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Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder that
undergo disorder-to-order transitions upon specific binding, representing a specific class of intrinsically
disordered regions that exhibit molecular recognition and binding functions. MoRFs are common in
various proteomes and occupy a unique structural and functional niche in which function is a direct
consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank (PDB) have
been divided into three subtypes according to their structures in the bound state: R-MoRFs form
R-helices, â-MoRFs form â-strands, and ι-MoRFs form structures without a regular pattern of backbone
hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in the absence of
their binding partners by several criteria. In this study, we used several geometric and physiochemical
criteria to examine the properties of 62 R-, 20 â-, and 176 ι-MoRF complex structures. Interface residues
were examined by calculating differences in accessible surface area between the complex and isolated
monomers. The compositions and physiochemical properties of MoRF and MoRF partner interface
residues were compared to the interface residues of homodimers, heterodimers, and antigen-antibody
complexes. Our analysis indicates that there are significant differences in residue composition and
several geometric and physicochemical properties that can be used to discriminate, with a high degree
of accuracy, between various interfaces in protein interaction data sets. Implications of these findings
for the development of MoRF-partner interaction predictors are discussed. In addition, structural
changes upon MoRF-to-partner complex formation were examined for several illustrative examples.
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Introduction
Protein-protein interaction sites have been intensively

analyzed by different researchers to understand the molecular
determinants of protein recognition and to identify specific
characteristics of protein-protein interfaces.1-18 Different as-
pects of interaction sites, including residue propensities,
residue pairing preferences, hydrophobicity, size, shape, solvent
accessibility, and hydrogen bond protection, have all been
examined. Although each of these parameters provides some
information indicative of protein-protein interaction sites,

none of them perfectly differentiates interaction sites from non-
interacting protein surfaces. Protein interaction sites have been
observed to be hydrophobic, planar, globular, and protrud-
ing.1,2,4,8,9,16 Furthermore, interfaces in different types of even
the simplest protein complexes (e.g., homodimers, het-
erodimers) have different properties.9,11,15 Homocomplexes are
often permanent and optimized, whereas many heterocom-
plexes are nonobligatory, associating, and disassociating ac-
cording to the environmental or external factors and involve
proteins that must also exist independently.9 Subunit interfaces
in stable oligomeric proteins tend to closely resemble the
protein core with respect to hydrophobicity and residue
composition. In contrast, the interfaces in transient protein-
protein complexes were shown to be relatively close to the
protein exterior in composition, and the residues usually were
smaller and more polar than those in the interaction surfaces
of stable oligomers.9,16,17

Despite the intensive scrutiny applied to protein-protein
interactions, a model of sufficient quality to reliably predict

* Correspondence should be addressed to: Center for Computational
Biology and Bioinformatics, Department of Biochemistry and Molecular
Biology, Indiana University School of Medicine, Health Information and
Translational Sciences (HITS), 410 W. 10th Street, HS 5000, Indianapolis, IN
46202. Phone, 317-278-9650; fax, 317-278-9217; e-mails, vuversky@iupui.edu
(V.N.U.) or kedunker@iupui.edu (A.K.D).

† Indiana University School of Medicine.
‡ University of California.
# School of Informatics, Indiana University; Indiana University-Purdue

University.
§ Russian Academy of Sciences.

10.1021/pr0701411 CCC: $37.00  2007 American Chemical Society Journal of Proteome Research 2007, 6, 2351-2366 2351
Published on Web 05/09/2007



protein-protein interactions from unbound structures remains
elusive.19 To clarify, by interaction prediction, we mean the
prediction of low-resolution information from sequence or
structure, information such as identities of interacting partners
or interacting residues from specific partners. The relevance
of this problem increases daily, as the structures of mono- or
homomultimeric proteins are continually produced by struc-
tural genomics centers.20

One reason for the lack of a good interaction model is the
generally invalid assumption of a static protein backbone upon
protein-protein complex formation. The static structure as-
sumption has been ubiquitous in protein-protein docking,
until recently, and in the prediction of interaction surface
patches. Relaxing the static structure assumption indeed
increases the accuracy of solutions to the unbound-unbound
problem for structures with limited backbone mobility,21 but
no methods that include flexibility in the prediction of interac-
tion patches have been reported. Even methods that included
consideration of backbone flexibility are not effective for
proteins with large-scale backbone movements, due to inef-
ficient exploration of the large, accessible conformational space
of these proteins.22

The complexity of the interaction prediction problem is
compounded when intrinsically disordered proteins (IDPs) are
considered. IDPs lack a stable three-dimensional structure in
solution, with conformations that fluctuate over time and
populations. These proteins are characterized by a lack of
tertiary structure; by a lack of, or the transient formation of,
secondary structure; and by a hydrodynamic radius corre-
sponding to that of a random polymer in poor solvent,23 which
falls between a random-walk polymer and a compact globule.
Consequently, three-dimensional structure determination is
simply inapplicable to such proteins, since no equilibrium
structure exists, although advances have been made in deduc-
ing conformational biases within the ensemble of conformers.24

Although structure determination methods are inapplicable to
IDPs in isolation, this is not necessarily the case when IDPs
are bound to molecular partners. Many IDPs, such as those
examined here, perform molecular recognition functions,
undergoing a disorder-to-order transitions upon binding to
their partners.25-27 This disorder-to-order phenomenon has
recently been exploited to obtain the structure of an IDP that
had previously failed in the high-throughput structure deter-
mination pipeline of structural genomics.28 The approach of
crystallizing IDPs in the presence of their molecular binding
partners promises to greatly increase the number of proteins
amenable to the structural genomics methodology.

IDPs are prevalent in the proteomes of higher organisms29-31

and are thought to play a central role in molecular recogni-
tion,27 particularly in interaction-mediated signaling events.25

The advantages of IDPs in this role are many, including the
decoupling of specificity and affinity,32 the ability to recognize
multiple partners through adoption of different conforma-
tions,33 and faster on-rates34 due perhaps to the fly-casting35

or fishing36 mechanism. Clearly, the current approach to the
computational unbound-unbound problem is intractable for
IDPs. and given their relevance to a broad class of interaction-
mediated signaling events, new methods are needed for
prediction of the interaction complexes of IDPs.

Toward this goal, we have recently proposed an algorithm
that is able to find a specific structural element that mediates
many of the binding events of IDPs.32 These structural ele-
ments were termed R-helical Molecular Recognition Features

(R-MoRFs) and consist of short regions, on the order of 20
residues, that undergo disorder-to-order transitions and that
form R-helices upon binding to their partners. Furthermore,
these regions are typically flanked with regions of intrinsic
disorder.32 These R-MoRFs are members of a wider class of
short, interaction-prone segments of protein disorder that
undergo disorder-to-order transitions upon specific binding.

We have recently mined the PDB for proteins that fit the
general MoRF model of disorder-mediated protein interac-
tions.33 The resulting data set consists of 372 examples that are
very likely to be disordered prior to binding their protein
partners, as shown by both sequence- and structure-based
predictions33 Therefore, all or nearly all of these examples
conform to the MoRF hypothesis. These MoRFs were separated
into four major groups based on their secondary structure
content: R-MoRFs, which form R-helices; â-MoRFs, which form
â-strands or â-sheets; ι-MoRFs, which have irregular, non-
repeating psi- and phi- angles; and complex-MoRFs, which
have two or more secondary structure types of about equal
abundance (see Figure 1). While many of the MoRFs contain
regions of polyproline II (PPII) helix,33 this structural form does
not represent the predominant secondary structure for any of
the examples found to date. Thus, at least for now, we have
not been able to assemble a PPII-MoRF set.

