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Summary
The number of experimentally verified, intrinsically disordered (ID) proteins is rapidly rising.

Research is often focused on a structural characterization of a given protein, looking for several
key features. However, ID proteins with their dynamic structures that interconvert on a number of
time-scales are difficult targets for the majority of traditional biophysical and biochemical tech-
niques. Structural and functional analyses of these proteins can be significantly aided by disorder
predictions. The current advances in the prediction of ID proteins and the use of protein disorder
prediction in the fields of molecular biology and bioinformatics are briefly overviewed herein. A
method is provided to utilize intrinsic disorder knowledge to gain structural and functional infor-
mation related to individual proteins, protein groups, families, classes, and even entire proteomes.

Key Words: Intrinsically disordered protein; natively unfolded protein; intrinsically unstruc-
tured protein; protein flexibility; disorder prediction; protein function.

1. Introduction
Although the protein sequence-structure-function paradigm (well known as

the “lock-and-key” hypothesis [1]), according to which a protein can achieve its
biological function only on folding into a unique, structured state determined
by its amino acid sequence, was a dominating view for more than 100 yr, it is
recognized now that the phenomenon of functional intrinsic disorder is highly
abundant in nature. For example, only less than one-third of the crystal struc-
tures in the protein data bank (PDB) are completely devoid of disorder (2). In
fact, recent discoveries of intrinsically disordered (ID) or natively unstructured
proteins have significantly broadened the understanding of protein functionality
and revealed a new and unexpected role of dynamics, plasticity, and flexibility



in protein function. Importantly, bioinformatics played a key role in transforming
a set of anecdotal examples of intrinsically disordered proteins (IDPs), which
were originally considered to be intriguing exceptions within the protein realm,
into a very promising branch of protein science.

1.1. Defining and Identifying IDPs

IDPs or ID protein regions are those that fail to form specific three-dimensional
(3D) structure under physiological conditions in vitro. They are also known as par-
tially folded (3), flexible (4), mobile (5), rheomorphic (6), natively denatured (7),
natively unfolded (8), intrinsically unstructured (9), ID (10), and natively disor-
dered (11). Furthermore, several other names representing different combinations
of “natively, naturally, and intrinsically” with “unfolded, unstructured, flexible,
mobile, and denatured,” are present in literature (12). The interested reader will
find the discussion of the etymology of the term “ID” in a recent review (13). In
contrast to the ordered proteins, the atoms and dihedral angles of IDPs do not have
equilibrium positions. Instead, IDPs exist as highly dynamic ensembles whose
atoms and backbone Ramachandran angles fluctuate significantly over time. An
ID region can be as short as a few amino acid residues, or it can propagate through
the long disordered loops, ends, domains, or even through entire proteins (13). In
the authors’ view, an IDP is a protein that contains at least one disordered region.

Functional ID regions exist in at least two different structural forms: molten
globule-like (collapsed) and random coil-like (extended) (14). Later, the existence
of another functional disordered form, the premolten globule, which appears to be
a distinct category between extended and molten-globular conformations, was
suggested (15). Thus, protein function might be associated with three (or four)
distinct conformations: ordered, molten globule, (premolten globule), and
random coil, and with the transitions between them. These hypotheses are known
as the protein-trinity (14) or protein-quartet models (15).

IDPs can be identified by the variety of physicochemical methods elaborated to
characterize protein structure and self-organization. These methods include miss-
ing electron density in X-ray crystallography maps (16); nuclear magnetic reso-
nance spectroscopy (for recent reviews see refs. 11 and 17–20 and references
therein); circular dichroism spectroscopy in the near-ultraviolet (21) and far-ultraviolet
regions (22–25);  optical rotatory dispersion spectroscopy (ORD) (22,25);  Fourier
transform infased spectroscopy (FTIR) (25); Raman spectroscopy and Raman
optical activity (26); fluorescence spectroscopy (27,28); gel-filtration, viscometry,
small-angle X-ray scattering, small-angle neutron scattering, sedimentation, and
dynamic and static light scattering (27–29); limited proteolysis (30–34); aber-
rant mobility in sodium dodecyl sulfate-gel electrophoresis (35,36); conforma-
tional stability (27,37–40); hydrogen/deuterium exchange (H/D exchange) (28);
immunochemical methods (41,42); interaction with molecular chaperones
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(27); and electron microscopy or atomic force microscopy. Interested readers can
find more detailed description of these approaches in several recent reviews
(11,15,18,28).

