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Abstract

The availability of disease‐specific genomic data is critical for developing new

computational methods that predict the pathogenicity of human variants and advance

the field of precision medicine. However, the lack of gold standards to properly train

and benchmark such methods is one of the greatest challenges in the field. In

response to this challenge, the scientific community is invited to participate in the

Critical Assessment for Genome Interpretation (CAGI), where unpublished disease

variants are available for classification by in silico methods. As part of the CAGI‐5
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challenge, we evaluated the performance of 18 submissions and three additional

methods in predicting the pathogenicity of single nucleotide variants (SNVs) in

checkpoint kinase 2 (CHEK2) for cases of breast cancer in Hispanic females. As part

of the assessment, the efficacy of the analysis method and the setup of the challenge

were also considered. The results indicated that though the challenge could benefit

from additional participant data, the combined generalized linear model analysis and

odds of pathogenicity analysis provided a framework to evaluate the methods

submitted for SNV pathogenicity identification and for comparison to other available

methods. The outcome of this challenge and the approaches used can help guide

further advancements in identifying SNV‐disease relationships.
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1 | INTRODUCTION

Checkpoint kinase 2 (CHEK2) has been demonstrated to be an

effector kinase in the DNA damage checkpoint pathway, thus

variations in its sequence can lead to detrimental outcomes in

downstream DNA replication processes (Chaturvedi et al., 1999).

CHEK2 alterations by single nucleotide variants (SNVs) are linked to

DNA damage that is implicated in cases of breast cancer (BC;

Apostolou & Papasotiriou, 2017). BC is the most commonly

diagnosed cancer among female Hispanics in the United States and

the leading cause of cancer related deaths (Lynce et al., 2016). By

identifying pathogenic variants could lead to early diagnosis and/or

prevention thus reducing mortality.

New methodologies to estimate the impact of variants on disease

conditions are crucial for the advance of personal genome

interpretation studies (Capriotti, Nehrt, Kann, & Bromberg, 2012;

Peterson, Doughty, & Kann, 2013). These methods can be broadly

divided into two categories: data‐driven machine learning algorithms

or algorithms trained with expert knowledge (Peterson et al., 2013).

Unfortunately, the results from all these methods are not presented

in a consistent way, mostly due to lack of benchmarks to assess the

different methodologies (MacArthur et al., 2014; Pejaver, Mooney, &

Radivojac, 2017).

Critical Assessment of Genome Interpretation (CAGI) is a

community effort created to address the challenges around the

benchmarking of computational methods for predicting phenoty-

pic impacts of genomic variation (https://genomeinterpretation.

org/). The purpose of the CAGI challenges is to provide a

standardized framework for comparison across these different

methodologies to classify human variants.The fifth CAGI experi-

ment involved 14 challenges, one of which was the CHEK2

challenge. The CHEK2 challenge prompted the submitters to

assign a p (case) value to a list of provided CHEK2 variants to

indicate whether they were protective or not. The p (case) values

are numeric values between 0 and 1. A value of .5 would indicate

that the variation is neutral (equal in both populations) while a

p < .5 would be indicative of a variant that is protective. The

CHEK2 protein reference used for this challenge can be found by

the NCBI reference sequence ID: NP_001005735.1.

This challenge received 18 entries from eight different groups

which were assessed in addition to three publicly available

methodologies that differed from the ones used for the

submissions: SIFT (Sim et al., 2012), Align‐GVGD (Mathe et al.,

2006; Tavtigian et al., 2006), and Blocks Substitution Matrix

(BLOSUM) 62 (Jones, Taylor, & Thornton, 1992; Schwarz &

Dayoff, 1979). We assessed these methods in two ways: (a) by

providing a comparison on the performance of each method for

each SNV using a generalized linear model (GLM); and (b) by

calculating pathogenicity odds for each method. From our

analysis, we showed that some methods performed well in both

analysis measures, but also that each analysis method provided a

different insight into the methodʼs performance. Our GLM p

values showed that Group 5.1 performed best followed by the

submissions of Group 3. When evaluated on a subgroup,

excluding variants with low number of cases/controls, Group

4.1 did best. However, if we considered both the odds of

pathogenicity and significance of p values Group 3.1 performed

well in both assessment methods.

2 | MATERIALS AND METHODS

2.1 | Data source

The participant CHEK2 data were provided by Dr. Elad Ziv and Dr.

