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Abstract: The recent accumulation of experimentally determined protein 3D structures combined with our ability to com-
putationally model structure from amino acid sequence has resulted in an increased importance of structure-based meth-
ods for protein function prediction. Two types of methods for function prediction have been proposed: those that can ac-
curately predict overall biochemical or biological roles of a protein and those that predict its functional residues. Here, we 
review approaches used for the computational identification of functional residues in protein structures and summarize 
their applications to a wide variety of problems in functional proteomics, such as the prediction of catalytic residues, post-
translational modifications, or nucleic acid-binding sites. We examine four different problems in order to perform a com-
parison between several recently proposed methods and, finally, conclude by identifying limitations and future challenges 
in this field. 
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1. INTRODUCTION 

 The computational prediction of protein function from 
3D structure can be carried out in two ways: by predicting 
the overall biochemical or biological roles of the molecule, 
or by identifying specific residues that are necessary for a 
particular function [1-2]. For example, based on structural 
similarity with a known DNA-binding protein, it can be hy-
pothesized that a protein also binds DNA without identifying 
contact residues. On the other hand, the similarity of local 
structural neighborhoods between some residues in a protein 
of interest and the DNA-binding residues in other proteins 
can be used to probabilistically infer that these residues, and 
consequently the whole protein, are involved in DNA bind-
ing. Such similarities may be based on the geometry of the 
neighborhood, but can also include physicochemical proper-
ties and evolutionary conservation. 

 The global and local strategies of predicting function are 
complementary because structurally similar proteins can 
exhibit different functions [2-3] and also because local struc-
tural neighborhood methods may result in a large number of 
false positive predictions. However, in order to understand 
the molecular mechanism of a protein’s biological function it 
is often necessary to predict functional residues. Such ap-
proaches can directly lead to the computational prediction of 
the molecular basis of disease since many pathologies arise 
as a consequence of an alteration of protein function [4]. 
Other applications include computationally aided protein 
engineering [5] or drug design [6]. 
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 Currently, the major repository of protein structures, Pro-
tein Data Bank (PDB), contains over 65,000 experimentally 
solved molecular structures, and its size has been increasing 
steadily in the recent years [7]. Most of the early deposited 
proteins were associated with at least some notion of func-
tion, even if the functional residues remained incompletely 
identified. However, the advent of structural genomics pro-
jects [8] resulted in many structures for which not only func-
tional residues, but also the overall biological function of the 
molecule is unknown. Most of these proteins were selected 
as targets because of the low sequence similarity to proteins 
with solved structures or to provide structural insights into 
large, functionally diverse superfamilies [9]. Thus, a more 
complete coverage of the protein sequence/structure space 
coupled with the increased accuracy of structural modeling 
[10] have resulted in the growing importance of the protein 
function prediction from structure [2]. 

 Here, we review recent advances in methodology used to 
predict functionally important residues from protein struc-
tures. We provide classification of such methods and per-
formance comparisons between several tools. We conclude 
the article by discussing limitations and challenges in this 
field. 

1.1. What is a Functional Residue? 

 The notion of a functional residue has been referred to 
extensively in the literature, but no clear definition has been 
proposed. Here, we generally consider a residue to be func-
tional if it is necessary for a protein to carry out its biological 
role. Accordingly, a mutation of a functional residue may 
lead to an altered function of the entire molecule that can 
further produce phenotypic effects in the cell. Such func-
tional alterations can be caused by changes in protein stabil-
ity or dynamics, in which case a protein may adopt a differ-
ent structure or, more generally, significantly change its 
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probability distribution over the space of 3D conformations. 
Alternatively, a mutation of a functional residue may not 
result in observable changes of the protein structure or 
dynamics but still impact the overall function of the 
molecule. These situations typically involve residues that 
directly participate in the chemistry of reactions with a 
substrate or provide required binding specificity. 

 A functional site is referred to here as a more general 
concept that includes one or more functional residues that 
collectively provide desired functionality. Such sites include 
surface pockets or patches that provide interfaces with 
ligands or macromolecular partners, catalytic triads for en-
zymatic activity, etc. When the context permits, we refer to 
functional residues and functional sites interchangeably. Ex-
amples of functional sites are shown in Fig. (1). 

2. METHODS FOR PREDICTING FUNCTIONAL 

RESIDUES IN PROTEIN STRUCTURES 

 Methods designed to computationally identify functional 
sites from protein structures primarily consider local struc-
tural neighborhoods surrounding the sites of interest. The 
goal is to capture particular geometry, physicochemical 
properties and/or patterns of evolutionary conservation of 
some or all residues in a local neighborhood that may be 
signatures of functional sites. Subsequently, some form of 
pattern similarity is employed and optimized to best dis-
criminate between functional and non-functional residues. 