1.2. Functional Repertoire of Intrinsic Disorder

Ordered proteins have evolved to carry out efficient catalysis and to bind
specific ligands. This is complemented by the functional repertoire of IDPs,
which are typically involved in regulation, signaling, and control pathways
(13,43,44). Using literature searches, Dunker et al. (45) cataloged 90 proteins in
which disordered regions were functionally annotated. This group of disordered
regions contained 28 specific functions, organized into four functional
classes: (1) molecular recognition, (2) molecular assembly, (3) protein modifi-
cation, and (4) entropic-chain activities (45). Lately, this repertoire was
significantly extended applying a novel bioinformatics tool to find functions
associated with ID regions (46–48). Using this approach it has been established
that out of the 710 Swiss-Prot functional keywords that were associated with at
least 20 proteins, 238 were found strongly positively correlated with long ID
regions, whereas 302 were strongly negatively correlated (46–48).

1.3. DisProt: A Database of IDPs

Although the first public resource containing disordered protein regions, the
ProDDO database, was developed in 2001 (49). This database did not provide
information about type of disorder nor the function of disordered regions.
Furthermore, it was not curated, being limited to the PDB entries only. These limitations
were overcome by currently the most complete database of experimentally
characterized disordered proteins, DisProt (50). This database, which can be
accessed through http://www.disprot.org, provides structural and functional
(wherein available) information on experimentally characterized IDPs. As of June 2006,
the database contained information on 458 proteins (1096 disordered regions).

1.4. Predicting ID Regions

As already emphasized, bioinformatics played a crucial role in the development
of the IDP field. Already at the early stage of the field, simple statistical compar-
isons of amino acid compositions and sequence complexity indicated that disor-
dered and ordered regions are different to a significant degree. In fact, based on the
analysis of 150 ID segments and comparison of these segments with ordered pro-
teins it has been suggested that the amino acids can be grouped into order promot-
ing (C, F, I, L, F, N, V, W, and Y), disorder promoting (A, E, G, K, P, Q, R, and S),
and neutral (D, H, M, and T) (10). Several subsequent studies followed up this
analysis using increasingly larger data sets (51–54). In addition to the first-order
statistics, recent studies also addressed higher-order patterns in amino acid
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sequence space and analyzed the space of various physicochemical properties (55),
confirming the existence of several biases in IDP sequences. The mentioned
sequence biases were exploited to develop a multitude of highly accurate predic-
tors of ID regions, which then were used to estimate the commonness of IDPs in
the three kingdoms of life, as well as to elaborate first identifiers of IDP function.

The first predictor of ID regions was reported in 1997 (54). This two-layer feed-
forward neural network, which achieved a surprising accuracy of about 70% clearly
marked the beginning of a new epoch by showing that (1) there are significant com-
positional differences between ordered and ID protein regions, (2) the lack of fixed
protein 3D structure is predictable from amino acid sequence alone, and (3) ID
regions of different lengths (short, medium, and long) may be compositionally dif-
ferent from each other. The predictive model was later extended to the VLXT pre-
dictor (51), which is a combination of the VL1 and XT predictors (56). The letters
describe the amino acids used for training, where VL stands for Variously-charac-
terized Long disordered internal regions and XT stands for X-ray characterized
Terminal regions. The VLXT designation is preceded by a descriptive prefix,
Predictor of Natural Disordered Regions (PONDR) giving PONDR VLXT.

In 2000, it was noticed that natively unfolded proteins can be separated from
ordered proteins by considering their average net charge and hydropathy (25).
This observation led to the development of a simple binary classifier, the charge-
hydropathy plot (CH-plot) (25), which was based on the analysis of the amino
acid composition and instead of predicting ID on a per residue basis, classified
entire protein as compact or natively unfolded. Another binary classifier is the
cumulative distribution functions (CDF) analysis of disorder scores, which sepa-
rates ordered and disordered sequences based on the per-residue disorder score
retrieved by PONDR VLXT, and the optimal boundary (57,58). This method
summarizes the per-residue predictions by plotting PONDR scores against their
cumulative frequency, which allows ordered and disordered proteins to be distin-
guished based on the distribution of prediction scores.