The goal of the present work is to investigate the properties
of 62 R-, 20 â-, and 176 ι-MoRF-partner interactions by
identifying and characterizing the interactions sites in terms
of residue composition, interface geometry, and physicochem-
ical features, relative to well-studied interfaces including ho-
modimers, large and small protomers from hetero-complexes,
and antigens in antigen-antibody complexes. The degree of
similarity between the data sets was quantified, using a set of
surface residues from monomeric protein structures as a
control. We found that there were significant differences in
residue composition and in several geometric and physico-
chemical properties between the interfaces in the various
protein interaction data sets. In addition, the phenomenon of
disorder-to-order transitions in both MoRFs and their partners
was explored, as well as conformational changes induced in
partners by MoRF binding. We conclude with a discussion of
the implications of these findings on the future development
of a MoRF-partner interaction predictor.

Materials and Methods

Data Sets. The MoRF data set was extracted from the Protein
Data Bank,37 as a nonredundant collection of protein segments
more than 10 but less than 70 residues in length and bound to
globular proteins. We used 10 as a lower bound to reduce the
chance of including chameleon segments,38 the longest of
which so far observed are 8 residues in length.39 Chameleon
segments have identical local amino sequences but exist in
unrelated proteins and typically have completely different
secondary structures.38,40 We used 70 as an upper bound
because, above this length, the proteins are very often globular
or very often contain globular domains.

Out of the 372 MoRF examples identified in our previous
work,33 258 were classified as R-, â-, or ι-MoRFs, based on their
secondary structure content, where classification was based on
the secondary structure type having the largest percentage
value. The remaining examples with no clear preponderance
of one secondary structure type, that is, nearly equal ((1%)
values for the top two or more secondary structure types, were
classified as complex-MoRFs and were not examined here. To
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understand how MoRF binding affects the structure of MoRF
partners, PDB was searched for structures of MoRF partners
with and without corresponding MoRFs, and the 50 pairs found
were further analyzed.

Nonredundant collections of homodimers, hetero-, and
antigen-antibody complexes were taken from studies by Jones
and Thornton10,11 and Lo Conte et al.13 and used as controls in
the study of protein-protein interfaces. The data set of
monomeric proteins is a sample of monomeric structures from
the Protein Quaternary Structure file server (http://pqs.ebi.
ac.uk). A summary of the data sets is given in Table 1. Atom
coordinates for proteins in all data sets were extracted from
the September 2005 revision of the PDB.

Identification of Surface and Interface Residues. Protein
surfaces and interfaces were analyzed at the residue level. The
Molecular Surface (MS) software from Biohedron (http://
www.biohedron.com), which is an implementation of the
Connolly surface algorithm,41 was run for individual chains and
for complexes to determine the solvent-accessible surfaces for
each. Residues directly involved in interactions were identified

from molecular structures as residues with the change in ASA
on complex formation greater than 1 Å2.10,11 This process has
been illustrated in Figure 2. All calculations used a probe radius
of 1.4 Å, which roughly corresponds to the size of a water
molecule.

For examination of the solvent exposure of interface residues
and the determination of surface residues, the relative acces-
sible surface area (RASA) was used. This measure normalizes
the observed ASA of a residue by the ASA of a residue X in an
extended Ala-X-Ala tripeptide, Following the work of Miller at
al., a residue was considered to be on the surface of a protein
if the RASA of the residue was greater than 5%.42

Figure 1. Examples of types of MoRFs. MoRFs (red ribbons) and partners (green surface) are shown. (A) An R-MoRF, Proteinase
Inhibitor IA3, bound to Proteinase A (PDB entry 1DP5). (B) A â-MoRF, viral protein pVIc, bound to Human Adenovirus 2 Proteinase
(PDB entry 1AVP). (C) An ι-MoRF, Amphiphysin, bound to R-adaptin C (PDB entry 1KY7). (D) A complex-MoRF, â-amyloid precursor
protein (âAPP), bound to the PTB domain of the neuron specific protein X11 (PDB entry 1X11). Partner interfaces (gray surface) are
also indicated.

Table 1. Description of Protein Data Sets

data set number

average length

(residues)

R-MoRFs 62 231 ( 154
â-MoRFs 20 198 ( 98
ι-MoRFs 176 245 ( 117
Homodimers 16 185 ( 103
Hetero-complex (large protomers) 16 290 ( 118
Hetero-complex (small protomers) 18 79 ( 34
Antibody-antigen complex 12 154 ( 81
Monomeric proteins 650 284 ( 176

Figure 2. Illustration of interface ∆ASA and identification of
contact residues. Shown for the purpose of illustration is an
ι-MoRF, Bowman-Birk type Trypsin Inhibitor, (A, red surface)
bound to Trypsinogen (A, green surface) taken from PDB entry
1G9I. ASA is calculated for the complex (A) and the artificial
monomers (B) separately to obtain ∆ASA of complex formation.
ASA can be attributed to individual residues, thereby allowing
determination of residues involved in binding (B, gray surfaces).
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Amino Acid Composition Profiles. Analysis of amino acid
composition in the MoRF data sets was based on a modification
of a previously described approach.43 The fractional differ-
ence between the composition of interface residues (ICX) from
a given data set and the composition of surface residues
(SCmonomers) of monomeric proteins from PDB was calculated.
Residue composition was estimated as the mean of the
frequency of a particular residue in 100 000 pseudoreplicate
data sets obtained by bootstrap sampling44 from the set of
interface residues. The fractional difference was calculated as
(ICX - SCmonomer)/SCmonomer. A plot of this value for each of the
20 amino acids gives an interface composition profile.

Relative Entropy. If we consider amino acid compositions
of two samples of interaction sites P and Q to be generated
independently, each by a separate stochastic process according
to probability distributions p and q, we can express the
similarities in residue compositions of different data sets using
relative entropy, H(p||q). When the frequencies of residues as
the maximum likelihood estimate for the underlying probability
distributions p and q are used, relative entropy of the sample
P with respect to the sample Q is defined as

where pk and qk are relative frequencies of the 20 amino acids
in the two samples.45 Relative entropy is always greater than
or equal to 0, with equality achieved only when residue
compositions are identical.

Relative entropy was used as the test statistic to evaluate the
statistical significance of differences in observed ICX distribu-
tions. P-values were estimated under the null hypothesis that
residue compositions of the two interface types come from the
same underlying distribution. In each bootstrap iteration,
samples for the two sets were generated by pooling the two
interface data sets and sampling whole interfaces from each
with replacement. This procedure was repeated 100 000 times,
and the p-value was calculated as the number of occurrences
of relative entropy values equal to or greater than the observed
value.

In assessing the significance of results, the type I error rate,
that is, the rate at which the null hypothesis is incorrectly
rejected, is controlled by the selection of alpha value, typically
selected to be 0.05. This p-value cutoff implies that 1 out of 20
significance tests will incorrectly reject the null hypothesis.
When many significance tests are performed in a single
experiment, this implies that many incorrect hypotheses will
be accepted. In testing the significance of relative entropy
values, 55 individual significance tests are performed, which
means that one would expect that the null hypothesis would
be rejected incorrectly at least twice. That is, the experiment-
wise type I error rate becomes 2.25. Several methods are
available to adjust the experiment-wise type I error rate to more
reasonable levels. Here, a conservative approach, the Bonfer-
roni adjustment,46 is used to adjust the experiment-wise type
I error rate to 0.05. This was done by dividing the alpha value
of 0.05 by the number of individual significance tests, which
gives a p-value cutoff of 9.1 × 10-4.