Susan Neuhausen, from an R01‐funded project of self‐identified
Hispanic women with BC who previously had tested negative for

carrying a BRCA1 or BRCA2 (BRCA) variations. Further inclusion

criteria were: age <51 years at BC diagnosis, bilateral BC, breast

and ovarian cancer, odds ratio (OR) age at diagnosis between

ages 51 and 70 years with a family history of BC in two or more

first or second‐degree relatives diagnosed at <70 years of age.

Participants had been previously consented and enrolled in
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center‐specific Institutional Review Board approved protocols

from three high‐risk registry studies including the City of Hope

Clinical Cancer Genomics Community Research Network

(MacDonald, Blazer, & Weitzel, 2010), the University of Califor-

nia San Francisco Clinical Genetics and Prevention Program, and

the University of Southern California Norris Comprehensive

Cancer Center clinical genetics program. The data providers

included CHEK2 data from 1,078 Hispanics with familial BC who

met inclusion criteria and 312 Hispanic controls from Southern

California. The data providers also included CHEK2 data from 887

participants from the Multiethnic Cohort (MEC) without BC

(approximately half had diabetes) who were self‐described
Hispanics and had undergone whole exome sequencing at the

Broad Sequencing Center. These controls are a subset of ExAC

Hispanic samples. The data set of 53 CHEK2 variants provided for

the CHEK2 challenge is described below and was made available

to the community without the information about the unpublished

case/control study findings for those sets.

2.2 | CHEK2 variant data set

The data set included 43 exonic variants and 10 untranslated region

variants. Of the variants, 34 were nonsynonymous SNVs, four were

synonymous SNVs, one was a stop‐gain SNV, two were nonframeshift

deletions, and two were frameshift deletions. Submitters only

predicted on the 34 exonic nonsynonymous SNVs. A summary of

this subset can be seen in Figure 1. One of the nonsynonymous SNVs

was misreported and did not match the amino acid in the reference

(NP_001005735.1). For the purposes of the assessment, the

misreported variant was adjusted to its correct initial amino acid.

2.3 | Reference methods

There are numerous methods available for variation analysis

(Peterson et al., 2013; Tavtigian, Greenblatt, Lesueur, & Byrnes,

2008), some of which were used by the submitters. For the purpose

of comparison, we selected the simplest approach a scoring function

for amino acid variations regardless of the sequence context,

BLOSUM62 (Henikoff & Henikoff, 1992; Jones et al., 1992), and

two more sophisticated approaches that include position specific

information and amino acidʼs physicochemical properties into the

analysis, SIFT (Sim et al., 2012) and Align‐GVGD (Mathe et al., 2006;

Tavtigian et al., 2006), respectively.

2.3.1 | SIFT

SIFT (Sim et al., 2012) is an algorithm that predicts the

probability of an amino acid variation affecting protein function.

The algorithm was accessed online, https://sift.bii.a‐star.edu.sg/
www/SIFT_seq_submit2.html. The input files were the CHEK2

sequence (NP_001005725.1) in FASTA format and the list of the

variants as provided by CAGI. All other parameters were kept as

defaults from December 2019. The output from this was a

prediction of whether the variant would affect the protein

function or not with a score and a confidence indicator.

2.3.2 | Align‐GVGD

Align‐GVGD was run using the default parameters as presented at

http://agvgd.hci.utah.edu/agvgd_input.php. The Align‐GVGD program

(Mathe et al., 2006; Tavtigian et al., 2006) combines an alignment

with amino acid physico‐chemical characteristics to calculate the

range of variation present at each position in the alignment (GV) and

the distance of missense substitutions from that range of variation

(GD).

Grades are assigned to each variation to provide an empirical

mapping from GV‐GD to genetic risk. For this analysis SNVs in C0

were considered benign, C15‐C25 were considered indeterminate

and C35‐C65 were considered pathogenic.

2.3.3 | BLOSUM62

BLOSUM (Henikoff & Henikoff, 1992; Jones et al., 1992) was used to

score the amino acid substitutions. Each substitution is given a score

indicating the similarity or difference for each variant. BLOSUM62

(Henikoff & Henikoff, 1992; Jones et al., 1992) scores range from −4

to 11. A positive score indicates identity or common substitutions, a

score of 0 is a commonly observed neutral substitution and a

negative score indicates a rarely observed substitution, for this

purpose assumed to be nonprotective. The more negative the

BLOSUM62 substitution score is, the more likely it is that the

variant results in a functionally significant, pathogenic, alteration of

the protein.