 We distinguish three basic strategies according to which 
computational methods attempt to describe and identify 
functional sites, Fig. (2). For example, a functional site can 
be described by a set of distance constraints between pairs of 
residues (or atoms). We refer to such strategy as template-
based and illustrate it in Fig. (3A). Similarly, a residue 
neighborhood may be characterized by various geometric, 
physicochemical or evolutionary properties (or features) that 
can be extracted from the local structure and then used by a 

machine learning algorithm. We refer to this approach as 
residue microenvironment-based, Fig. (3B). The third strat-
egy is represented by approaches designed to identify local 
neighborhoods that belong to particular classes of higher-
order shapes, such as pockets, clefts or surface patches. 
These methods are used to predict larger interface regions 
between a protein and its partners, e.g. ligands, other pro-
teins, or nucleic acids. We refer to these methods as residue 
macroenvironment-based methods, Fig. (3C). One separate 
class of methods, based on its distinct problem formulations 
and algorithmic solutions, is represented by the graph-
theoretic approaches. Such algorithms start by transforming 
protein structures to graphs and then employ combinatorial 
algorithms with statistical inference to find representative 
subgraphs or score similarities between neighborhoods of 
residues, Fig. (3D). Finally, many methods involve struc-
tural post-processing, where spatial proximity is imposed on 
a set of the potential functional residues that were predicted 
using either the above-mentioned structure-based or some 
sequence-based methods. Usually structural post-processing 
is used for filtering isolated predictions that are considered to 
be false positives. We extensively discuss all five approaches 
in the following subsections. 

 We note that these strategies are not mutually exclusive, 
as illustrated in Fig. (2), and in fact, a number of proposed 
algorithms combine two or more of them. Rather, the classi-
fication is provided to emphasize major differences among 
methods and to facilitate discussion of strengths and limita-
tions of each methodology. 

2.1. Template-based Methods 

 Template-based methods define and construct local struc-
tural motifs or patterns that characterize functional sites. 
Most of the early methodology can be traced back to the 
fields of chemistry and computer science in which various 
algorithms were proposed to find interesting patterns from a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Examples of problems related to the prediction of functional sites. A: zinc-binding in 1ncs with the Zn ion shown in red; B: phos-
phorylation site S474 in 2bva with the phosphate group colored in orange; C: DNA-binding residues in 1orn with the DNA nucleotides 
shown in yellow. In panels A and C, functional residues are the residues involved in contact with the co-factor or the nucleic-acid, depending 
on a particular definition of the contact (usually it is a pre-specified distance cutoff). In panel B, the phosphorylation site is the residue being 
phosphorylated. 
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set of chemical 3D structures and search for those patterns in 
new structures [11-14]. The computational biology commu-
nity has recognized the importance of local structural neigh-
borhoods to the global function of a protein (e.g. catalytic 
triads in serine proteases), proposed more powerful algo-
rithms, and associated approximate structural matches with 
quantitative scores such as P-values or posterior probabili-
ties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Flowchart showing general methodologies for the predic-
tion of functional residues from protein structures. Protein struc-
tures can be used directly or can be transformed to a graph repre-
sentation. The subsequent core algorithm typically belongs to one 
of the three categories (template-based, microenvironment-based or 
macroenvironment-based) based on how the structural neighbor-
hood is used and what types of geometric shapes the algorithm is 
trying to identify. Post-processing can be applied to further boost 
the performance. 
 

 One pioneering idea came from computer vision by the 
use of geometric hashing [15-16]. Geometric hashing can be 
used to detect structural motifs without assumptions on the 
substructure of the functional sites and has been shown to 
recognize active sites in enzymes. The TEmplate Search and 
Superposition (TESS) method is also based on geometric 
hashing: it defines templates by using a reference frame 
based on amino acid side chains and relative positons of 
atoms in the vicinity, limited by a user-specified cuttoff 
distance [17]. JESS is a faster and more flexible version of 
TESS and was applied to discover templates of enzyme ac-

tive sites [18], ligand-binding sites, DNA-binding sites and 
also to predict global protein function [19].  

 A different group of template-based approaches define 
structural templates using sets of interresidue or interatomic 
distances over a set of functional residues (typically spatially 
close). Gregory et al. defined templates as three (C , C ) 
atoms and their interatomic distances. Then, they combined 
them with hydrophobicity and other requirements to search 
for new metal-binding sites [20]. Similar methods were pro-
posed by Wallace et al. [21] and Russell [22] where root 
mean square distance (rmsd) constraints were imposed on 
the pattern comprised of the side-chain atoms of the func-
tional residues. Another template-based approach used to 
identify active sites is the Fuzzy Functional Forms (FFFs) 
[23]. FFF is a set of geometric descriptors (distances) be-
tween key functional residues with a degree of tolerance 
obtained by analyzing a number of structurally and function-
ally similar proteins. An improved version of the algorithm 
augments the standard FFF results with a scoring function 
based on evolutionary information [24]. 

 More recent methods have further generalized the notion 
of a template by considering physicochemical properties of a 
local structural neighborhood. For example, Shulman-Peleg 
et al. define templates via triangles of physicochemical prop-
erties and use hierarchical scoring to find functional sites 
[25]. Similarly, Innis et al. identify regions in protein struc-
tures with high density of functional groups such as hydroxyl 
and carboxylate group from conserved residues, because 
such regions were deemed functionally relevant [26].  