Geometry and Physicochemical Properties of Interfaces.
To differentiate MoRF-partner from other protein-protein
interactions, size, accessible surface area, and planarity were
used to describe the geometry of binding sites. Aromatic
content, total and net charge, hydrophobicity, surface exposure,

interface propensity, and flexibility were used to describe the
major physicochemical properties of interface residues. The
sizes of all sets of interfaces were calculated in terms of number
of residues as well as the ASA of all residues participating in
the interaction. The planarity of the interface is given by the
rmsd of all the atoms in the interface to the least-square error
fitting to a plane. Aromatic content of an interface was based
on the total number of aromatic residues (i.e., Phe, Trp, Tyr).
Total and net charges were calculated from residue identities
as the sum or difference, respectively, of the number of positive
and negative residues. All counts were averaged over the
number of residues comprising the interface. Other properties
calculated were means of the values assigned to interface
residues by various scales: the surface exposure index of Janin
and co-workers,47 the flexibility index of Vihinen and co-
workers,48 the hydropathy scale of Fauchere and Pliska,49 and
the residue interface propensity of Jones and Thornton.9

Classification of Interface Types. Classification of interface
types was performed using a naı̈ve Bayes classifier, a simple
probabilistic classifier which assumes conditional indepen-
dence between attributes. Despite this relatively strong as-
sumption that often does not hold in practice, it is an optimal
linear classifier under zero-one loss even when the attribute
independence assumption is violated by a huge margin.50 In
our initial experiments, Bayes was found to perform better than
logistic regression or support vector classifiers (results not
shown). Naı̈ve Bayes was implemented in Matlab, where kernel
density estimates were used to model parameter distributions.
Classification was made on a one-versus-all (OVA) basis, where
a positive data set made up one class and the remaining data
sets were assigned to a negative class. This was repeated for
all data sets, and prediction accuracy was evaluated by leave-
one-out cross validation, which is a standard validation method
when one of the classes has very few examples. In the leave-
one-out procedure, the following is repeated for each inter-
face: an interface was removed from the data set, the model
was trained, and the prediction accuracy for the left-out
example was assessed. Since the training sets were not balanced
in the number of positive and negative examples, both the
sensitivity and specificity are reported, in addition to the overall
accuracy. In this context, sensitivity is the fraction of correct
predictions for the interface type in question and specificity is
the fraction of correct predictions for all other interface types.

Prior to classifier training, a subset of features was selected
by a two-sample t test between values of individual parameters
in the positive and negative classes. Thirty-three possible
attributes were considered in the selection process: interface
ASA, relative interface ASA, fraction of the protein surface
occupied by the interface, interface size in terms of number of
residues, fraction of all residues which participate in the
interface, interface planarity, hydrophobicity, flexibility, inter-
face propensity, surface exposure, net and total charge, aro-
matic content, and 20 attributes representing amino acid
content of the interfaces defined as fractions of all interface
residues. Only features with p-value lower than 0.5 were kept.

Results

Data Sets. Previous observations indicated that the structural
and sequence properties of different MoRF subtypes might be
significantly different from each other.32,33 Accordingly, the
previously compiled MoRF data set33 was broken into the R-,
â-, and ι-MoRF subsets (Table 1), based on a predominant
content of helix, strand, or irregular structure, respectively (see

H(p||q) ) ∑kpk log
pk

qk
(1)
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Materials and Methods). Nonredundant collections of ho-
modimers, hetero-, and antigen-antibody complexes were
used as controls, allowing the comparison of MoRF interfaces
with previously studied interface types.

Analysis of Amino Acid Compositions. The composition of
the interface residues of all data sets were examined relative
to amino acid composition of surface residues from monomeric
proteins (Figure 3), which here provides the background amino
acid distribution. Fractional relative compositions are shown
arranged from left to right by increasing surface exposure in
globular proteins, according to the Janin scale.47 On this scale,
the dividing line between mostly buried and mostly exposed
residues occurs between tryptophan and histidine.

There are several general trends in the compositional biases
among the data sets. All MoRF interfaces (Figure 3A-F) are
generally depleted in the six most highly exposed residues,
enriched in the six most highly buried residues, and have
variable or small biases in residues with intermediate exposure.
These trends may be indicative of the propensity of these
residues toward interaction, although all data sets deviate from
this generality to some extent. Also, the compositions of MoRFs
and their partners appear to be strikingly similar, although
results given in later sections show that there are some
significant differences. Homodimers and heterodimers (Figure
3G,H,I) are enriched in buried residues and depleted in exposed
residues similar to MoRF complexes. However, these enrich-
ments and depletions are not generally as pronounced as for
MoRFs and their partners, where heterodimers show this trend
at best sporadically. Unlike the other interface data sets,
antigens are depleted in buried residues and show no general
trend for exposed residues. However, antigen biases are also
the weakest among all the data sets (Figure 3J), suggesting that
they are more similar to monomer surfaces than other inter-
faces.

There are several notable deviations from these overall
compositional trends. In MoRF interfaces, â- and ι-MoRFs are
enriched in proline, which contrasts with R-MoRFs likely due
to the helix-breaking nature of proline. Both R-MoRFs and their
partners are depleted in tyrosine and histidine, and both
â-MoRFs and their partners are depleted in tryptophan. Also,
â-MoRFs are depleted in cysteine, but their partners are
significantly enriched in this amino acid. In general, the
differences between the data sets seem to be more pronounced
on the buried part of the scale. The largest relative differences
were in the cysteine content of ι-MoRFs, â-MoRF partners, and
heterocomplexes and in the methionine content of R-MoRF
partners. With the exception of antigens, much of the variability
in compositional biases among all data sets is in the eight
residues with intermediate exposure. For example, tryptophan
is enriched in R-MoRF complexes, ι-MoRF complexes, and
small protomers of heterodimers, but depleted in â-MoRF
complexes, homodimers, and large protomers from hetero-
complexes.

Relative Entropy. The difference in amino acid compositions
of all interaction site data sets was quantified by calculation of
the relative entropy45 between the compositions of all pairs of
interface data sets (Table 2), as described in Materials and
Methods. Most pairwise comparisons show statistically signifi-
cant differences between the interface compositions of the 10
data sets; only 8 of the 55 pairwise comparisons are insignifi-
cant using the conservative, that is, Bonferroni-adjusted,46 alpha
value of 9.1 × 10-4. Of the tests that give insignificant results,
5 involve comparisons to homodimers, indicating that ho-

modimers may have more generalized interface compositions
than other sets.

The interface compositions of MoRFs and partners are in
general very different from the interface compositions of other
hetero-complexes, with the exception of ι-MoRFs, which sug-
gests that MoRF interaction surfaces are distinct from those of
other complexes. Also, the interfaces of antigens show signifi-
cant divergence from all other interfaces, with the difference
being most pronounced between antigens and MoRFs and their
partners. The relative entropies between R-, â- and ι-MoRFs
and their respective partners are among the smallest observed
of all pairs of data sets, where the difference between R- and
â-MoRFs and their respective partners is not found to be
statistically significant. This compositional symmetry of MoRFs
and their partners is also apparent in Figure 3. Interfaces of R-
and â-MoRFs are different in residue composition from all data
sets other than their respective partners, and there is also a
significant difference between the two. Interfaces of ι-MoRFs
are also significantly different from most other data sets. These
results imply that the interfaces of MoRFs and their binding
partners can be discriminated based on the residue composi-
tion, and suggest that MoRF and partner classifiers can be
constructed. This possibility has been investigated with the
inclusion of additional attributes as discussed below.

Analysis of Geometric and Physiochemical Parameters. 1.
Size of Binding Site and ASA. The sizes of interfaces were
compared in terms of total residue count and total accessible
surface area, ASA (Figure 4A-F). The absolute number of
residues involved in the interface (Figure 4A) of all three types
of MoRFs (average of 17 ( 1 residues) shows that MoRFs are
generally smaller than all other interaction types (average of
28 ( 2 residues). However, the absolute interface ASA (Figure
4B) of MoRFs (average of 1141 ( 110 Å2) is slightly larger than
other interface types (average of 948 ( 72 Å2).

Since MoRFs are generally shorter than members of other
data sets (Table 1), these size measures were normalized in
order to obtain the relative averaged size of a binding site and
the relative averaged accessible surface area. Normalization of
interface size by residue (Figure 4C) shows that the binding
interfaces of the three MoRF data sets (average of 75 ( 24% of
residues) involve much more of the sequence than the inter-
faces of other data sets (average of 18 ( 8% of residues).
Normalized ASA (Figure 4D) also demonstrates that the inter-
faces of the MoRF data set (average of 43 ( 17% of ASA) involve
much more of the protein surface than the interfaces of other
types of complexes (average of 11 ( 4% of ASA).