Later, more sophisticated methods based on various statistical and machine-
learning techniques (including bagging and boosting [59] and linear regression
model for the prediction of long disordered regions [60]) emerged, culminating
in the inclusion of the disorder prediction as a separate category in the Critical
Assessment of (protein) Structure Prediction (CASP) experiments (61,62).
Table 1 presents the information related to those ID predictors that are scientif-
ically novel and/or published. These predictors are briefly outlined as follows:

1. DISOPRED (63) is a neural network classifier trained on the position-specific
scoring matrices and combined disorder prediction with the predictor of secondary
structure (64).

2. PONDR VL3 is an ensemble of feed-forward neural networks that uses evolutionary
information and is trained on long disordered regions (65).
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3. GlobPlot is based on derived amino acid propensities for disordered regions (66).
DisEMBL server uses a support vector machine (67), trained on three proposed
types of disorder: (1) loops/coil, i.e., structured regions missing regular secondary
structure of helix and strand, (2) hot-loops, i.e., structured regions other than helix
or strand, but having high Cα B-factors, and (3) remark465, i.e., regions with missing
electron density from PDB.

4. NORS predictor identifies regions with nonregular secondary structure (68,69).
5. DISOPRED2 uses linear support vector machines (70,71).
6. IUPred is based on energy-derived coefficients (72,73).
7. FoldIndex (74) is based on the CH approach developed by Uversky et al. (25)

and extended to calculations over a sliding window to achieve residue-based
predictions.

8. RONN, a regional-order neural network, classifies residues in the space of dis-
tances between an input sequence and a set of carefully selected “prototype”
sequences (75).

9. PreLink uses compositional bias and lack of hydrophobic clusters (76).
10. DISpro uses large 1D recursive neural networks trained with a variety of compo-

sitional, evolutionary, and derived attributes (77).
11. PONDR VSL incorporates the ideas of training separate models for short- (53)

and long disordered regions (65), with subsequent combination of these models
through a separately trained model (78,79).

12. SPRITZ uses nonlinear support vector machines for short- and long disorder
regions based on multiply aligned sequences (80).

Recently, predictors of intrinsic disorder have been used to find functional
regions in IDPs. In fact, short regions of predicted order bounded by extended
regions of predicted to be disordered by PONDR VLXT, were shown in several
cases to identify binding sites that involved disorder-to-order transitions on
complex formation (81). These structures, which contained short regions of
proteins bound to their partners, showed that the PONDR-indicated region
often formed a helix, on binding to its partner. Many examples of these binding
sites are found in the PDB (82). The pattern in the PONDR VLXT curve reveals
short regions that undergo disorder-to-order transitions on binding.
Additionally, these regions tend to have predictions of helix as well as
hydrophobic moments. From such characteristics, a predictor of helix-forming
molecular recognition features (α-MoRF) was developed (82).

Finally, it has been reported that amino acid compositions, sequence com-
plexity, hydrophobicity, charge, and other sequence attributes of regions adjacent
to phosphorylation sites are very similar to those of IDP regions (83). These
observations were utilized in the development of a new web-based tool for the
prediction of protein phosphorylation sites, disorder-enhanced phosphorylation
predictor (DisPhos or DEPP), the accuracy of which reaches 76% for serine,
81% for threonine, and 83% for tyrosine (83).
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1.5. When to Use the ID Predictions

In this section some indicators have been outlined regarding when to use the ID
predictions, both for the individual protein analysis and for the large-scale studies.

1. ID predictions are priceless for the analysis of individual proteins. These predic-
tions help to better understand and interpret experimental data (e.g., a monomeric
protein predicted to be natively unfolded possesses large hydrodynamic volume.
Such an unexpectedly large hydrodynamic dimension, being observed experi-
mentally might be incorrectly interpreted in terms of oligomer formation if the
protein was assumed to be globular). Such predictions also help to classify pro-
teins and to understand their functionalities. This derives from the observation
that the functional repertoires of ordered proteins and IDPs are extremely differ-
ent. Therefore, knowing that the protein of interest is ID might help redirect its
structural and functional analysis. The disorder predictions aided in structural
characterization of the retinal tetraspanin (84), nicotinic acetylcholine receptor
(85) Dribble, a member of the conserved Krr1P protein family (86) proapoptotic
Bcl-2 homology domain-containing family of proteins (87), transcriptional core-
pressor CtBP (88), notch-signaling pathway proteins (89,90), and many others.