 PHUNCTIONER represents a distinct class within tem-
plate-based methods [27]. It starts with a structural alignment 
within a superfamily and then finds evolutionarily conserved 
residues corresponding to the subset of proteins annotated 
with the same Gene Ontology (GO) terms [28], but excludes 
residues conserved in the entire family. Position-specific 
scoring matrices are built for those GO-conserved residues, 
such that the functional residues can be predicted in a new 
protein after it is structurally aligned to the training proteins. 
This tool was primarily constructed to predict GO terms 
from structures of highly divergent proteins, but it can also 
be seen as a predictor of functional residues. Its application 
is limited to proteins with global structural similarity. 

 Most template-based methods are coupled with an algo-
rithm for the identification of templates from a set of protein 
structures (although this step may be manual or semi-
automated, e.g., [23]), an algorithm to assess the statistical 
significance of a match, a database of known templates, and 
a web tool that can identify patterns in a database of struc-
tures or search a structure against a database of patterns. For 
example, SuMo uses triangles of chemical groups to repre-
sent protein structures, instead of backbone information, and 
provides a web service to search for ligand binding sites [29-
30]. PROCAT provides a database of derived 3D templates 
of enzyme active sites using the TESS algorithm [17, 21]. 
SPASM aims to find matches of a given motif in a database 
of structures, while RIGOR can search a protein structure 
against a database of structural motifs [31]. PDBSiteScan 
scans a query structure for functional sites using all anno-
tated sites in PDB as templates [32]. Each template is com-
posed of three atoms (N, C , C) from the functional residue 
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itself as well as other neighboring residues within 5Å. It can 
identify active sites, post-translationally modified sites, bind-
ing sites, etc. GASPS uses a genetic algorithm strategy to 
create 3D templates consisting of 3-10 conserved residues in 
a protein family to identify family members from the back-
ground [33]. Finally, PINTS provides a web service to search 
a given pattern against a database of structures, and given a 
structure, provides a search against a pattern database. The 
pattern database includes ligand-binding sites, SITE annota-
tions in PDB files, surface residues and conserved residues. 
The output matches are assigned P-values to indicate the 
statistical significance that differentiates true functional 
matches from the background [34-35]. 

 In summary, template-based methods provide a natural 
way of identifying functional residues and show promising 
performance in modeling active sites and metal-binding sites 
(see summary of methods in Table 1). However, various 
aspects related to assessing the significance of a match re-

main unsolved; for example, it is unclear how to build the 
background distribution [36]. Template-based methods usu-
ally do not exploit the power of machine learning. 

2.2. Residue Microenvironment-based Methods 

 The main signature of residue microenvironment-based 
methods is the focus on a single residue or position in the 
structure and its surrounding environment. Usually, a set of 
structural, physicochemical and evolutionary properties are 
collected and encoded into a fixed-length vector. Sets of 
functional (positive) and non-functional (negative) residues 
are then incorporated into supervised machine learning ap-
proaches. 

 Although not the first, FEATURE is the flagship of the 
residue microenvironment-based methods [37-42]. First pro-
posed in 1995 by Bagley et al. [37], FEATURE models the 
neighborhoods of the sites of interest using concentric

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Illustration of the (A) template-, (B) microenvironment-, (C) macroenvironment- and (D) graph-theoretic approach in describing 
and identifying functional residues/sites. A: a catalytic triad described by a set of 3 distances (x, y, z); B: a residue microenvironment de-
scribed by radius r. Residue microenvironment may be centered on a particular residue, but also elsewhere in space; C: ligand-binding resi-
dues highlighted in blue (protein-protein and protein-nucleic acid binding sites will have relatively flat interfaces); D: a graph representation 
of a part of protein structure, where nodes represent amino acids and edges suggest that distances between two amino acids are below some 
threshold value. Double-circled node is the functional residue of interest.  
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Table 1. List of the Representative Methods in Each Category and a Brief Description of the Methodology. T-Template-based, μE-

Microenvironment-based, E-Macroenvironment-based 

Category Method Method Description 

FFFs [23]; Gregory et al. [20]; Russell et al. [22]; Wallace et al. [21]; SiteEngine 

[25]; Innis et al. [26]; PHUNCTIONER [27]; SuMo [29]; GASPS [33] ; 
Template derivation and application 

TESS [17]; JESS [18]; SPASM and RIGOR[31]; Template searching algorithms 

SuMo [30]; PROCAT [17, 21]; PDBSiteScan [32]; 

PINTS [34]; ProFunc [19, 94]; 
Web servers 

T 

ASSAM [110]; DRESPAT  [103]; Huan et al. [106-108] 
Graph-based, subgraph-isomorphism; Frequent sub-

graph mining 

FEATURE [111]; POOL [58] Machine learning, Naïve Bayes 

Zvelebil and Sternberg [46]; Ota et al. [47] Human expert knowledge base 

Stawiski et al. [112]; Ahmad et al. [50-51]; Gutteridge et al. [60] Machine learning, Neural network 

Panchenko et al. [48]; THEMATICS [55] 

Wei et al. [56]; 
Scoring function 

Bhardwaj et al. [49]; Kuznetsov et al. [52]; Bhardwaj et al. [53]; THEMATICS-

SVM [57]; Youn et al. [59]; Petrova and Wu [62] 
Machine learning, SVMs 

Structure kernel [66]; Graphlet kernel [65]; Machine learning, SVMs with custom kernels 