To provide an alternative view of the participation of
interface residues, the average relative ASA of interface residues
was calculated (Figure 4E). MoRF interfaces show a significantly
higher RASA (73 ( 2%) compared to all other data sets (43 (
1%).

2. Buried Surface Area. The ∆ASA of an interface is
frequently used as a metric for the size of an interface13,14 and
is calculated as the sum of the ASA of the isolated components
minus that of the complex.2 Protein-protein complexes have
been observed to bury surface areas in the range of 1600 (
400 Å2, which represents the “standard size” of the interface
area.13 Similarly, interfaces burying less than 1200 Å2 and more
than 2000 Å2 are considered to be small and large interfaces,
respectively.

Calculation of ∆ASA for MoRFs and their binding partners
(Figure 4O) shows that most complexes examined here fall into
the standard size interface category, with fewer in the small
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and large interface categories. Complexes of R- and â-MoRFs
with their binding partners and homodimers are characterized

by many large interfaces, where ι-MoRF, hetero-, and antigen-
antibody complexes are closer to the standard size.

Figure 3. Compositional profiles of the interface residues of MoRFs. The interface composition (IC) profiles of (A) R-MoRF, (B) R-MoRF
partner, (C) â-MoRF, (D) â-MoRF partner, (E) ι-MoRF, (F) ι-MoRF partner, (G) small protomer from heterodimers, (H) large protomer
from heterodimers, (I) homodimer, and (J) antigen interfaces are shown relative to surface residues of monomeric structures. Error
bars give one standard deviation estimated by 100 000 bootstrap iterations. Amino acids are arranged in the order of increasing surface
exposure, from the residues most buried in globular proteins on the left-hand side to the most exposed ones on the right-hand side.47
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3. Planarity of Binding Surfaces. Several researchers ob-
served that the interfaces of protein-protein complexes tend
to be flat.1,9,11,14 One measure of the flatness of an interface is
planarity, calculated as the root-mean-squared deviations
(rmsd’s) of all the atoms in interface from the least-squares
plane fitted to the atoms. A lower rmsd indicates a closer
agreement to the best-fit plane, and therefore, that the interface
is flatter. The planarity was calculated for each interface (Figure
4G), and all three types of MoRF interfaces are flatter (average
rmsd of 2.47 ( 0.14) than other protein-protein interaction
interfaces (average rmsd of 2.98 ( 0.5). MoRF partner interfaces
(3.76 ( 0.21) are significantly less flat than MoRFs, possibly
indicating that MoRFs may protrude into the partner, thereby
including residues that are not well solvent exposed. This idea
is supported by the relatively low RASA of interface residues
of MoRF partners (Figure 4E). These results also suggest that
the flatness of the interface as measured relative to the MoRF
may be due in part to the small overall size of the MoRF
compared to the sized of the globular protein partner.

Physicochemical Properties of Binding Surfaces. 1. Aro-
matic Content, Total Charge, and Net Charge. The charged
residues, particularly arginine, and the aromatic residues,
particularly tyrosine, tryptophan and histidine, are relatively
abundant in protein-protein interaction sites.11 The role of
these residues in the formation of complexes between MoRFs
and their binding partners was investigated and compared to
other protein-protein complexes. Aromatic content, total
charge, and net charge were calculated and averaged over the
number of residues comprising the interface (Figure 4H,I,J).
R-MoRFs are effectively depleted in aromatic residues, whereas
â-MoRFs and ι-MoRF partners are enriched in these residues.
There is a notable asymmetry in the aromatic content in all
MoRF-partner pairs, where one member of the complex has
a larger composition of aromatic residues than the other. This
same asymmetry is also observed for heterocomplexes, where
the larger partner is enriched in aromatic residues and the
smaller partner is depleted in these residues. These observa-
tions suggest that specific interactions involving aromatic
amino acids might play a crucial role in the formation and
stabilization of the MoRF-partner complexes.

In terms of mean total charge (Figure 4I), most data sets are
similar, with â-MoRFs having the lowest mean total charge and
antigens and small subunits of heterocomplexs having the
largest mean total charge. Similarly, most data sets have a mean
net charge (Figure 4J) not significantly different from 0, showing

little bias toward positive or negative charge. The exceptions
are ι-MoRFs, homodimers, and the small subunits of hetero-
complexes, which are biased toward net positive charge.

2. Hydrophobicity. Calculation of the Fauchere-Pliska hy-
drophobicity for the complexes (Figure 4K) shows that the
interfaces of MoRFs and their partners are somewhat more
hydrophobic than the interfaces of other complex types. This
supports the hypothesis that hydrophobic interactions might
play a crucial role in formation of these complexes.

3. Surface Exposure. The surface exposure was calculated
for each interface data set using the Janin scale (Figure 4L),
where the calculated values indicate the propensity of interfaces
to be exposed in the context of a folded protein. The R- and
ι-MoRFs and their partners have an intermediate propensity
toward surface exposure, similar to homodimers and the large
subunits of heterocomplexes. The â-MoRFs and their partners
show a much lower propensity toward surface exposure.

4. Interface Propensity. The binding site propensities for
each of the interfaces in all the data sets were calculated using
the scale of Jones and Thornton9,11 (Figure 4M). Compared to
the interfaces of other complexes, the binding sites of MoRFs
and their partners comprise residues with comparable or higher
interface propensity. The R-MoRFs and ι-MoRFs have a lower
interface propensity than their respective partners, whereas the
â-MoRFs have a higher interface propensity than their partners.
The ι-MoRFs have the lowest interface propensities among the
MoRF complexes, comparable to homodimers and small
subunits from heterocomplexes.

5. Flexibility. The mean flexibility of interface residues was
calculated using the scale of Vihinen et al.,48 and the flexibility
distributions of each interface type was summarized (Figure
4N). By this measure, ι-MoRFs are the most flexible, whereas
the â-MoRFs are the least flexible among MoRFs and their
binding partners. MoRF interfaces are comparable or less
flexible by this scale than other interface types, which is
surprising given previous evidence that suggests that MoRFs
are IDPs.33 Evidently, the noninterface residues of the MoRFs
contribute substantially to the lack of folding prior to binding.

Classification of Interface Types. To investigate the pos-
sibility that a combination of multiple geometric and physi-
cochemical parameters can be used to accurately differentiate
between different types of interfaces, naı̈ve Bayes classifiers
were trained on a subset of properties that show significant
discrimination power between a particular interface type and
the combination of all other interface types. The number of

Table 2. Relative Entropy between Residue Compositions of the Data Sets

â-MoRF ι-MoRF R-partner â-partner ι-partner

R-MoRF 0.248 (<10-5) 0.146 (<10-5) 0.040 (0.0047) 0.123 (<10-5) 0.162 (<10-5)
â-MoRF 0.153 (<10-5) 0.192 (<10-5) 0.109 (0.0233) 0.158 (2.0×10-5)
ι-MoRF 0.106 (<10-5) 0.109 (<10-5) 0.062 (<10-5)
R-Partner 0.086 (<10-5) 0.095 (<10-5)
â-Partner 0.110 (<10-5)

homodimers large hetero small hetero antigens PDB monomers

R-MoRF 0.141 (<10-5) 0.470 (<10-5) 0.258 (<10-5) 0.496 (<10-5) 0.204 (<10-5)
â-MoRF 0.176 (6.4×10-4) 0.320 (<10-5) 0.263 (5.0×10-5) 0.545 (<10-5) 0.228 (<10-5)
ι-MoRF 0.035 (0.3432) 0.179 (<10-5) 0.091 (0.0116) 0.319 (<10-5) 0.086 (<10-5)
R-Partner 0.098 (1.4×10-4) 0.361 (<10-5) 0.198 (<10-5) 0.449 (<10-5) 0.186 (<10-5)
â-Partner 0.087 (0.0129) 0.275 (<10-5) 0.156 (3.7×10-4) 0.485 (<10-5) 0.197 (<10-5)
ι-Partner 0.067 (0.0033) 0.134 (<10-5) 0.112 (4.2×10-4) 0.284 (<10-5) 0.101 (<10-5)
Homodimers 0.168 (1.9×10-4) 0.104 (0.0863) 0.250 (2.0×10-5) 0.061 (0.0042)
Large Hetero 0.242 (1.0×10-5) 0.291 (<10-5) 0.193 (<10-5)
Small Hetero 0.321 (1.0×10-5) 0.136 (1.0×10-5)
Antigens 0.176 (<10-5)
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selected parameters and the top 5 parameters, judged by the
smallest p-values of the selection t test, are shown for each

interface class (Table 3). The top 5 parameters generally reflect
the differences observed in comparisons of data sets by