2. Utilizing bioinformatics tools based on ID phenomenon one might find potential
protein–protein and protein–nucleic acid interaction sites (molecular recognition
fragments) and identify potential sites of posttranslational modifications. This
knowledge can be used to drive subsequent research with the major focus on finding
binding partners, analysis of resulting complexes, and searching for small molecules
modulating these interactions.

3. The majority of ID predictors are based on rather large training sets, which makes pre-
diction of intrinsic disorder in a given protein fairly certain. An ID prediction also
means that the analyzed protein is statistically similar to those used in the training of
the ID predictors, thus indicating that a particular protein is not an exception, but a rule.

4. ID predictors are indispensable in estimating the commonness of protein disorder in
large data sets. They allow scientifically sound extrapolation of knowledge gained on
the basis of a few examples to collections including hundreds or even thousands of
proteins. For example, proteins associated with cancer (43) and cardiovascular
disease (91) were shown to be enriched in intrinsic disorder. ID was shown to be
highly abundant in signaling proteins (43), transcription factors (92), proteins with
PEST regions (e.g. regions rich in proline, glutamate, serine and threonine) (93), his-
tones (94), serine/arginine-rich splicing factors (95), partners of 14-3-3 proteins (96),
nucleoporins (97), and several other sets of proteins with different functions.

Finally, disorder prediction is crucial for protein crystallization and structural
genomics projects. Disordered regions are generally not compatible with the
crystallization process. Therefore, close examination of sequences that failed to
crystallize may reveal ID regions interspersed with regions of order. Thus,
accounting for protein disorder can improve target selection and prioritization
for the structural genomics projects.



2. Materials
1. The Swiss-Prot database is described in ref. 98 and is available from

http://www.expasy.org/sprot/.
2. The database of experimentally characterized disordered proteins, DisProt, is avail-

able from http://www.disprot.org. The original version of this database is described
in ref. 50.

3. PONDRVLXT predictor is described in ref. 51 and is availal from http://www.
pondr.com/.

4. PONDR VL3-BA is described in ref. 65 and is available from http://www.
pondr.com/.

5. PONDR VSL is described in refs. 78 and 79 and is available from http://www.
pondr.com/.

6. CH-plot predictor is available from http://www.pondr.com/. The basic algorithm
of this binary classifier is described in ref. 25.

7. CDF analysis is available from http://www.pondr.com/. This predictor is described
in refs. 57 and 58.

8. α-MoRF predictor is described in ref. 82 and is available from http://www.
pondr.com/.

9. DisPhos predictor also known as DEPP is described in ref. 83 and is available
from http://www.pondr.com/.

3. Methods
The methods outlined next describe the analysis of amino acid sequences

using the intrinsic disorder knowledge to gain structural and functional infor-
mation related to a protein, a protein family, or an entire proteome/database.
Although numerous predictors of intrinsic disorder are currently available as
web servers (see DisProt website, http://www.disprot.org, for a complete list of
such servers), focus will be on utilization of PONDR tools, as they cover a wide
range of potential applications of ID concept for structural and functional
analysis of proteins. Obviously, this analysis could have been carried out with
other ID predictors described earlier.

3.1. Analysis of Protein Amino Acid Composition

It has been already pointed out that a specific feature of a probable ID region
is the amino acid compositional bias characterized by a low content of so-called
order-promoting residues such as C, V, L, I, M, F, Y, and W and a high content
of so-called disorder-promoting residues, including Q, S, P, E, K, G, and A
(10,51,60). Therefore, the analysis of the amino acid composition biases can
provide useful information related to the nature of a given protein. The frac-
tional difference in amino acid composition between a given protein (or a given
protein data set) and the set of reference globular proteins is based on the
recently elaborated approach (10) and provides a perfect visualization tool for
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elucidating compositional biases. Here, the fractional difference is calculated as
[ f(r) − fglobular(r)]/fglobular(r), where r �{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y}, f(r) is the frequency of residue r in a given protein set and 
fglobular(r) is the frequency of residue r in the reference set of globular proteins, and
plotted for each amino acid. Negative bars in such a plot correspond to amino acids
that are depleted in a given protein in comparison with the set of globular proteins,
whereas positive bars reflect the relative increase in the particular amino acid con-
tent. Step-by-step design of the fractional difference plot is described next.

3.1.1. Retrieving Sequence Information From the Swiss-Prot Database

Start the Swiss-Prot database by typing http://www.expasy.org/sprot/ in the
Internet browser. Use the following steps to download sequence information
in FASTA format.