Tang et al. [54] 
Machine learning, genetic algorithm integrated neu-

ral network 

ResBoost [63]; Machine learning, decision tree and boosting 

DISCERN [64]; Machine learning, logistic regression 

GG [105]; Graph-based, clique detection 

μE 

Amitai et al. [104]; Graph-based, scoring function with network features 

SURFNET [69]; PocketPicker [113]; Xie and Bourne [70]; Q-SiteFinder [71]; 

SCREEN [74]; 
Pocket detection 

E 

LIGSITEcsc [75]; SURFNET-ConSurf [76]; ConCavity [77]; SitePredict [78];  
Pocket detection, evolutionary conservation and 

physicochemical properties 

 

spheres within which it enumerates various properties, in-
cluding atom/residue type, atom/residue physicochemical 
properties, chemical groups and secondary structure informa-
tion. A set of non-functional sites as controls are also col-
lected from the structures and a naive Bayes classifier is con-
structed. FEATURE was applied to predict calcium binding 
sites, disulfide bond-forming sites, enzyme active sites, 
ATP-binding sites, zinc binding sites etc. WebFEATURE 
[40] provides a web service for those models and seqFeature 
[42] creates functional site libraries from PROSITE patterns. 
To allow quick database search for similar environments, S-
BLEST [43], a variant of FEATURE, uses Manhattan dis-
tance while the approach by Yoon et al. [44] uses a weighted 
Hamming distance. For a more detailed overview of the 
FEATURE framework and its applications, we refer readers 
to [45]. 

 As early as in 1988, Zvelebil and Sternberg used spheri-
cal neighborhoods to extract features such as secondary 

structure information, B-factors, residue separation, relative 
solvent accessibility, and electrostatic interactions to charac-
terize catalytic residues [46]. More recently, Ota et al. used a 
rule-based approach with conservation, destabilizing poten-
tial and solvent accessibility information for catalytic residue 
prediction [47]. Panchenko et al. predicted functional sites 
by first looking for conserved residues in a multiple se-
quence alignment, and then scored each conserved residue 
using the averaged conservation score of residues in its struc-
tural neighborhood. This method also takes into account 
residue solvent accessibility [48]. Bhardwaj et al. predicted 
DNA-binding sites using support vector machines (SVMs) 
with features such as solvent accessibility, local residue 
composition, net charge and electrostatic potentials [49]. 
Other methods for predicting DNA-binding residues also use 
various sequence and structure properties [50-53]. The most 
frequently addressed problem, however, is that of catalytic 
residue prediction, where a number of residue microenvi-
ronment-based methods have been developed [47, 54-64].  
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 Kernel-based methods have also been proposed to iden-
tify functional sites [65-66]. Such methods need not define 
the feature space explicitly; rather, a similarity function is 
defined over all pairs of data points with the kernel property 
providing a guarantee that objects (here, structural neighbor-
hoods) can be mapped to some high-dimensional, but gener-
ally unknown, feature space [67]. Xin et al. introduced a 
structure kernel method that uses oriented spherical micro-
environments divided into cells of non-uniform volume [66]. 
A product kernel was then defined to incorporate geometric, 
chemical and evolutionary determinants in the similarity 
(kernel) function between two structural neighborhoods. The 
structure kernel was used to predict catalytic residues and to 
identify situations when mutations lead to human disease via 
the loss or gain of catalytic activity [66].  

 Residue microenvironment-based strategies provide a 
very promising avenue for identifying functional residues, 
predominantly because of the general machine learning 
framework and straightforward applicability to different 
problems. Such methods can automatically identify features 
relevant for the task, but may result in classification that is 
not easily described by a small set of human-interpretable 
rules. 

2.3. Residue Macroenvironment-based Methods 

 Most methods discussed in this paper focus on the pre-
diction of enzyme active sites, co-factor binding sites, or 
post-translational modification sites, where a relatively com-
pact local structural region is involved. However, a large 
group of algorithms and tools have been developed to iden-
tify particular classes of larger structural neighborhoods, e.g. 
surface patches, pockets, cavities or clefts, which provide 
interfaces to ligands or macromolecular partners. These 
methods are highly valuable because protein-protein interac-
tions lie at the center of almost every cellular process and 
protein-DNA binding is essential for genetic activities. Simi-
larly, accurate identification of ligand-binding sites is valu-
able in the context of structure-based drug design. Residue 
macroenvironment-based methods have been reviewed re-
cently, thus we provide only a brief summary and refer 
authors to relevant publications where appropriate.  

 Early methods for ligand binding site prediction focused 
on detecting structural pockets because previous studies had 
shown that binding sites are usually found in largest pockets 
[68]. Such methods may be based on surface geometry, spe-
cifically the shape and size of the pocket (SURFNET [69] 
and the approach by Xie and Bourne [70]), or based on the 
interaction energy between a probe molecule and the protein 
(e.g. Q-Site Finder uses a methyl group as probe [71]). Those 
methods are summarized in a recent review [72]. Similar 
protein surfaces suggest similar binding activity, which is an 
idea behind the method by Binkowski et al. [73]. Since most 
proteins have multiple pockets and predominantly one 
ligand-binding site [74], pocket detection algorithms alone 
cannot distinguish true sites from false positives. Evolution-
ary conservation [75-77] and physicochemical properties 
[78] are typically included to improve the prediction accu-
racy. Methods based on global structure similarity to transfer 
ligand-binding sites have also shown high accuracy [79-80].  