2.4 | Submissions

For this challenge, CAGI received 18 submissions from eight different

groups. The participating methods relied on evolutionary informa-

tion, structural information, and machine learning approaches,

providing predictions for all the 34 nonsynonymous SNVs. Only

one method did not report a result for the misreported position,

however, we estimated that this would not have significantly altered

the assessment outcomes. Below is a brief description of each the

methodologies that participated in this challenge provided by each

submission group. The authors responsible for each submission are

also provided as well as a link to the algorithms used, when available.

2.4.1 | Methodologies used by Group 1 (Olivier
Lichtarge, Panagiotis Katsonis)

Available for nonprofit use at http://mammoth.bcm.tmc.edu/

EvolutionaryAction

The Evolutionary Action (EA) measures the fitness effect of

coding variations analytically from protein evolution data (Katsonis &

Lichtarge, 2014), in the scale of 0 (benign) to 100 (pathogenic). The

EA scores were used to calculate the p (case) that a CHEK2 variant is

1614 | VOSKANIAN ET AL.



seen in cases rather than in controls. Ideally, benign variants are

expected to be seen either in cases or in controls, while pathogenic

variants are expected to be seen only in cases. Therefore, the EA

scores were linearly transformed between 0.5 and 1, using:

p = 0.5 + EA/200.

The input of EA was 60 homologous sequences of the human

CHEK2 sequence (NP_009125). The homologous CHEK2 sequences

were obtained by a standard protein BLAST (Altschul et al., 1997),

using the UniRef100 database (Suzek et al., 2015). The sequences

were selected to represent different evolutionary depths according

to the sequence similarity of each homologous protein to human

CHEK2 (the most distant homologous sequence was found in Cae-

norhabditis elegans). The selected sequences were aligned by using

MUSCLE (Edgar, 2004). EA estimated the fitness effect of variations

by using an equation that states the phenotype change ( φ∆ ) equals to

the product of the sensitivity of the mutated site to genotype

changes ( φ γ∂ /∂ ) and the magnitude of the genotype change ( γ∆ ). The

sensitivity of the mutated site φ γ∂ /∂ was approximated with the

Evolutionary Trace algorithm which ranks the relative evolutionary

importance of sequence positions in a family of aligned homologs

(Lichtarge, Bourne, & Cohen, 1996) and the genotype change γ∆ was

approximated with inverse amino acid substitution log‐odds. The

computed fitness change ( φ∆ ), or EA score, has been shown to

correlate with experimental loss of function, clinical association,

morbidity, and mortality (Katsonis & Lichtarge, 2014; Neskey et al.,

2015).

2.4.2 | Methodologies used by Group 2 (Vikas
Pejaver, Predrag Radivojac, and Sean D. Mooney)

Available at http://mutpred.mutdb.org/#qform

MutPred2 (Pejaver, Mooney et al., 2017), an algorithm for the

prediction of pathogenicity of missense variations (Pejaver, Urresti

et al., 2017) was run on this data set to obtain scores between 0 and

1 representing the p (case). MutPred2 was run in the mode that uses

gene‐level homology count features. A score of 0 indicates a benign

variation and a score of 1 indicates a pathogenic variation. The scores

of MutPred2 approximate posterior probabilities (of pathogenicity,

given sequence features). For each variant, this score was assumed to

be equivalent to the probability that a variant is found in a case

individual. Therefore, no further transformation of scores was

performed.

2.4.3 | Methodologies used by Group 3 (Emidio
Capriotti)

Various methods used available at http://biofold.org/resources.html

For the CHEK2 challenge, we predicted the presence of a given

variant in cohorts of participants and controls using three methods

and combinations of them. The predictions from PhD‐SNP (Capriotti,

Calabrese, & Casadio, 2006), PhD‐SNPg (Capriotti & Fariselli, 2017)

and SNPs&GO (Capriotti et al., 2013; Capriotti, Martelli, Fariselli, &

Casadio, 2017) were used. These methods implement different

machine learning algorithms using the protein, gene sequence‐based
and functional features as input. In particular, PhD‐SNP and PhD‐
SNPg represent the simplest class of methods relying on sequence