1. In the window Search (located at the top of the front page), choose Swiss-Prot/
TrEMBL from the pull-down menu. Type the protein name in the neighboring window
and click Go. Alternatively, click Full text search in the UniProt Knowledgebase
link located in the Access to the UniProt Knowledgebase section of the front page.
Type the protein name in the Enter search terms window and click Submit.

2. On a search in UniProt Knowledgebase (Swiss-Prot and TrEMBL) page choose a
protein of interest from the list of hits and click the corresponding link.

3. Go to the bottom of the UniProtKB/Swiss-Prot entry page and click FASTA format link
located at the bottom- right corner of the Sequence Information section of the page.

4. Copy content of the page, which includes a descriptive header related to the
protein and a protein sequence. Keep this information as it will be used in the
subsequent analysis. This can be done in Notepad or Microsoft Word. A sepa-
rate document for each protein is recommended in which all the results of different
analyses will be stored.

3.1.2. Applying Proteomic Tools to Obtain Amino Acid Composition

1. Direct approach (if you started with Swiss-Prot database).
a. Go to the bottom of the UniProtKB/Swiss-Prot entry page and click the

ProtParam link in Sequence analysis tools section.
b. On the ProtParam: selection of endpoints on the sequence page, click Submit

if you are going to analyze entire sequence from the previous page. Otherwise,
enter the desired endpoints of the sequence in windows provided for N- and
C-terminal points, then hit Submit.

c. Copy a section of the ProtParam page describing amino acid composition.
Keep this information as it will be used in the subsequent analysis. These are
f(r) values for the protein.

2. Alternative approach (if the sequence was retrieved from another source):
a. On the Swiss-Prot home page, hit the Proteomics tools link located in the top-

right corner.
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b. Choose primary structure analysis among the several links at the top of the
ExPASy Proteomics tools page.

c. Click ProtParam link.
d. Enter a Swiss-Prot/TrEMBL accession number in the space provided or one’s

own sequence in the box and click Compute parameters.
e. Copy a section of the ProtParam: user-provided sequence page describing amino

acid composition. Keep this information, as it will be used in the subsequent
analysis. These are f(r) values; i.e., the frequencies of residue r in the protein.

3.1.3. Compositional Profiling

Table 2 lists averaged frequencies of different residues in a reference set of
globular proteins, fglobular(r), and those in a set of experimentally validated IDPs
(458 proteins, 1096 disordered regions) from the DisProt database (50), fIDP(r).

1. Rearrange the data for the protein by taking into account that the order of residues
you retrieved from the Swiss-Prot is alphabetical (for the three-letter code):
Ala(A), Arg(R), Asn(N), Asp(D), Cys(C), Gln(Q), Glu(E), Gly(G), His(H), Ile(I),
Leu(L), Lys(K), Met(M), Phe(F), Pro(P), Ser(S), Thr(T), Trp(W), Tyr(Y), and
Val(V), whereas it is suggested to list residues according to their disorder propen-
sity, from the least to the most disorder-promoting C, W, Y, I, F, V, L, H, T, N, A,
G, D, M, K, R, S, Q, P, and E.

2. Use fglobular(r) values from Table 2 and f(r) values from the Subheading 3.1.2. to
calculate the relative frequencies of amino acid residues in the protein as 
[ f(r) − fglobular(r)]/fglobular(r), where r �{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W,Y}. This can be done using Excel (Microsoft Corporation, Redmond, WA),
SigmaPlot (SYSTAT Software, Inc., San Jose, CA), Origin (OriginLab Corporation,
Northampton, MA), or any other graphical software. 

3. Use fglobular(r) and fIDP(r) values from Table 2 to calculate the relative frequencies
of amino acid residues in a set of IDPs as [ fIDP(r) − fglobular(r)]/fglobular(r). This
also can be done using Excel, SigmaPlot for Windows, Origin, or any other
graphical software.

4. Create a vertical bar chart by plotting the calculated [ f(r) − fglobular(r)]/fglobular(r)

and [ fIDP(r) − fglobular(r)]/fglobular(r) values for each amino acid residue. For better
visual representation, residues should be ranged as follows: C, W, Y, I, F, V, L, H,
T, N, A, G, D, M, K, R, S, Q, P, and E; i.e., from the most order-promoting at the
left to the most disorder-promoting at the right (see Fig. 1).