 All of the above-mentioned methods predict ligand-
binding sites in a protein without assuming its binding part-
ner. Docking and scoring functions can be used to calculate 
the binding affinity and direction for a specific ligand but the 
knowledge of the ligand structure is required. Typically, 
pocket detection is used as the first step to reduce the search 
space and to speed up the process compared to blind docking 
[81]. Flexible docking that considers protein dynamics and 
conformational changes upon binding improves prediction 
performance. However, these methods are computationally 
expensive [82]. A recent study provides extensive perform-
ance comparisons of the docking algorithms and scoring 
functions [83]. 

 Although shape complementarity is also necessary for 
protein-protein binding [84], unlike ligand binding sites, 
protein-protein binding sites have a relatively flat surface 
[85]. This makes geometry based methods involving pocket 
detection for ligand binding less effective at predicting pro-
tein-protein binding. However, methods such as docking and 
homology-/threading-based binding site transfer can still be 
applied (for details regarding those methods, we refer readers 
to [86]). Features extracted from 3D structures, such as sol-
vent accessible surface area, B-factors and electrostatic po-
tentials, together with various sequence and physicochemical 
properties, can be fed into machine learning approaches for 
the prediction of protein interaction residues. For more de-
tailed reviews, we refer readers to [87-88]. We note that 
there exist several categories of protein-protein interaction 
interfaces [89-90], thus treating them differently could result 
in better prediction performance. For example, while it is 
commonly believed that protein-protein interface residues 
are more conserved than other surface residues to evolution-
arily preserve the interaction, it has been shown that anti-
body-binding residues (B-cell epitopes) are significantly less 
conserved than other surface residues [91]. Also, currently 
all known antibodies interacting with antigens use similar 
structural regions, so antigen binding sites can be predicted 
using structural alignments of antibodies [92]. 

 Protein-nucleic acid binding site/residue prediction mod-
els use similar strategies as protein-protein interaction mod-
els, but can further incorporate electrostatic potentials since 
positively charged surface patches suggest possible nucleic 
acid-binding sites [93]. Helix-turn-helix motif detection as 
well as DNA binding site templates can also be used to pre-
dict protein-DNA binding residues [94].  

2.4. Structural Post-Processing 

 Conservation during evolution and spatial proximity are 
usually considered common properties of functional resi-
dues; thus a number of methods were developed to take ad-
vantage of these properties. Structural post-processing refers 
to those methods that use spatial clustering to group func-
tional residues into functional sites and remove isolated resi-
dues that are likely to be false positive predictions. Evolu-
tionary Trace (ET), first introduced by Lichtarge et al. in 
1996 [95], is one of these methods. It starts with clustering 
proteins into different sequence identity groups. The con-
served residues within each group are then retained and 
mapped to protein structures. Several ET variants were pro- 
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posed subsequently: a weighted ET that identifies the vari-
ability of a position in a multiple sequence alignment [96]; 
ConSurf that incorporates the physicochemical properties of 
the replaced amino acids in a multiple sequence alignment 
[97]; and 3D cluster analysis that calculates a conservation 
score for each residue based on the conservation of residues 
in its structural neighborhood [98]. Madabushi et al. account 
for gaps in the multiple sequence alignment and also report 
the number of clusters identified and the size of the largest 
cluster to automate the output of the ET results [99], while 
Yao et al. quantitatively assess the significance of trace clus-
ters compared to functional sites [100]. Aloy et al. also map 
conserved residues to structures, and then use spatial cluster-
ing to define functional sites [101]. Finally, Gutteridge et al. 
use a similar strategy to filter catalytic residue prediction 
results and improve the prediction accuracy [60]. 

2.5. Graph-Theoretic Approaches 

 Based on the types of structural patterns they search for, 
graph-theoretic approaches can be used in any of the three 
main methodological groups (template, residue microenvi-
ronment, residue macroenvironment). However, these ap-
proaches represent a special category based on the distinct 
problem formulations and algorithmic approaches. Instead of 
using atomic coordinates directly, graph-theoretic methods 
start with transforming protein structures into graphs and 
then exploit various motif finders and graph similarity meas-
ures, combined with machine learning, to discover functional 
sites. Representative graph similarity measures involve sub-
graph enumeration, subgraph isomorphism, or identification 
of frequent subgraphs, although other measures, e.g. random 
walk-based scoring, can be applied as well. 

 Different methods often use different node and edge rep-
resentations. Nodes may represent atoms or groups of atoms 
(residues), while edges typically reflect distances between 
atoms. Here too, the earliest applications to molecular 3D 
structures came from chemistry and computer science. For 
example, in an early work Brint and Willett [14] proposed a 
graph-theoretic approach to identifying maximal common 
substructures in a set of molecules and later adapted the 
technique in order to find 3D motifs of amino acid side 
chains in proteins structures using subgraph isomorphisms 
[102]. Most of the early methods readily benefitted from 
extensive work in graph theory. 