conservation scores calculated on protein and gene levels, respec-

tively. The protein conservation score used in PhD‐SNP were

extracted from a BLAST (Altschul et al., 1997) search on the

UniRef90 protein data set (Suzek, Huang, McGarvey, Mazumder, &

Wu, 2007), while the PhyloP conservation (Pollard, Hubisz, Rosen-

bloom, & Siepel, 2010), calculated at nucleotide level, was included in

the input features of PhD‐SNPg. The PhyloP scores used, were

available from the UCSC genome browser (https://genome.ucsc.edu/

). A more sophisticated approach was used in SNPs&GO, which used

functional information encoded by Gene Ontology (GO) terms as

input. Specifically for this challenge, five sets of predictions were

submitted: three of them considering separately the probabilistic

output of PhD‐SNP and PhD‐SNPg, and the remaining ones used the

average output of SNPs&GO with each of the other two methods.

2.4.4 | Methodologies used by Group 4 (Yana
Bromberg, Yanran Wang, and Maximilian Miller)

Available at https://bromberglab.org/project/funtrp/ and https://

bromberglab.org/project/snap/

Screen for Non‐Acceptable Polymorphisms (SNAP; Bromberg &

Rost, 2007), a neural network‐based method for the prediction of the

functional effects of nonsynonymous SNPs, was run on all missense

F IGURE 1 Distribution of patients in
the case‐control category per SNV
position. SNV, single nucleotide variant

VOSKANIAN ET AL. | 1615



variations. In addition, fuNTRp was also run on these variations.

(Miller, Vitale, Rost, & Bromberg, 2019)

The probability of each variation being more observed in the BC

cohort was decided individually by assessing the reliability index (RI)

of the SNAP prediction and the fuNTRp prediction. Specifically, a

nonneutral SNAP variation at a toggle position was assigned a higher

probability in the BC cohort and a higher p (case) value. A nonneutral

SNAP variation at a rheostat or neutral position was assigned a p

(case) closer to .5, and a neutral SNAP variation at a neutral position

a p (case) of .5. A neutral SNAP variation at a rheostat or toggle

position was assigned a score around .6 or .4. The allele frequencies

of each variation in the general population were checked using ExAC,

and if the variation had a relatively high variation (e.g. pI200T,

MAF = 0.004), the p (case) was moved towards the healthy cohort

(p = 0.3). If the variation was relatively rare, the p (case) was moved

towards the BC cohort (p > .5). The distance the p (case) was moved

depends manually on the confidence of SNAP and the fuNTRp

prediction.

2.4.5 | Methodologies used by Group 5 (Pier Luigi
Martelli, Castrense Savojardo, Giulia Babbi, and Rita
Casadio)

Available at http://snps.biofold.org/snps‐and‐go/snps‐and‐go.html

Submission 5.1

The predictions were based on SNPs&GO (Calabrese, Capriotti,

Fariselli, Martelli, & Casadio, 2009). SNPs&GO is a method based on

Support Vector Machines for the prediction of deleterious single

amino acid polymorphisms (SAP) using protein functional annotation.

The output of SNPs&GO returns the effect (disease‐associated
variant or neutral variant) associated with a RI that is a number

scoring from 0 (unreliable) to 10 (reliable). For each protein variant,

the predictor scored the probability to be associated with human

diseases. For the calibration of the final scores, a probability from .5

to 1 following a scale that is proportional to the RI of each prediction

was assigned. When a variant is predicted to be neutral with an RI of

8, the predicted p = .5, when a variant is predicted to be disease

associated with an RI of 8 the predicted p = 1. The maximum RI was

set to 8 because this is the maximum RI found in this set of

predictions. The prediction of one of the variants was manually

curated because it was not coherent with the protein sequence.

UniProt accession O96017 reports in that position a different amino

acid. Finally, all predictions were assigned an arbitrary standard

deviation (SD) of 0.1.

Submission 5.2

The predictions are based on the disease Index matrix (Casadio,

Vassura, Tiwari, Fariselli, & Luigi Martelli, 2011). The matrix

associates SAP with a corresponding probability to be associated

with diseases (pd). For the calibration of the final scores, the pd

values were scaled: considering neutral (prediction = 0.5) any SAP

with a pd ≤ .4, and disease‐related (prediction = 1) any SAP with a

pd ≥ .8. All predictions were assigned an arbitrary SD of 0.1.