5. Compare the compositional profiling plot for the protein with that of “averaged” IDP.

Figure 1 illustrates this approach by representing the relative amino acid
compositions of the N-terminal (transactivation) domain of the human proges-
terone receptor (residues 1-566, Swiss-Prot accession no. P06401), protein
arginine N-methyltransferase 1 (Swiss-Prot accession no. Q99873), and a set
of ID regions available in the DisProt database (50). By these computations,
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arginine N-methyltransferase 1 is clearly ordered, whereas the transactivation
domain is clearly disordered.

3.2. Analyzing Disorder Propensity by PONDR Tools

3.2.1. Entering Information to the PONDR Site and Retrieving Results 
of ID Prediction

1. Go to the official PONDR site by typing http://www.pondr.com/ in the Internet
browser. You have to be registered to use the bioinformatics tools available at this
site. If you are not registered as yet, click Create a new User Account link and follow
simple instructions there. You will be provided with a username and password. If
you are a registered user of PONDR, then click Log in to a User Account link, type
the username and password in the corresponding windows, and hit OK. This will
bring you to the PONDR working page.

2. While on the PONDR working page, select boxes corresponding to the desired
Predictors (VLXT, VL3-BA, VSL1, CDF, and CH). When CH box is marked, two
new boxes (From: and To:) will appear. Leave both empty. Put Protein name in the
space provided (optional). Enter NCBI Accession Code or Protein Sequence (FASTA
format or sequence only) in the corresponding boxes. Scroll down the page and check
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Fig. 1. Amino acid composition, relative to the set of globular proteins globular-3D,
of an illustrative IDP, N-terminal (transactivation) domain of the human progesterone
receptor (residues 1-566, Swiss-Prot accession no. P06401) (light gray bars); an illustrative
ordered protein, protein arginine N-methyltransferase 1 (Swiss-Prot accession no.
Q99873) (dark gray bars), and a set of ID regions available in the DisProt 3.2 database
(454 proteins, black bars). The arrangement of the amino acids is by peak height for the
DisProt 3.2 release. Confidence intervals were estimated using per-protein bootstrapping
with 10,000 iterations.



the box Raw Output at the Output Options section. Clicking Submit Query will bring
you to the PONDR results page.

3. It is recommended that you keep the content of the entire PONDR results page.
Figures can be used as illustrations. STATISTICS section provides useful information
on the number of residues predicted to be disordered, overall percent of disordered
residues, number of disordered regions, the length of the longest disordered region,
and the average prediction score. You will find herein a list of regions predicted to be
disordered. Raw output values can be used to plot the results for several proteins on
one graph.

3.2.2. Understanding the Results of the PONDR Analyses

1. PONDR scores. The PONDR results page starts with the plot providing the distribu-
tion of PONDR scores over the amino acid sequence. There will be two color lines,
blue and red, corresponding to the results for the VLXT and VL3-BA predictions,
respectively. Note, when using PONDR VSL1, the results will be emailed. Scores
above the threshold of 0.5 correspond to the regions predicted to be disordered. Long
disordered regions (with more than 30 consecutive residues predicted to be disor-
dered) are indicated as thick black lines. Figure 2A1,A2 represent illustrative
PONDR score plot for the ID transactivation domain of human progesterone recep-
tor (residues 1-566, Swiss-Prot accession no. P06401) (Fig. 2A1) and an ordered
protein, protein arginine N-methyltransferase 1 (Swiss-Prot accession no. Q99873)
(Fig. 2A2). VSL1 curves are added for clarity. The vast majorities of all three curves
in Fig. 2A2 are above the threshold, reflecting the fact that the transactivation domain
is highly disordered. Contrarily, the majority of curves for methyltransferase are
below the threshold, confirming that this protein is highly ordered. Raw data of these
analyses are at the end of the page in the PREDICTOR VALUES section.

2. CDF analysis. Second plot at the PONDR data page represents the results of CDF
analysis. An illustrative CDF curve is shown in Fig. 2B. Remember that CDF
analysis summarizes the per-residue disorder predictions by plotting PONDR
scores against their cumulative frequency, which allows ordered and disordered
proteins to be distinguished based on the distribution of prediction scores (57,58).
In this case, order–disorder classification is based on whether a CDF curve is
above or below a majority of boundary points: if curve is located below the majority
of the boundary points (as shown in Fig. 2B), then entire protein is predicted to be
mostly disordered. However, if the CDF curve is above the boundary, then the ana-
lyzed protein is mostly ordered (see Fig. 2B). Raw data to reproduce this plot
(results for the protein and boundary) are in the CDF OUTPUT section.