Figure 4. Characterization of interface sizes and surface areas. Means and one standard deviation, estimated by 100 000 bootstrap
iterations, are shown for each of the data sets for all metrics: (A) number of interface residues, (B) ASA of interface residues, (C)
proportion of residues involved in the interface, (D) proportion of ASA involved in the interface, (E) RASA of interface residues, (F)
total ASA per residue, (G) planarity, (H) aromatic residue composition, (I) total and (J) net charge, (K) hydrophobicity, (L) surface
exposure, (M) interface propensity, and (N) flexibility. In addition, surface buried on complex formation as mean ∆ASA (O) are shown
for all complex types.
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individual features (Figures 3 and 4). For example, hydropho-
bicity is the most significant parameter for antigens, which
would be expected from its relative distribution (Figure 4K).
The top features selected for MoRFs are generally distributed
in two groups: (1) geometric features that distinguish MoRFs
from other interface types (e.g., relative interface size), and (2)
compositional features that distinguish the various MoRF types
(e.g., lysine in R-MoRFs, valine in â-MoRFs, and proline in
ι-MoRFs).

Total prediction accuracies are good across all data sets (see
Table 4), with none less than 75%. MoRF prediction accu-
racies fall in the 83.8 ( 1.0 to 93.6 ( 1.4 range, whereas for
MoRF partners values are between 76.4 ( 2.3 and 88.0 (
2.4. Note that in the current framework, a prediction accu-
racy of 50% is expected for random assignment. Sensitivities
are generally lower than specificities, which is a consequence
of the use of unbalanced data sets in the one-versus-all proce-
dure. In conclusion, these results support the idea that all these

interfaces can be distinguished based on geometric and phys-
iochemical features along with amino acid compositions.

Binding Induced Folding of MoRFs. MoRFs represent short
interaction-prone segments of protein disorder that can un-

Table 3. Summary of Selected Parameters for Each Data Set

top 5 features

interface type

number of

selected features name p-value

R-MoRF 28 Lysine composition 9.83 × 10-13

Interface size (% residues) 2.92 × 10-08

Interface size (% ASA) 2.12 × 10-07

Tyrosine composition 1.23 × 10-06

Aromatic composition 1.90 × 10-06

â-MoRF 27 Interface size (% ASA) 5.19 × 10-16

Interface size (% residues) 1.01 × 10-09

Valine composition 1.08 × 10-08

Interface RASA 6.68 × 10-08

Interface ASA 2.23 × 10-06

ι-MoRF 27 Interface RASA 1.77 × 10-79

Interface size (% residues) 1.41 × 10-76

Interface size (% ASA) 8.22 × 10-54

Planarity 5.64 × 10-20

Interface size (no. of residues) 1.01 × 10-19

R-partner 27 Interface size (% residues) 5.55 × 10-10

Interface size (% ASA) 5.67 × 10-09

Interface RASA 1.38 × 10-06

Planarity 6.83 × 10-06

Interface size (no. of residues) 4.74 × 10-05

â-partner 26 Interface size (no. of residues) 1.79 × 10-09

Planarity 1.57 × 10-07

Interface RASA 1.60 × 10-04

Interface size (% ASA) 0.0127
Surface exposure 0.0190

ι-partner 26 Interface size (% residues) 8.02 × 10-49

Interface RASA 5.24 × 10-46

Interface size (% ASA) 9.39 × 10-46

Aromatic composition 2.86 × 10-16

Tyrosine composition 5.15 × 10-13

Homodimers 16 Interface size (no. of residues) 0.0005
Interface size (absolute ASA) 0.0012
Interface size (% residues) 0.0207
Interface RASA 0.0756
Interface size (% ASA) 0.1006

Hetero-complex (large protomers) 23 Interface size (% residues) 0.0003
Interface RASA 0.0005
Interface size (% ASA) 0.0015
Serine composition 0.0048
Histidine composition 0.0055

Hetero-complex (small protomers) 25 Cysteine composition 0.0068
Aromatic compositions 0.0188
Phenylalanine composition 0.0256
Lysine composition 0.0271
Hydrophobicity 0.0317

Antibodies 26 Hydrophobicity 8.56 × 10-08

Asparagine composition 1.14 × 10-07

Flexibility 9.51 × 10-06

Surface exposure 1.88 × 10-04

Interface propensity 0.0016

Table 4. Results of OVA Classification of Interface Types

interface type sensitivity (%) specificity (%) accuracy (%)

R-MoRF 75.8 ( 2.3 90.6 ( 1.1 89.0 ( 1.2
â-MoRF 57.9 ( 5.6 94.8 ( 1.1 93.6 ( 1.4
ι-MoRF 77.8 ( 1.3 86.5 ( 0.9 83.8 ( 1.0
R-partner 79.0 ( 2.1 76.0 ( 2.3 76.4 ( 2.3
â-partner 73.7 ( 4.5 88.5 ( 2.3 88.0 ( 2.4
ι-partner 91.5 ( 0.6 74.7 ( 1.4 79.8 ( 1.2
Homodimers 40.0 ( 6.2 88.2 ( 2.7 87.0 ( 2.9
Hetero-complex

(large protomers)
62.5 ( 5.9 85.5 ( 3.1 84.9 ( 3.2

Hetero-complex
(small protomers)

55.6 ( 5.8 92.5 ( 1.6 91.3 ( 1.9

Antibodies 83.3 ( 4.0 94.7 ( 1.5 94.4 ( 1.5
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dergo disorder-to-order transition upon specific binding.33 The
ability of R-MoRFs to fold upon interaction with binding
partners was illustrated by several exemplifying cases described
in our recent paper detailing the development of a preliminary
R-MoRF predictor.32 Figures 5, panels A and B illustrate
examples of â-MoRFs and ι-MoRFs, respectively, that have been
shown experimentally to undergo a disorder-to-order transition
upon binding to partners. Also shown are the PONDR VLXT43

and PONDR VSL151 predictions for the entire length of the
parent sequences of these MoRFs in order to illustrate the
context in which these MoRFs occur.