2.4.6 | Methodologies used by Group 6 (Yue Cao,
Yuanfei Sun, and Yang Shen)

The training data set and the source code is available at: https://

github.com/Shen‐Lab/WSR‐PredictPofPathogenicity/
BRCA‐interacting tumor suppressor genes variation data from

StringDB at https://string‐db.org/cgi/ were identified and downloaded

along with those of BRCA1/2 from ClinVar at https://www.ncbi.nlm.nih.

gov/clinvar/. In total, 2,026 variations of six tumor suppressors (CHEK2,

BRCA1, BRCA2, BRIP1, RBBP8, and TP53) were collected. Using

MutPred2, 15 features were extracted; together with a constant as

the16th feature, used in linear regression with a tailored loss function

(Cao et al., 2019) Specifically, to describe a penalty more in line with the

real biological processes while reducing the complexity of the optimiza-

tion, the loss function needs to be convex and first‐order differentiable.
To accommodate these two conditions, a parabola‐shaped polynomial of

degree six as the loss function was implemented. The data is divided into

five folds with four folds for training and one fold for testing and

performed cross‐validation of four‐folds for optimizing the regularization

constant C.

2.4.7 | Methodologies used by Group 7 (Aditi Garg,
Debnath Pal)

Link to coarse‐grained molecular dynamic simulation: http://pallab.

cds.iisc.ac.in/CGMM/

Link to protein functional similarity match algorithm: http://

pallab.cds.iisc.ac.in/dynfunc/

Two templates from the PDB (3I6W, 2CN5) corresponding to

CHEK2 (92–586 residues) were used to create a single model by

multichain modeling using Modeller (Fiser & Sali, 2003). The most

stable structure was used to further create mutant models by

replacing the specific amino acids. Each was subjected to C α atom‐
based MD simulation for 1 microsecond with Coarse‐Grained
Molecular Mechanics force field (Bhadra & Pal, 2014) at 300 K in

vacuum. Identical parameters were used for each simulation

namely, steepest descent energy minimization (max. force

≤100 kJ·mol−1·nm−1). A single short sequence of 273–279 K simu-

lated annealing in six steps was used within the 70 ps equilibration

step before reference temperature coupling. Structures during

unconstrained dynamics simulation were recorded every 100 ps time

from which 11 frames at every 100 ns were used for finding flexible

regions based on RMSF norm (Bhadra & Pal, 2014). The filtered wild

type protein and the variant pair were sent for a similarity score

calculation using the formula: Similarity score = a/b, where a is the

number of flexible regions in mutated protein and wild type (b). For

residue positions, 1–91, a secondary structure was predicted using

YASPIN (Lin, Simossis, Taylor, & Heringa, 2005).

Variation located at a position with regular secondary structure

was deemed as damaging, while others were benign; E→Q variation
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was treated as neutral. ATP binding is central to kinase activity and

we found one segment (412–421) near this site which was flexible

and could affect the ATP binding, and consequently the CHEK2

biochemical function. This segment was used in all variants for

comparison and it was deemed that higher the similarity in flexibility

of the variant protein to the wild type, the lesser are its chances to be

damaging. The predicted similarity scores were normalized using

identical reported cases from two previous studies for CHEK2

variants being damaging or benign (Desrichard, Bidet, Uhrhammer, &

Bignon, 2011; Le Calvez‐Kelm et al., 2011; Table S1). The ranges

were mapped as follows: <70 damaging, 70–80 neutral, >80 benign

for scores, and standard values of >.5 damaging, .5 neutral, <.5 benign

for corresponding probabilities.

2.4.8 | Methodologies used by Group 8 (Yao Yu,
Chad D. Huff, Sean V. Tavtigian, and Erin Young)

Accessible at http://www.hufflab.org/software/vaast/

Submissions 8.1–8.4 estimated p (case) using case‐control and
variant prioritization information as input to the Variant Annotation,

Analysis & Search Tool (VAAST; Hu et al., 2013; Hu et al., 2014;

Yandell et al., 2011). In the standard VAAST model, allele frequencies

and ORs are estimated from the case‐control data to test for gene

and variant associations. In this application, the objective is to predict

the phenotype status of a variant carrier for an established

susceptibility gene. To meet this objective, the case allele frequency

was constrained according to published CHEK2 variant ORs from

one or more literature sources. p (case) was then estimated with the

likelihood ratio from the VAAST model using case allele frequency

data from BC cases in TCGA (Cancer Genome Atlas Network, 2012)

and control allele frequency data from ExAC (Lek et al., 2016) (for

details see Supporting Information Methods). SDs and confidence

intervals (CIs) for p (case) were calculated using a parametric

bootstrap with 10,000 iterations. For Submissions 8.5–8.6, OR was

used as an approximation for the relative risk (RR) of a variant, with p

(case) equal to RR/(RR + 1). SDs and CIs for p (case) were estimated

using Monte Carlo simulations of reported ORs with 10,000

iterations.