 More recent research includes DRESPAT where patterns 
are defined as complete subgraphs with three to six nodes 
[103]. Amitai et al. also created a protein structure graph in 
which the edges included backbone peptide bonds as well as 
the side chain non-covalent bonds. Their analysis confirmed 
earlier work that active sites have high network centrality 
and low relative solvent accessibility [104]. Deng et al. used 
a graph method to predict calcium binding sites where oxy-
gen atoms in a protein structure represent nodes and edges 
indicate that the two oxygen atoms are within a predefined 
distance. Oxygen clusters, which refer to those cliques with 
more than 4 nodes, were selected. Distance between nodes 
and their geometric center is calculated and only those 
cliques within a distance range are considered calcium bind-
ing sites [105]. 

 In a series of papers, Huan et al. used data mining con-
cepts to extract spatial motifs in protein structure families 

[106-108]. The rationale was to identify frequent subgraphs 
in a protein family in an attempt to identify groups of resi-
dues responsible for the common function. Note that these 
methods relax the constraints of the maximum common sub-
graph in a set of graphs by using the ideas of frequent item-
set mining [109]. 

 Finally, the graphlet kernel method first creates a protein 
structure graph based on the C  atoms and their distances 
[65]. It then enumerates oriented labeled graphlets of differ-
ent sizes with a pivot point representing the residue of inter-
est. The similarity between two vertices of interest was de-
fined as an inner product between their graphlet counts. This 
technique does not result in identification of a template per 
se; rather it enumerates all templates in a structural neigh-
borhood and uses them to define a similarity (kernel) func-
tion. The graphlet kernel method has been applied to the 
problem of catalytic residue prediction and identification of 
phosphorylation sites [65]. 

 Graph-theoretic methods usually lead to the most princi-
pled approaches, based on the formalisms and elegance of 
graph algorithms. However, they suffer from the inability to 
model actual residue positions (instead, edges are con-
structed when two residues are closer than a predefined dis-
tance) and the spatial orientation of structural neighbor-
hoods. 

3. PERFORMANCE COMPARISONS BETWEEN 
MACHINE LEARNING METHODS 

 Machine learning principles are frequently used in pre-
dicting functional residues from protein structures. While 
different approaches have been introduced and evaluated on 
different datasets, most are not limited to a specific problem. 
Even when applied to the same problem, different data sets 
and evaluation strategies are often used to assess the per-
formance, thus making comparisons across different studies 
hard to interpret and generally inconclusive. In order to gain 
insight into relative strengths and weaknesses of different 
methods, here we aim to assess their performance by training 
them on multiple data sets and evaluating them using the 
same protocol. This strategy is reasonably unbiased, but 
poses a limitation on the number of methods that can be 
tested because it requires availability of the training algo-
rithms (or source code) instead of the pre-trained predictors. 
Thus, most web servers which only predict a particular type 
of functional residues and methods without software releases 
could not be evaluated. 

 We compare four published methods according to their 
ability to model functional residues: FEATURE [45], our in-
house implementation of the method by Gutteridge et al. 
[60] referred to as GBT (based on the initials of the authors' 
last names), as well as the graphlet kernel [65], and structure 
kernel [66] methods. Structural post-processing has not been 
used for the GBT method, because it is equally applicable to 
the other three approaches. 

 The four problems were selected such that each method 
has already been evaluated on one or more data sets in the 
original publication. We used the default parameters for all 
methods, but emphasize that in practice an additional pa-
rameter optimization process could result in a different per-
formance.  
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3.1. Data Sets 

 All methods were applied to problems involving (1) zinc-
binding residues, (2) DNA-binding residues, (3) catalytic 
residues and (4) phosphorylation sites. The Zinc-binding 
data set was constructed based on the work by Ebert et al. 
[110] who considered a residue zinc-binding if it had N, O, 
or S atoms (referred to as the coordinating atoms) within 3Å 
of the zinc ion. The DNA-binding data was constructed by 
Yan et al. [111] and then mapped to protein structures using 
the PDB atom-seqres correspondence maps in the Astral 
compendium [112]. The catalytic residue data set was con-
structed from the Catalytic Site Atlas v.2.2.12 [113], but only 
proteins with literature-supported catalytic residues were 
included. Finally, the phosphorylation data set was con-
structed by Vacic et al. [65]. The original negative data sets 
were constructed to include all the non-positive residues in 
the protein chains that contain at least one positive (func-
tional) residue. Redundant proteins were removed using the 
Astral40 database, except for the phosphorylation data in 
which Astral40 filtering removes too much data. Instead, 
Astral95 filtering was used for the phosphorylation data set. 
For each problem, a balanced data set was created by includ-
ing all positive (functional) and an equal-sized random sam-
ple of the negative (non-functional) instances. The data sets 
are summarized in Table 2 and provided in Supplementary 
Materials. 