1. â-MoRFs. The p21 protein (Figure 5A), and a family of
related proteins, directly blocks cell cycle progression in
response to DNA damage through inhibition of cyclin-depend-
ent protein kinases by a conserved N-terminal domain.52 Unlike
related proteins, p21 contains a C-terminal domain that can
block DNA replication directly, through the disruption of
interactions between proliferating cell nuclear antigen (PCNA)
and polymerases; PCNA anchors polymerases to template DNA
and the C-terminus of p21 functions through the disruption
of this interaction by blocking PCNA-polymerase interaction
sites.53 The p21 protein carries out these various functions
without preformed structure,54 undergoing a disorder-to-order
transition upon binding to partners. The C-terminal domain
is an example of a verified â-MoRF, which functions though

physically blocking other protein-protein interactions. The
N-terminal domain is also likely to be a MoRF; although the
bound structure of the N-terminal domain has not been
determined, its sequence in this region is highly similar to p27,
for which a CDK-cyclin complex structure has been deter-
mined.52 Furthermore, the N-terminal domain and C-terminal
domains correspond to predictions of order and sharp drops
in disorder predictions, respectively. PONDR VL-XT plots with
these characteristics have been shown previously to correlate
with segments that undergo disorder-to-order transitions.32,55,56

2. ι-MoRF. Nuclear import is mediated by greater than 30
nucleoporins (Nups) that comprise the nuclear pore.57 In yeast,
Kap60p binds to nuclear localization signals (NLS) of cytosolic
proteins. This complex in turn binds to Kap95p and to
importins R and â. The entire Kap60p/Kap95p/importin R/im-
portin â complex is then translocated into the nucleus. The
relatively tight binding of NLSs to Kap60p requires a mecha-
nism for dissociation of this interaction once translocation is
complete. Nup2p (Figure 5B), which is localized to the nuclear
face of the nuclear pore, competes with NLSs for binding to
Kap60p through overlapping binding sites, thereby accelerating
release of the cargo protein.58 Nup2p also has low-affinity
interactions with RanGTP through an N-terminal domain59 and
with Kap95p mediated by Nup2p’s FXF(G) central repeat
domain.58

Figure 5. Examples of disorder-to-order transitions in â- and ι- MoRFs. The structures of MoRFs (red ribbons) bound to their respective
partners (blue ribbons) are shown. PONDR VL-XT predictions for the entire proteins in which these MoRFs are found are also shown,
where the position of the MoRFs in these sequences are indicated (red boxes). (A) A â-MoRF example from p21 bound to PCNA (PDB
entry 1AXC), where the position of the CDK inhibitor domain is indicated (green box). (B) An ι-MoRF example from Nup2p bound to
karyopherin Kap60 (PDB entry 1UN0), where the positions of the FXF(G) repeat region (blue box) and the Ran binding domain (yellow
box) are indicated.

research articles Vacic et al.

2360 Journal of Proteome Research • Vol. 6, No. 6, 2007



The entire Nup2p sequence has been shown to be disordered
in isolation.60 Therefore, the Nup2p-Kap60p interaction is an
example of a verified ι-MoRF that undergoes a disorder-to-
order transition upon complex formation. Unlike p21, the
Nup2p MoRF region is predicted to be disordered (Figure 5B).
Also, although the Nup2p is known to be entirely disordered
in solution, PONDR VLXT predicts much of the sequence to
be ordered with several, relatively short predictions of disorder.
This prediction may reflect the many, and varied, binding
activities of Nup2p.55 In contrast, PONDR VSL1 better reflects
the highly disordered nature of this protein, likely due to its
more sophisticated architecture and large training set relative
to PONDR VLXT.

Structural Changes, Folding, and Unfolding Induced in
MoRF-Binding Proteins. 1. Binding-Induced Small-Scale
Displacements in MoRF Partners. A small-scale structural
alteration induced by MoRF binding is illustrated by the
binding of the MoRF region of FliM to CheYD13K/Y106W (Figure
6A). Chemotaxis in motile bacteria is controlled by the response
regulator protein CheY,61 which functions through association
with the flagellar motor switch protein, FliM. This interaction
reverses the direction of rotation of the flagellar motor from
counterclockwise (smooth-swimming phenotype) to clockwise
(tumbling phenotype).62,63 The binding of CheY to FliM is
modulated by phosphorylation of CheY, where phosphoryl-
CheY binds FliM with approximately 20-fold higher affinity than
nonphosphorylated CheY.64 Several CheY mutants, including
CheYD13K/Y106W also known as CheY**, cause both a hyperactive
(increased tumbling) phenotype in vivo and increased FliM-
binding in vitro.65

Binding of the MoRF region of FliM to CheY** causes small
but noticeable changes in the overall CheY** strucutre. At the
quaternary level, FliM binding induces large change in the
rotameric orientations of Trp106 and Ile95 of CheY**.65 Super-

position of the complex and the free CheY** structures revealed
that Trp106 in the unbound structure sterically clashes with
Ile11 of the FliM in the bound structure. Similarly, Ile95 in the
unbound structure hinders access of FliM to its binding site
via steric conflict with Ile11. Both of these residues alter their
conformation to allow for the binding of FliM. This indicates
that the FliM binding requires notable conformational rear-
rangement in CheY**.65

2. Large-Scale Movements of Secondary Structure Elements
in MoRF Partners. Of the 50 examples of MoRF-induced
structural changes that we examined, calmodulin undergoes
the most dramatic example of structural changes induced by
MoRF binding (Figure 6B). Calmodulin (CaM) is one of the
most extensively studied Ca2+ sensors; that is, proteins con-
taining the Ca2+-binding EF-hand motif. CaM is an acidic,
148 residue protein containing four EF-hands and is known
to bind to and regulate dozens, if not hundreds, of different
target proteins, including kinases, phosphatases, and ion
channels.66,67

Figure 6B compares calmodulin in the free and bound states,
where CaM binds to a dimer of MoRFs from glutamate
decarboxylase (GAD). CaM undergoes a dramatic change in
order to accommodate the dimeric helical GAD target. The two
CaM domains in GAD-bound CaM adopt an orientation
markedly different from the unbound CaM and structures seen
in other CaM-target complexes.68 The massive structural
changes observed in CaM are due primarily to the solution
instability of the helix that connects the N- and C-terminal EF-
hand domains. The NMR-determined structure of CaM reveals
that the central helix is disordered in solution.69 Disorder in
this helix allows CaM to attain the varied conformations
observed in the structures of CaM bound to various partners.
The helix observed in the crystal structure is apparently an
artifact of crystallization.68

Figure 6. Structural changes in partners. Ribbon representation MoRF partners shown unbound (blue ribbons) and bound (green
ribbons) to MoRFs (red ribbons). (A) Small scale structural alterations in CheY induced by binding of the MoRF region of FliM (PDB
entries: unbound, 1U8T; and bound, 1F4V). (B) Large-scale structural alterations in calmodulin induced by binding to the MoRF of
GAD (PDB entries: unbound, 1CLL; and bound, 1NWD). (C) Partial disorder-to-order transition in PCNA induced by binding to the
MoRF of FEN-1 (PDB entries: unbound, 1RWZ; and bound, 1RXZ). (D) Partial order-to-disorder transition in Bcl-XL induced by binding
to the MoRF of Bim (PDB entries: unbound, 1PQ0; and bound, 1PQ1).
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3. Binding-Induced Folding of MoRF Partners. The binding
of a MoRF region in Flap endonuclease-1 (FEN-1) to PCNA is
an example of partial folding induced by MoRF binding. FEN-1
is a structure-specific nuclease that is central to both the DNA
replication and repair processes. During DNA replication and
repair, a complex that includes FEN-1 and PCNA removes RNA
primers or damaged DNA and synthesizes replacement
strands.70-72

The binding of PCNA to a MoRF from FEN-1 is illustrated
in Figure 6C, which shows that the interaction with a MoRF
induces partial folding in its partner. The residues from the
unstructured C-termini of PCNA and FEN-1 interact to form
ordered â-strands, creating an intermolecular â-zipper inter-
face.73 The formation of this interface therefore represents a
bilateral disorder-to-order transition upon MoRF binding.