3. CH-plot analysis. The last figure at the PONDR results page shows the CH-plot
(25). As aforementioned, compact and natively unfolded proteins plotted in CH
space can be separated to a significant degree by a linear boundary, with proteins
located above the indicated boundary line being unfolded (red circles) and with
proteins below the boundary line being compact (blue squares) (Fig. 2C). The pro-
tein being tested is marked as a large green square. If this square is above the
boundary, then the protein is natively unfolded. If it is below the boundary (as shown
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in Fig. 2C), then the protein is compact. Raw data to build this plot (results for the
protein, boundary as well as coordinates of sets of natively unfolded and ordered
proteins) are in the CHARGE-HYDROPATHY OUTPUT section.

4. Interpretation of PONDR data is rather straightforward. As pointed previously,
high PONDR scores (more than 0.5) for all three predictors (VLXT, VL3-BA, and
VSL1) are characteristic of regions with high propensity to be disordered. Some
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Fig. 2. Illustrative outputs of PONDR algorithms for an illustrative IDP, N-terminal
(transactivation) domain of the human progesterone receptor (residues 1-566, Swiss-Prot
accession no. P06401) (Fig. 2A1,B,C) and an illustrative ordered protein, protein arginine
N-methyltransferase 1 (Swiss-Prot accession no. Q99873) (Fig. 2A2,B,C). Results of
the protein analysis by PONDR VLXT (black solid curves), VL-3B (black dashed), and
VSL1 (gray curves) are shown in Fig. 2A1,A2. CDF curves for the transactivation
domain and methyltransferase are presented in Fig. 2B as solid and dashed lines,
respectively. Figure 2C illustrates corresponding CH-plots, wherein the data for the
transactivation domain and methyltransferase are shown as open-crossed square and tri-
angle, respectively. Results of α-MoRF prediction for the transactivation domain of the
human progesterone receptor are shown as gray horizontal bars in Fig. 2A1. Seven
potential α-MoRFs (fragments 27–44, 51–68, 128–145, 168–185, 360–377, 403–420,
and 468–485) were identified. Note: on your computer screen, results of PONDR and
α-MoRF predictions will be present in color: PONDR VLXT will be shown in red, VL-3B
in blue, and VSL1 in magenta curves, whereas the results of a-MoRF analysis will be
shown as magenta horizontal bars. In CH-plot, data for ordered and natively unfolded
proteins are shown as blue squares and red circles, respectively.



peculiarities of the VLXT curve might correlate with protein functionality
(see Subheading 3.3.1). VL3-BA usually provides very smooth output, as it was
trained on long regions of disorder and its raw predictions are averaged over an
output window of length 31 to obtain the final prediction for a given position (65).
VL3-BA is useful for the accurate prediction of long disordered regions. VSL1 is
the most accurate predictor of intrinsic disorder at least in the PONDR series. Its
training set is 1335 nonredundant protein sequences, containing 230 long disor-
dered regions with 25,958 residues, 983 short disordered regions with 9632
residues, and 354,169 ordered residues (78,79).

5. Interpretation of CDF and CH-plot analyses is straightforward too. It has been
pointed out that sometimes these two analyses provide seemingly contradictory
data, with CDF analysis predicting a much higher frequency of disorder in
sequence databases than CH-plot discrimination (58). The reasons for this discrep-
ancy are outlined in Subheading 4. (see Note 1). Differences in predictions by
these two classifiers were suggested to be physically interpretable in terms of
the protein trinity (14) or protein-quartet models (15). Proteins predicted to be
disordered by both CH-plot and CDF (i.e., polypeptide chains with high net
charge and low hydrophobicity) are likely to be in the extended disorder class.
Proteins predicted to be disordered by CDF, but predicted to be ordered by
CH-plot, should have properties consistent with a dynamic, collapsed chain and
are likely to be in the collapsed disorder class (i.e., molten globules). This sup-
position needs to be further tested by additional experiments. Rarely, proteins
are predicted to be disordered by CH-plot, but ordered by the CDF analysis. This
may represent structured proteins with an unusually high net charge; such pro-
teins are likely to exhibit slat-sensitive structures. Finally, proteins predicted to
be ordered by both algorithms are of course likely to be in the well-structured
class (58). In the application to the illustrative examples of Fig. 2, this means
that the transactivation domain of human progesterone receptor is most likely a
native molten globule, whereas protein arginine N-methyltransferase 1 is likely
to be ordered.