3.2. Evaluation Protocol 

 The methods were evaluated using the per-chain 10-fold 
cross-validation on exactly the same training and test data. 
The set of chains was initially split into ten non-overlapping 
partitions. In each of the steps of cross-validation, all resi-
dues from the 1/10th of the test chains were used for testing, 
whereas the residues from the remaining chains were used to 
construct a classifier. This procedure was adopted to best 
emulate a realistic scenario in which a completely new chain 
is presented to the classifier. The performance was evaluated 

by estimating the area under the ROC curves (AUC). The 
ROC curve is a plot of the true positive rate (sensitivity) as a 
function of the false positive rate (1  specificity). A perfect 
classifier will have AUC = 1 and a classifier that provides 
outputs uniformly randomly will have AUC = 0.5. 

3.3. Performance Comparisons 

 AUC estimates for each method on each data set are 
shown in Table 3 and Fig. (4). The results indicate, as ex-
pected, that each method indeed can be successfully applied 
to various problems even if it was not originally designed for 
it. However, the performance accuracies among them varied. 
Structure kernel achieved the highest accuracy on three of 
the four data sets: zinc-binding residues, catalytic residues, 
and phosphorylation sites. FEATURE, on the other hand, 
was the best-performing model on the DNA-binding sites. 
The success of the structure kernel might be due to the ori-
ented neighborhoods and explicit encoding of the evolution-
ary conservation in the similarity function. Its good perform-
ance suggests that, in principle, it is possible to create a uni-
fied classifier for most types of functional sites. Although the 
GBT method also uses evolutionary conservation, it collects 
features that are specifically important for catalytic residues 
(via an earlier feature analysis by Bartlett et al.[114]). Thus, 
it resulted in a generally weaker performance on the other 
types of problems. The graphlet kernel was originally de-
signed to predict function on specifically selected amino 
acids (e.g., phosphorylation on serine); however, here we 
applied it on a combination of all potential functional resi-
dues which resulted in a decreased performance. 

 Interestingly, despite not accounting for evolutionary 
conservation, FEATURE was the best classifier on the DNA-
binding residues (note that unlike the other three approaches, 
FEATURE incorporates counts of atoms and chemical 
groups), implying that undirected residue neighborhoods and 
relatively simpler patterns are sufficient to model DNA-
binding. This is not surprising since protein-DNA interac-

Table 2. The Size of Four Data Sets Used in Comparisons. Each Data Set Contains the Same Number of Positive and Negative 

Examples 

 Zn-Binding DNA-Binding Catalytic Phosphorylation 

No. protein chains 445 102 314 679 

No. positive examples 1,420 2,921 988 1,157 

 

Table 3. The Performance of Four Methods on Each of the Four Data Sets, Measured by the Area Under the ROC Curve (AUC). 

The Highest Performance for Each Data Set is Highlighted in Bold 

  Zn-Binding DNA-Binding Catalytic Phosphorylation 

FEATURE 0.767 0.824 0.754 0.620 

GBT 0.713 0.713 0.814 0.559 

Graphlet kernel 0.758 0.691 0.732 0.688 
AUC 

Structure kernel 0.808 0.800 0.839 0.711 
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tions are mostly based on electrostatic attractions between 
the negatively charged DNA and positively charged protein 
surface patches [93]. It is noteworthy that all four methods 
were less accurate on phosphorylation sites, although the 
phosphorylation data set retained sequences with up to 95% 
sequence identity. A possible reason for such performance 
might be that the phosphorylation sites are frequently located 
in the loop regions, which have much higher degrees of mo-
tion compared to the rest of protein structure. Thus, the iden-
tification of phosphorylation sites may require use of larger 
local neighborhoods which were not captured by the meth-
ods with their respective default settings. 

4. FUTURE CHALLENGES 

 As reviewed in this article, a plethora of methods have 
been proposed in the field of functional residue prediction 
from protein structure. We classified such methods into tem-
plate-based, residue microenvironment- and residue-
macroenvironment-based, depending on the types of func-

tional sites they aim to identify. While great strides have 
been achieved, the protein function prediction and, in par-
ticular, prediction of functional residues, remains challeng-
ing for several reasons.  

 First, protein structures are static models reflecting a 
number of experimental artifacts such as crystal contacts, 
concentration-driven oligomerization, as well as the condi-
tions of the experiment. It has been previously argued that 
high-resolution structural models are needed for accurate 
functional assignments [115]. Similarly, temperature, pH, 
and salt concentration have been shown to affect protein 
structure or lack thereof [116]. Even under the same experi-
mental conditions, proteins show intrinsic hierarchical dy-
namics at different time scales [117]. The presence of 
ligands, other proteins, nucleic-acids, or post-translational 
modifications in experimentally determined structures may 
also result in structures different from that of an unmodified 
monomeric molecule and subsequently introduce noise in the 
training data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). ROC curves of the four methods on each of the data sets.  
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 Computational methods for predicting protein structure 
show great promise in modeling apo molecules [118], hence 
it is to be expected that a combination of structure and func-
tion prediction will become more prominent in the future. In 
addition, methods that introduce structural dynamics have 
started to emerge. Glazer et al. used molecular dynamics to 
model conformational flexibility of a protein structure in 
order to predict functional sites [119-120]. Liu et al. used de 
novo loop modeling to predict the structure and dynamics of 
the loop region and then applied FEATURE to predict cal-
cium-binding sites [121]. At this time, these methods are 
slow and, because of the small number of examples tested, 
not well characterized with respect to the classification per-
formance. Nevertheless, they represent the most promising 
recent trend in the prediction of functional sites. 