4. Binding-Induced Partial Unfolding of MoRF Partners.
The MoRF of Bim induces partial unfolding in its partner
Bcl-XL as a result of complex formation (Figure 6D).74 Both
Bcl-XL and Bim are members of the Bcl-2 family of proteins,
known to either inhibit or promote apoptosis.75 Bcl-XL, like
other anti-apoptotic members of the family, contains regions
of homology known as BH1, 2, 3, and 4, but Bim, along with
some other pro-apoptotic proteins, contains only homology
region BH3, which is essential for the death-dealing activities
of this subgroup of proteins.76

The BH3 region of Bim is hypothesized to be a MoRF, and
the structures of Bcl-XL both unbound and bound to this MoRF
region are illustrated (Figure 6D). The comparison of crystal
structures of MoRF bound and unbound mouse Bcl-XL revealed
the existence of significant flexibility at one of the ends of the
Bcl-XL binding grove. Binding of the MoRF of Bim causes the
third R-helix of Bcl-XL to partially unfold, and also displaces
the remaining helix by about 4 Å away from the Bim binding
site. Conversely, the binding of Bim causes the fourth R-helix
of Bcl-XL to move about 4 Å toward the bound Bim.74 Thus,
the interaction of the apoptosis regulator Bcl-XL with its MoRF,
Bim, is accompanied by the melting of one of the Bcl-XL

R-helices.

Discussion

We have focused on structural analysis and disorder predic-
tion in our identification of MoRFs, which we previously called
molecular recognition elements or MoREs.32 MoRF is more
descriptive because such elements “morph” from disorder to
order upon binding. Using standard molecular biology ap-
proaches, DePaoli-Roach and co-workers identified similar
regions in disordered inhibitors of protein phosphatase 1 and
called them simply “interaction sites”88 or “inhibitory do-
mains”.89 Using NMR to study 4E-BP1, Fletcher and Wagner90

demonstrated an “extreme induced fit” for a disordered region
as it became ordered upon binding eIF4E; they called this
segment the “short central region.” The same segment of the
same protein was called the “recognition motif” by Marcotri-
qiano et al.91 Luisi and co-workers used approaches similar to
ours but named the interaction-prone regions, regions of
increased structural propensity (RISPs).56 Csizmok et al.92 called
such regions “primary contact sites.” Others used sequence
analysis rather than structural analysis and prediction to define
regions of interaction. Their analysis also suggested that many
of these sites are located in regions of disorder.93 This group
has called these regions eukaryotic linear motifs (EMLs)
have developed a very elegant and useful server for their
identification from sequence.94 Recent studies suggest that

these ELMs typically contain a few residues favoring structural
order within an otherwise highly flexible or disordered region,
thus linking ELMs and MoREs (herein called MoRFs).95 Thus,
the results found in this study are likely to be applicable far
beyond the relatively small number of examples characterized
here.

The residue compositions, geometry, and physicochemical
features of the interfaces between MoRFs and their partners,
and other types of complexes have been examined. Overall,
many of these features offer insights into the nature of MoRFs
and MoRF interfaces. Also, many of these features are useful
in distinguishing interface types. The nature of MoRF-partner
interactions were explored by examining specific examples and
the various transitions that MoRFs and partners undergo during
complex formation. The implications of these results for the
development of predictions of MoRF-partner interactions are
discussed.

Comparative Interface Features. 1. Interface Compositions.
Analysis of amino acid compositions provides insight into the
physical basis of protein behavior, particularly for the case of
intrinsically disordered proteins.43 Since a very different control
set has been used to calculate these compositional profiles, the
analysis carried out here (Figure 3) is not directly comparable
to previous analyses of MoRF sequence compositions. The
previous analysis showed that MoRFs have amino acid com-
positions much more similar to disordered proteins than to
ordered proteins.33 The current analysis shows that MoRF
interfaces generally have compositions that are very different
from the compositions of the overall surfaces of monomers
(Figure 3), where MoRFs are generally enriched in residues that
are typically buried within structured proteins and depleted
in residues that are typically exposed. These compositional
results seemingly conflict with the high degree of surface
exposure of MoRF interface residues (Figure 4E,F), which is
likely an indication of a high propensity of these segments to
form complexes and thereby bury these residues. This is
supported by the observed high propensity toward both surface
exposure (Figure 4L) and interface participation (Figure 4M)
of MoRF interface residues.

A notable aspect of the compositional profiles of MoRF
interfaces is the discrepancy in proline composition between
R-MoRFs and â- and ι-MoRFs. That is, R-MoRFs are depleted
in proline, whereas â- and ι-MoRFs are enriched in proline,
relative to monomer surfaces. This is particularly notable since
proline in â- and ι-MoRF interfaces is the only significant
enrichment seen for any highly exposed residue type. The likely
explanation for this differential composition in proline is the
final structure of the bound MoRFs. Proline is only very rarely
found in R-helices, usually producing a pronounced bend in
the helical axis and so is generally considered a helix-breaking
residue. R-MoRFs should therefore be depleted in proline, since
the presence of this residue would bias the unbound confor-
mational ensemble away from the bound, helical conformation,
and could even prevent the R-MoRF from attaining the correct
conformation for binding. The enrichment in proline in the
other two MoRF types could be rationalized in two comple-
mentary ways. First, proline may help maintain disorder in the
MoRF when in the unbound state and can be present since it
does not necessarily interfere with the bound conformation of
the â- or ι-MoRF. Second, proline may be useful in biasing the
conformational ensemble of the unbound MoRF away from
helical conformations, which would enrich the conformational
ensemble in conformations similar to the bound conformation.
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Therefore, proline may play a large role in the modulation of
affinity in â- and ι-MoRFs.

Another notable aspect of the compositional profile analysis
is the ubiquitous enrichment of methionine across all MoRF
types and also across their partners. Methionine is of particular
interest in protein recognition because it plays a large role in
nonspecific hydrophobic interactions that may lead to general-
ized partner recognition. The promiscuity and importance in
molecular recognition of methionine is thought to arise from
its unbranched side chain, it greater-than-expected flexibility,
and the polarizability of sulfur, which leads to increased
strength of van der Waals forces.77 The high content of
methionine in MoRF partners may indicate that these partners
recognize multiple, different MoRFs. Current work is focused
on examination of multiple recognitions in MoRF sequences,
and the roles of methionine in these MoRF-partner interac-
tions will be investigated.

Relative entropy analysis revealed that, in general, the
compositions of interface types are very different from each
other and different from the compositions of monomer surface
residues, with a few exceptions. Homodimers seem to be an
exception to this in that they are neither significantly different
from the four other interface types nor from monomeric
surfaces, which suggest that homodimer interfaces are general
in a way that other interface types are not. The most surprising
result of this analysis is the similarity between the compositions
of the interfaces of each MoRF type and the interfaces of their
respective partners. Specifically, the interfaces of R- and
â-MoRFs are not significantly different from the interfaces of
their respective partners, and the interfaces of ι-MoRFs,
although found to be significantly different from the interfaces
of their partners, have compositions close to those of their
partners, as indicated by the small observed relative entropy
between them. In the latter case, the statistical significance may
be due in considerable measure to the larger number of ι-MoRF
examples, since p-values are generally inversely proportional
to sample size. This compositional symmetry is not observed
between the compositions of large and small protomers of
heterocomplexes. There is no immediately obvious explanation
for this compositional symmetry between MoRFs and their
partners, and further insights are required. However, this
observation may prove useful for the ultimate goal of predicting
MoRF-partner interactions.

2. Interface Geometric and Physiochemical Features. In
terms of geometric properties, MoRFs were significantly dif-
ferent from their partners and other types of interfaces.
Although MoRF interfaces generally involved a relatively small
number of residues, MoRF interfaces were the same size or
larger than other interface types, which was due to the larger
solvent exposure of the interface residues prior to association.
This is also true for the molecules as a whole, as indicated by
the larger ASA per residue of MoRF monomers (average of 119
( 26 Å2) relative to other data sets (average of 55 ( 8 Å2). These
observations are consistent with previous results33,78 with the
conclusion that intrinsically disordered proteins in general, and
MoRFs in particular, are characterized by large functional sites,
where the entire MoRF molecule could be considered as a
single binding site.