Submission 8.1

Submission 8.1 applied the VAAST model using variant effect size

estimates from (Young et al., 2016) for both truncating/splice‐
junction variants and missense variants “Overlap of missense analysis

programs”; criteria).

Submission 8.2

This version applied the VAAST model with effect size estimates

from (Young et al., 2016) for both truncating/splice‐junction variants

and missense variants “Overlap of missense analysis programs”;

criteria). Known pathogenic variant information from ClinVar (Land-

rum et al., 2018) were also included. For any pathogenic variant

reported in ClinVar, it was assumed that the probability of the

alternative model was 1.

Submission 8.3

This version applied the VAAST model with used Align‐GVGD variant

effect sizes (Le Calvez‐Kelm et al., 2011) and truncating/splice‐
junction estimates (Young et al., 2016).

Submission 8.4

This version applied the VAAST model with fixed variant effect sizes

(Cybulski et al., 2011; truncating/splice‐junction OR 3.6, causal

missense OR 1.5 based on I157T).

Submission 8.5

Previously published estimates of CHEK2 variant effect size in BC as a

function of one or more variant prioritization scores were applied. This

version used effect size estimates (Young et al., 2016) for both

truncating/splice‐junction variants and missense variants “Overlap of

missense analysis programs.”

Submission 8.6

Previously published estimates of CHEK2 variant effect size in BC as a

function of one or more variant prioritization scores were applied, along

with Align‐GVGD variant effect sizes (Le Calvez‐Kelm et al., 2011) and

truncating/splice‐junction estimates (Young et al., 2016).

2.5 | Methodologies for benchmarking

The data set of 34 CHEK2 SNVs was used to evaluate the 18

submission methods described above and compared with three

existing techniques, used as reference, in the following ways:

1) A GLM which treats both the submissions and real experimental

distinctions of variations as a continuous scale. The case/control

participant data provided for each variant was used to compare each

submission using a GLM with a GLM function in R (R Core Team,

2013) to calculate p values for each variant. As input, we provided the

vector representing correct choices, where X was the participant

category (case, control) and Ywas the position as well as the entry per

submission in the same format. The result was the intercept, standard

error, t score, and p value. In addition, we obtained results for a subset

of ten positions with more than one participant in at least one of the

case or control group.

2) Analysis of the odds of pathogenicity was performed for participant

data, clustered by each of the methodologies, as well as with

BLOSUM62, Align‐GVGD, and SIFT, into three groups, namely

pathogenic, indeterminate, and benign. This method treats the

submissions and the real experimental variations distinctions as

categorical predictions. This assessment methodology identified the

number of SNVs that each method categorized in benign, indetermi-

nate, or pathogenic. To normalize across all methods the range of

.45–.55 of p (case) were deemed indeterminate, p (case) values below

that range were deemed benign and above were deemed pathogenic.

The analysis proceeded in three steps. First, the number of case and

control participants for the SNVs that the submitter categorized in

one of the three groups was used to an OR for each of the categories.
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ORs were also estimated for protein truncating variants (4.61; not

part of the CAGI competition, but the data were available to the

analysis team) and for the overall set of rare missense substitutions

(2.15). Second, we estimated a proportion of pathogenic variants for

the benign, indeterminate, and pathogenic categories in each

methodology. To do this, we used the total number of missense

substitutions placed in the category along with the categorical OR, the

OR for truncating variants (4.61) and a theoretical OR of 1.00 for

"pure" set of benign variants. We then determined the ratio of

variants with OR=4.61 to variants with OR=1.00 that best

approximated the observed categorical OR. Third, we estimated the

odds in favor of pathogenicity for the benign, indeterminate, and

pathogenic categories in eachmethodology. To do this, we treated the

estimated proportion of pathogenic variants in the overall set of rare

missense substitutions (0.32) as a prior probability (p1) and the

proportion estimated for each of the three categories as a posterior

probability (p2). Odds path were then estimated as Odds = (p2× [1−

p1])/([1− p2] x p1). These odds in favor of pathogenicity were

compared against the ACMG scale (Tavtigian et al., 2018), where

scores below 0.53 indicate strong benign, 0.053–0.481: benign,

0.481–2.08: indeterminate, 2.08–4.33: pathogenic, 4.33–18.72 mod-

erate pathogenic, and scores above 18.72 are indicative of strong

pathogenic relations.

