimension-
ality reduction of over 99 percent. Considering more than
m ¼ 20 features yields marginal improvements in accuracy.
If one selects a small number of features, LAND outper-
forms the state-of-the-art nonlinear methods in accuracy.
Conversely, the same accuracy can be achieved with fewer
features. For this small-size benchmark, the performance of
the state-of-the-art in linear feature selection (Lasso) is
comparable. Fig. 7B plots the independence of the selected
features versus m. The features selected by LAND are
significantly less redundant compared to the baselines,

irrespective of the dimensionality reduction. In summary,
LAND selects the most independent features and achieves
the top accuracy.

4.4.2 Subnetwork Markers for Prostate Cancer

Classification

Next, we applied our approach to a cohort of n ¼ 383 pros-
tate cancer (PC) patients. We aim to separate malignant
tumors from normal tissues based on d ¼ 276;322 features
(Fig. 8). For LAND, we used b ¼ 20 � n and uub ¼ ½�5;
�4:47; . . . ; 4:47; 5:0�> 2 R20.

Accuracy and independence rate of features selected by
LAND are compared with those obtained by the three base-
lines. We split the data into 344 patients used for training
the learning algorithm and 39 patients for testing. We ran

Fig. 7. Results on the p53 benchmark. Circles indicate the methods
achieving the best average accuracy/independence rate according to a
one-tailed t-test (p < 0:05). (A) Accuracy versus number of selected fea-
tures m. Differences between LAND and all baselines are statistically
significant for all dimensionality reduction levels except m ¼ 10 (versus
mRMR) and m � 90 (versus Lasso). (B) Independence rate versus m:
all differences are significant as indicated by circles.

Fig. 6. The results for the sanger datasets. (A) Mean squared error for the TRIM32 data. (B) Mean correlation for the TRIM32 data. The horizontal axis
denotes the number of selected features, and the vertical axis denotes themean squared error (lower is better) and themean correlation (higher is better).

TABLE 3
Sizes of Biological Datasets and Computational Times (in

Seconds) to Select 100 Features Using the Nonlinear Methods

Dataset d n MR-NHSIC mRMR LAND

p53 5408 26120 290 544 1709
PC 276322 302 383 4018 1284
Enzyme 1062420 13794 5328 n/a 10630
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the classification experiments 20 times by randomly select-
ing training and test observations, and report average per-
formance. We select m most relevant features (m ¼ 10;
20; . . . ; 100). The classifier employs 100 trees with 20 nodes.

As shown in Fig. 9A, LAND achieves the best accuracy
(AUC above 95 percent) with as few as m ¼ 80 features—a
dimensionality reduction over 99.97 percent. Lasso selects
more independent features (Fig. 9B), however its accuracy
is lower. As shown in Table 3, LAND is more efficient
than mRMR on a cluster. The time required by mRMR
increases dramatically with the dimensionality of the data,
while the computing time for LAND does not. MR-NHSIC
is even faster, however it does not select independent fea-
tures (Fig. 9B).

4.4.3 Enzyme Protein Structure Detection

Our third task is to distinguish between enzyme and non-
enzyme protein structures. Enzyme data contains all homo-
meric protein structures from the Protein Data Bank (PDB)
[41] as of February 2015 such that (i) each structure is at least
50 amino acid residues long; and (ii) protein structure is
determined by X-ray crystallography with resolution below
2.5A

�
. All proteins with 100 percent sequence identity to any

other protein in the dataset are filtered out. In the case of
multiple exact matches, the structure with best resolution is
selected. To generate the features, the protein structures are
modeled as contact graphs, where each residue is repre-
sented as a labeled vertex and two spatially close residues,
with euclidean distance between any two atoms below
4.5A

�
, are linked by an undirected edge. Each feature is

obtained by counting labeled rooted graphlets with up to

four vertices [42]. More details on rooted graphlets can be
found in the literature [43], [44], [45]. There are n ¼ 15;328
observation vectors (7,767 enzymes and 7,561 non-
enzymes), each of dimensionality d ¼ 1;062;420. We split
the observations into 90 percent (13,794) for training and 10
percent (1,534) for testing. We report average performance
across five random splits. We use classifiers with 500 trees
and 20 nodes, and selectm ¼ 5; 10; 20; . . . ; 100 features.