In addition, the large extent of solvent exposure of interface
residues is consistent with previous observations suggesting the
MoRFs are disordered in the absence of binding partners. That
is, a structure without a significant amount of self-buried
surface area cannot maintain a specific three-dimensional

structure, since it lacks the noncovalent interactions that are
required to maintain a structure. These observations support
the general hypothesis that intrinsic disorder is a prevalent
mediator of protein interactions27 and the idea that intrinsic
disorder is required for efficient protein interactions.79 That is,
an interaction mediated by an intrinsically disordered region
requires far fewer amino acids overall to form a binding site
as compared to an interaction mediated by an intrinsically
ordered protein. This enables a disordered protein to have far
more interaction partners than an ordered protein of similar
size.79

Previous observations had caused us to speculate whether
the surface of the partner proteins was the driving force behind
the MoRF-partner interactions. Extreme cases of such one-
sided interactions are antibody-antigen complexes, where the
antibody is tailored to the antigen, and the antigen gives little
or no indication of it propensity for the interaction. The
physiochemical properties indicate, however, that the MoRF
interface residues are generally as, or even more, interaction-
prone than other interface types. We therefore conclude that
MoRFs are generally not passive in their interactions with
partners. This conclusion provides support for the idea that
MoRFs, since they are linear sequence elements,80 should
generally be predictable from sequence and predictability may
not be limited to a particular subclass of MoRFs.32

One of the indicators of the interaction-prone nature of
MoRFs, their relatively high hydrophobicity, deserves more
scrutiny. First, IDPs are generally highly hydrophilic,81 and the
high hydrophobicity of MoRF interfaces suggests that MoRF
sequences evolved in such a way that a high fraction of the
hydrophobic residues partition into the interface. This idea has
several implications for the identification of MoRFs from
sequence and the identification of MoRF interaction sites on
their partners. The partitioning of hydrophobic residues into
the MoRF interface is likely a functional basis of the previously
developed R-MoRF predictor,32 which predicted the location
of MoRFs in a given sequence by locating short predictions of
order within longer predictions of disorder. Similarly, MoRF
interaction sites on the surfaces of partner proteins may be
identifiable in part by looking for highly hydrophobic surface
patches.

Second, previous studies have indicated that transient
protein interfaces are significantly more polar than interior of
globular proteins.9,16,17 This higher polarity of protein interfaces
is thought to grant specificity to protein interactions, since polar
interactions are much more sensitive to atomic details than
van der Waals interactions or the hydrophobic effect. The
higher hydrophobicity of the interior of globular proteins is
necessary to drive protein folding and maintain a globular
structure. In these terms, the high hydrophobicity of MoRF
interfaces suggests that the hydrophobic interactions are
necessary to induce folding in MoRFs upon binding to their
partners and that MoRF-partner interactions may be less
specific than other protein-protein interactions.

Classification. We have found that all examined interface
types are distinguishable to a high degree of accuracy, which
suggests that it may be possible to predict interfaces based on
known surfaces, in the case of ordered proteins, or sequence,
in the case of disordered proteins. Sequence-based predictors
may be applicable in the case of disordered proteins since their
interface sites are generally contiguous in terms of sequence
or at least involve a supermajority of residues in a contiguous
stretch of sequence. Therefore, a potential interface for an
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intrinsically disordered protein is any contiguous stretch of
sequence, and interface-forming subsequences within general-
ized regions of disorder may be distinguished by particular sets
of physiochemical potentials.

Further development and elaboration of the models of
protein interfaces developed in this study will be focused on
identification of interface sites on protein surfaces. The iden-
tification of interaction-prone surface patches has been pur-
sued by several researchers.10,82 The current analysis suggests
that an improvement in surface patch prediction may be
achieved by the prediction of types of interaction sites, rather
than general interaction sites. Segregation of interface types
might lower the variance of the feature distribution of interface
sites, which would aid in the identification of novel sites from
protein surfaces. Such analysis is limited to the partners of
MoRFs and other interface types, since MoRFs are disordered
in the absence of their partners, and is further limited to only
those partners that undergo, at most, only small changes upon
MoRF binding.

Binding-Induced Structural Alterations of MoRF Partners.
The structural changes undergone by MoRF partners vary
widely, from small-scale movements to large-scale movements
and from partial folding to partial unfolding. Previous observa-
tions provide some rationale for this wide variety of structural
alterations. In previous studies, complexes with ∆ASA values
in the range of 1200-2000 Å2 have been found to undergo only
minor structural alterations during complex formation, whereas
formation of complexes with ∆ASA values of 2000-4660 Å2 is
generally accompanied by large structural alterations.13 In
comparison, 42% of R-MoRF, 42% of â-MoRF, and 22% of
ι-MoRF complexes have ∆ASA values in excess of 2000 Å2. This
suggests that the interaction of a MoRF with its partner is quite
likely to be accompanied by a significant conformational
change in the partner. The bound-unbound MoRF partner
pairs examined in detail herein support this idea. The preva-
lence of structural changes during complex formation has
crucial implications for the prediction of MoRF-partner in-
teractions. Also, comparing these structural changes with those
induced by tethering83 would be quite interesting. This com-
parison would provide insight regarding natural versus artificial
structural changes upon binding.

Implications for the Prediction of Protein Interactions. This
work has identified several difficulties that must be overcome
for successful prediction of MoRF-partner interactions, as well
as identified several potential avenues for predictor develop-
ment. Typically, partner prediction has been limited to ge-
nome-based methods, such as Rosetta Stone,84 gene neighbor-
hood,85 or correlated co-evolution,86 which are quite effective
in detecting well-conserved protein-protein interactions. How-
ever, given that intrinsically disordered regions can evolve at
an accelerated rate87and that modulation of protein interactions
seems prevalent in higher organisms,27 these methods might
not be generally applicable for the prediction of MoRF-partner
interactions. Our future efforts will be focused on identifying
MoRF regions and regions likely to bind to MoRFs from
sequence and known structure. Knowledge of these may be
used to supplement interacting pair prediction using interac-
tion site information.

Prediction of MoRF interactions must necessarily consider
that MoRFs are disordered in the unbound state, and so
unbound structures will not be available for surface analysis.
Previously, a subset of MoRFs has been predicted from
sequence,32 and results of the compositional and physiochemi-

cal feature analysis suggest that other types of MoRFs will also
be amenable to this strategy. The relatively large number of
MoRF examples in the current data set should allow for the
development of more sophisticated sequence-based MoRF
predictors.

For partners, initial efforts will be focused on prediction of
surfaces that interact with MoRFs, similar to previous efforts
in prediction of interaction-prone surface patches.10,82 The
largest hurdle that must be overcome in the prediction of MoRF
binding surfaces is the conformational changes of MoRF
binding partners. A subset of partners may be amenable to
approaches using rigid body assumptions, but our examination
of bound and unbound partners suggests that a majority of
MoRF partners likely undergo significant structural alterations
on binding to MoRFs. An initial approach to this problem may
be to consider structural alterations as discrete classes, such
as (1) displacements and (2) partial induction of order. In the
first case, surfaces can be examined after computationally
removing a portion of the structure, for example, the fourth
R-helix of Bcl-XL, which is displaced by the MoRF of Bim. This
approach will require development of a efficient search strategy,
possibly through local sequence similarity of MoRF and partner.
In the second case, a strategy similar to that proposed for MoRF
prediction may be applicable. That is, disordered regions, or
highly flexible regions, of the three-dimensional structure could
be treated as sequence and examined for compatibility with
MoRF binding.

Finally, the large size of MoRF-partner interfaces may
facilitate prediction of interaction sites and interaction partners.
In protein interactions, attractive forces between individual
residues are weak and only through the accumulation of many
weak interactions are protein complexes formed. From a
computational perspective, predicting one contact correctly is
very difficult, because a single contact contains very little
information. But predicting a large set of contacts between two
partners at low resolution may be much easier, since there will
be very few sets of contacts that are cumulatively favorable.
By this logic, larger interfaces should be more amenable to
prediction since there are fewer acceptable solutions.
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