3 | RESULTS

Figure 2 is a heatmap showing the p (case) predictions submitted by each

of the methods separated into how the SNVs were classified in the

participant data. The submission p (case) predictions for all variants is

available (Table S2). Submission 8.3 and 8.4 generally made predictions in

the neutral range, represented by the yellow color, while Submission 6

and 2 had most samples in the benign ranges, green. Submission 1, 5.1,

5.2, and 8.5 predicted most positions as pathogenic.

Table 1 shows p values for the 18 submissions and the three

reference methods, namely SIFT, BLOSUM62, and Align‐GVGD as

calculated using the GLM in R. The ten positions sub grouped are the

ones with more than one participant difference between case or control

categories, and at least two participants for that position thus giving us

higher confidence in the assessment of those variant positions. The

remaining 24 CHEK2 positions included in the “all positions” set were

present in a total of only one participant, case or control. Method 8.6

lacks values for p values in the ten positions as all their p (case) values

were the same not allowing for this type of analysis. The remaining

results from the GLM analysis can be found in Table S3.

Submissions 2, 3.1, 3.2, 3.3, and 5.1, along with Align‐GVGD, had

significant p values at a .05 threshold, when looking at all positions.

However, when looking at the selected ten positions, submissions 5.1

and 4 had p values under .05 in addition to SIFT. The p values were

higher than .05 for all the other methods.

On the basis of the odds of pathogenicity, while the reference

method Align‐GVGD accurately classified SNVs in all three cate-

gories, the performance of the submitted groups varied in each of the

categories. Figure 3 shows the odds of pathogenicity per submitter. It

is distributed among categories (benign, indeterminate, and patho-

genic) based on the submitterʼs provided predictions and then

graphed according to the ACMG CI of pathogenicity. The size of the

marker correlates to the number of positions that were attributed to

that category.

F IGURE 2 Representation of submission p (case). Green indicates values close to 0 (benign) and red indicates values close to 1 (pathogenic)
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Four submission groups performed accurately in two categories:

2 (benign, pathogenic) 3.1 (benign, pathogenic), 7 (benign, indetermi-

nate), and 8.3 (indeterminate, pathogenic). In contrast, Groups 3.4

(pathogenic), 4 (pathogenic), 5.2 (indeterminate), 6 (indeterminate),

8.4 (indeterminate), 8.5 (indeterminate), and BLOSUM62 (benign) all

had one of their three categories within the ACMG pathogenicity

range used as a guideline here.

4 | DISCUSSION

The two methods of analysis, generalized linear modeling to assess in

terms of p values and the odds of pathogenicity calculations, have

their advantages but also several disadvantages. Both methods are

impacted by the low number of datapoints in the original data set

provided (Figure 1) and the unequal distribution of case and control

instances. To account for some of this impact, we chose a subset of

ten positions for the p value analysis. These ten positions all had

more than one case that led to their classification as pathogenic or

benign, giving us higher confidence on the statistical analysis. This

subset of positions provided a framework where we no longer had

zero participants in one category and just one in the other, but the

data set was skewed, with a larger number of positions represented

in case than in the control participant population.

Our results for the p value analysis in all positions and the subset

of ten positions showed inconsistency in the performance of the

methods. Five of the submitted methods (5.1, 3.1, 3.2, 2, and 3.3) and

Align‐GVGD had significant p values when analyzed across all SNVs

while only three submissions (5.1 and 4) and SIFT performed well

across the ten positions. These results confirm that methods which

categorize more positions in the pathogenic category perform better

since both in the overall sample and particularly in the ten extracted

positions, more BC participants were present. This further illustrates

the benefits of prediction methods favoring pathogenic predictions.

Although, without a similar benchmarking data set that is more

heavily benign, we could not assess whether this was just an artifact

of the methods or an accurate bias towards the correct SNVs

classification.