To explore the complexity stemming from the ultra-high
dimensionality of this problem, we trained a state-of-the-art
classifier based on the graph kernel method [42] on the full
dataset. The resulting model achieved high accuracy (AUC
above 90 percent), but needed roughly 18 days of comput-
ing time using our fastest server (a machine with 64
2.4 GHz processors and 512 GB of RAM). This demonstrates
the need for feature selection.

The naive version of LAND requires memory that scales
as as Oðdn2Þ (cf. Table 1) for storing the kernel matrices. Due
to the very large number of features and the large number of
observations in this dataset, this is prohibitive—approxi-
mately 1.5 petabytes. By using b ¼ 10 � n, we reduce the
space complexity to OðdbnÞ (cf. Table 1) and the memory
requirement to a more manageable one terabyte for LAND.
We also use uub ¼ ½�5;�3:89; . . . ; 3:89; 5:0�> 2 R10.

Due to the size of this dataset, running the mRMR baseline
would require hundreds of gigabytes of memory. Since this is
unfeasible, we only compare LANDwith one nonlinear base-
line (MR-NHSIC). LAND achieves higher accuracy when
selecting very few features, reducing the dimensionality of
the problemby over 99.99 percent (Fig. 10A). This also implies
more interpretable results and an enormous speed up in clas-
sification/prediction time. Accuracy is only slightly lower
than what is obtained with the state-of-the-art classifier using
all d features. Two linear (Lasso) baselines yielded lower accu-
racy with a worse dimensionality reduction. The features
selected by LAND have lower redundancy than those
selected by the baseline (Fig. 10B). Although Lasso does not
achieve good performance, it is the most efficient and can
select features in 973 seconds. Fig. 10C compares the

Fig. 8. Overview of prostate cancer data. As part of The Cancer Genome
Atlas (TCGA) project [38], mRNA sequence based gene expression pro-
files of tumor and normal cells were obtained from a cohort of prostate
adenocarcinoma patients. The data was downloaded from the TCGA
data portal. Using OptDis [39], we extracted connected subnetworks of
maximum size 7 from the STRING v10 protein-protein interaction net-
work [40] using only edges with score above 0.9.We finally used the aver-
age expression of the component genes of each subnetwork as a feature.

Fig. 9. Results on the prostate cancer dataset. Circles indicate the meth-
ods achieving the best average accuracy/independence rate according
to a one-tailed t-test (p < 0:05). (A) Accuracy versus number of selected
features m. Differences between LAND and the baselines are statisti-
cally significant form � 60. (B) Independence rate versusm: All differen-
ces are significant.
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computational time of LAND, MR-NHSIC, and mRMR.
LAND runs in just 3 hours on a Yahoo computer cluster—
about double the MR-NHSIC runtime (cf. Table 3). This is a
trade-off for the independence of the selected features.

5 DISCUSSION

The proposed LAND feature selection method is guaran-
teed to find an optimal solution, and does so efficiently
by exploiting a non-negative variant of the LARS algo-
rithm where the parameter space is sparse. Our experi-
mental results demonstrate that LAND scales up to large
and high-dimensional biological data by allowing a dis-
tributed implementation on commodity cloud computing
platforms.

Let us further investigate the structural motifs identified
by LAND from the enzyme data (Section 4.4.1). Our initial
requirement was that the method be able to identify cata-
lytic site-related features, as well as other features relevant
for the signatures of enzymatic structures. One of the most
interesting motifs is the DH graphlet, containing aspartic
acid and histidine, which is also the most commonly seen
motif in the Catalytic Site Atlas [46]. Combined with a vari-
ety of other residues, such as serine and asparagin, the DH
motif frequently forms catalytic sites. Fig. 11 shows four
different protein structures with an identified DH motif.
LAND is therefore able to identify biologically-relevant
motifs in extremely large feature spaces and can be readily

used to speed up structure-based models in computational
biology. It could also enhance data exploration, e.g., via a
recursive study of all DH enzymes, which would result in
subtyping of catalytic sites. While identification of struc-
tural motifs is not novel in computational biology [47],
scaling up such methods to extremely high dimensions is
an important new step in the field.

Since LAND can naturally handle structured output
information such as link and multi-label data through the
output kernel LL, applications to structured output data are
an interesting direction of future research. Another possible
future work would be handle missing values. Finally, using
LAND to find a new scientific discovery would be an inter-
esting future work.
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