 Second, an inherent problem in determining protein func-
tion from structure is the existence of functionally relevant 
disordered regions [122-123]. Such regions cannot be char-
acterized by the time-invariant atomic coordinates and thus 
are missing from structural models in PDB. Disordered re-
gions, however, may be preferred in signaling, especially 
when post-translational modifications such as phosphoryla-
tion [124-126], methylation [127], and ubiquitination [128] 
are involved. Alternatively, some regions may be structured 
in PDB but require local unfolding prior to the post-
translational modification. Structural features from these 
sites lead to biased models and disrupt the overall accuracy. 

 Third, numerically quantifying the significance of a 
matched pattern is non-trivial. In template-based approaches, 
a matched pattern may be associated with a P-value that the 
pattern could be found by chance in a structural database of a 
given size. However, determining P-values is problematic, 
(1) because the empirical null distribution may not be suffi-
cient to accurately calculate low P-values, (2) because of the 
stringency of the multiple hypothesis testing correction, or 
(3) because of the inability to accurately model the null dis-
tribution analytically [129]. Noble has discussed approaches 
to assigning accurate P-values and suggested use of the false 
discovery rate (fdr) to determine the significance of a match 
[129]. In supervised approaches, the challenge is in incorpo-
rating the proper class priors in order to predict the posterior 
probability that the residue of interest is functional. One ex-
ample of this is the prediction of catalytic residues where in 
one of the most influential studies the ratio of positive vs. 
negative sites in training was selected to be 1 : 6, effectively 
setting the class prior of the catalytic residue to 1/7 = 0.143 
[60]. These training set class priors have been followed by 
other studies [54, 59, 66], although in part to enable fair 
comparisons among methods. While this enabled the model 
to learn the concept, such predictions typically result in a 
high fdr (also referred to as over-prediction) because the 
actual class prior in the structures of enzymes is about 0.009 
(ratio 1 : 114). Even worse, if the predictor is also applied to 
non-enzymes (~70% of all functionally characterized pro-
teins), even a model with 95% accuracy may not be practi-
cally useful. Methods for estimating class priors have been 
proposed [130-132] as well as the algorithms that partition 
inhomogeneous data sets and separately estimate class priors 
on each partition [133]. Prediction of functional residues is 
frequently equivalent to the prediction of rare events, result- 
 

ing in class-imbalanced data sets. Various training methods 
have been introduced to address class-imbalance [134], in 
part because the classification costs are unknown for the 
cost-sensitive learning scenarios. A more general problem, 
learning from biased data, has been addressed in statistical 
and machine learning communities as well [135-137], but so 
far we are not aware of applications and impact on protein 
function prediction. 

 The fourth major challenge stems from the very defini-
tion of protein function as well as the biological and envi-
ronmental context in which experimental assays designed to 
determine function were carried out. For example, in charac-
terizing catalytic residues, there are discrepancies in their 
definitions. The Catalytic Site Atlas generally classifies resi-
dues as catalytic if they are involved in the chemistry of ca-
talysis, suggesting that residues involved in substrate bind-
ing, residues supporting the geometry of active sites, or resi-
dues involved in co-factor binding are not, despite being 
necessary for the catalysis. This definition, however, has not 
been consistently followed in the literature, potentially lead-
ing to confusion in not only defining catalytic residues, but 
also in applicability of the methods designed to predict them. 
In addition, function determination by experimentalists is 
tied to a particular organism, tissue or a particular set of en-
vironmental conditions [138]. A residue may be phosphory-
latable, but because a particular kinase is not expressed in the 
organism or tissue, this phosphorylation event may not oc-
cur. Similarly, a phosphorylation event may not be detect-
able because of the low abundance of a post-translationally 
modified form of the protein that may be outside of the dy-
namic range of the instrument used to determine post-
translational modifications (affinity enrichment strategies are 
available only for some post-translational modifications, 
such as phosphorylation). A positive prediction on such resi-
dues will lead to overestimation of the false positive rate. It 
is well-known that biological databases contain errors in 
deposited protein functions [139-140]. While similar error 
estimates have not been provided for functional residues, it is 
clear that numerous problems exist. 

 In summary, despite the achieved success and decades of 
active research, the accurate prediction of functional residues 
from protein structures is still an open problem. We antici-
pate that the area will further grow, most likely in the direc-
tion of incorporating protein dynamics with statistical and 
machine learning approaches and towards biomedical appli-
cations. When combined with more standardized function 
definitions and accurate database annotations, more sophisti-
cated and powerful algorithms can and will emerge. The 
future of the field is bright. 
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SUPPLEMENTARY MATERIAL 

 Two files per each data set used in Section 3 are pro-
vided. The .pos and .neg files list functional and non-
functional residues in protein structures, respectively. 
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 Supplementary material is available on the publishers 
Web site along with the published article. 
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