The reference methods, SIFT, Align‐GVGD, and BLOSUM62, had

some limitations in their evaluations. While BLOSUM62 and Align‐
GVGD have three categories, SIFT operates on a binary scale; this

can explain why SIFT outperformed in the p values, among the ten

positions, which with the exception of one were all confidently placed

in case or control categories. BLOSUM62 as expected, being a

simpler scoring, did very poorly.

To further understand the distribution of the p (case) submitted

by each method, we had chosen three representative positions for

each base (pathogenic, neutral, and protective; Figure 4). Thirteen

groups predicted the pathogenic position correctly while only three

called the protective variation correctly and nine called the neutral

position correctly. The incorrect predictions generally fell in the

pathogenic range, this may show some bias in how the methods

evaluated the SNVs pathogenicity. This disbalance was also reflected

TABLE 1 The p values were calculated using the GLM function
in R

p value

Method All positions Ten positions

SIFT .60 .02

Align‐GVGD .03 .09

BLOSUM62 .43 1.28

Sub. 1 .16 .19

Sub. 2 .031 .061

Sub. 3.1 .016 .061

Sub. 3.2 .023 .065

Sub. 3.3 .039 .072

Sub. 3.4 .051 .15

Sub. 3.5 .11 .29

Sub. 4 .17 .037

Sub. 5.1 .002 .0035

Sub. 5.2 .24 .40

Sub. 6 .84 .86

Sub. 7 .67 .42

Sub. 8.1 .56 .06

Sub. 8.2 1.56 .12

Sub. 8.3 .31 1.54

Sub. 8.4 0.62 1.34

Sub. 8.5 0.25 .57

Sub. 8.6 0.31 N/A

Note: Method 8.6 lacks results for the subset of ten positions because
there was not significant variation in their p (case) predictions per SNV.

F IGURE 3 Summary of odds of pathogenicity results for all the
submissions and reference methods used in the assessment. Dot size
is proportional to the number of positions in each of the benign
(green), indeterminate (cyan), and pathogenic (red) categories. The
graph background color shows the ACMG odds of pathogenicity
range use as a guide (green—benign, blue—indeterminate,
orange—pathogenic)
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in the data set provided. Based on the p (case) predictions for these

three positions, Group 4 performed the most accurately.

We performed an alternative assessment of the submissions by

analyzing the odds of pathogenicity, which focused on the overall

number of variants in each of the three categories instead of the

performance per variant as in the p value assessment.

As shown in our results (Figure 3), Groups 3.1 and 8.3

performances were more closely correlated with the correct ACMG

CI of pathogenicity. Even though our previous p value analysis

indicated that Group 5.1 performed better, because they placed

more positions in the pathogenic category, they performed worst in

this analysis. The lack of range in some of the submitted method

predictions, which is shown in the heatmap (Figure 2) is also clearly

visible in Figure 3. Thus, the groups that more heavily favored one

side of the scale were more scrutinized in this method of analysis.

Also, many methods categorized the benign as indeterminate (range

of 0.483–2.08). However, this could be an artifact of the preproces-

sing for this analysis. Due to the lack of consistent SDs across

methods, we considered the arbitrary range of 0.45–0.55 to fall into

the indeterminate category.

The pathogenicity odds results indicated that Align‐GVGD

was the best performer among the reference methods. However,

this discrepancy may be due to SIFT relying on a binary

classification and Align‐GVGD having results that were more

consistent with the challenge framework.

Regardless, Align‐GVGD had a p value under .05 and performed

well in the odds of pathogenicity analysis as did submissions by

Groups 2 and 3.1, which utilized PhD‐SNP, SNP&GO (Calabrese

et al., 2009) and MutPred2 (Pejaver, Mooney et al., 2017).

5 | CONCLUSIONS

The analysis methods used each had different advantages. While

the GLM analysis provided an assessment of the methodʼs

performance by specific positions and the classification it was

given, the odds of pathogenicity assessed the overall classifica-

tion of pathogenic, benign, and indeterminate positions. With

relevance to the reference methods, Align‐GVGD performed well

overall, but not when estimating p values with the subset of 10

positions. From our assessment on this data set, which presented

a strong bias towards pathogenic SNVs, it was difficult to

extrapolate whether results would be different if the data set

represented pathogenic and benign groups equally. We also

concluded that it would be beneficial to perform this challenge

and analysis with a larger, less biased data set. The comparison of

these two results gave us a better idea of the correctness of the

submissions, the appropriateness of the analysis method and the

structure of the challenge.
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