3.3. Intrinsic Disorder-Based Functional Analyses

3.3.1. Predicting the Molecular Recognition Fragments, α-MoRFs

The use of disorder predictor to find potential protein-binding sites is based
on the observation that the sharp-order dips in otherwise predicted to be disor-
dered regions, could indicate short loosely structured binding regions that
undergo disorder-to-order transitions on interaction with the specific binding
partner (81). Based on this presumption and the fact that such regions tend to
have high α-helical propensities and high hydrophobic moments, a predictor of
helix-forming α-MoRF was developed (82). Disorder-to-order transition brings
a large decrease in conformational entropy, which is thought to uncouple specificity
from binding strength, making highly specific interactions easily reversible.
This process is illustrated in Fig. 3. The α-MoRF predictor can be accessed at
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the official PONDR site (http://www.pondr.com/) by special request. A typical
output of this predictor is shown in Fig. 2A as magenta horizontal bars. Notice
that the predicted α-MoRFs are located within the distinctive downward spike
in the PONDR VLXT curve.

3.3.2. Predicting Potential Phosphorylation Sites

It has been shown that intrinsic disorder prediction might help increase
the prediction accuracy of several protein posttranslational modification
sites, including protein phosphorylation (83) and methylation (99). For exam-
ple, DEPP (or DisPhos) uses disorder information to improve the discrimi-
nation between phosphorylation and nonphosphorylation sites. The retrieved
prediction score approximates the probability that the residue is phosphory-
lated. Only residues with a prediction score more than 0.5 (which) are con-
sidered to be phosphorylated. The step-by-step protocol of DEPP analysis is
presented next.

1. Go to the PONDR working page and click the DEPP Prediction button. This will
bring you to the DEPP working page. While on this page, type Protein name in
the space provided (optional) and enter NCBI Accession Code or Protein
Sequence (FASTA format or sequence only) in the corresponding boxes. Scroll
down the page and check the box Raw Output at the Output Options section. By
clicking Submit Query button you will be forwarded to the DEPP results page.

2. The top of DEPP results page represents the plot providing the distribution of
DEPP scores over the amino acid sequence. You will have three types of symbols
corresponding to the Thr (green triangles), Ser (blue squares), and Tyr residues
(red circles) predicted to be phosphorylated. Only residues possessing DEPP
scores more than 0.5 are shown. Fig. 4 represents an illustrative DEPP plot for the
transactivation domain of human progesterone receptor (residues 1-566, Swiss-
Prot accession no. P06401).

3. Raw data related to this analysis are at the end of the page in the PREDICTOR
VALUES section. The DEPP NNP STATISTICS section provides useful information
on the number of phosphorylated serines, threonines, and tyrosines, together with
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Fig. 3. Illustration of disorder-to-order transition on binding. This example shows the
binding of a disordered region of Bad (ribbon) binding to Bcl-XL (globular). Modified
from Oldfield et al. (82).



the total number of these residues in a given protein and the relative phosphoryla-
tion efficiency. Once again, it is recommended that one keeps the content of the
entire DEPP results page for future use.

4. Notes
1. The difference in the ID prediction by CDF analysis and CH-plot likely results

from the fact that the CH-plot is a linear classifier that takes into account only
two parameters of the particular sequence—charge and hydrophobicity (25),
whereas the CDF analysis is dependent on the output of the PONDR VL-XT
predictor, a nonlinear neural network classifier, which was trained to distinguish
order and disorder based on a significantly larger feature space that explicitly
includes net charge and hydropathy (57,58). Therefore, CH feature space can be
considered as a subset of PONDR VL-XT feature space. By definition, CH-plot
analysis is predisposed to discriminate proteins with substantial amounts of
extended disorder (random coils and premolten globules) from proteins with
globular conformations (molten globule-like and rigid well-structured proteins).
On the other hand, PONDR-based CDF analysis may discriminate all types of
disordered conformations, including molten globules, premolten globules, and
coils from ordered proteins (58).
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Fig. 4. Prediction of phosphorylation sites in the transactivation domain of the
human progesterone receptor (residues 1-566, Swiss-Prot accession no. P06401) by
DEPP. The DEPP plot provides the distribution of phosphorylation probability over
the amino acid sequence. Symbols corresponding to the Thr (open triangles), Ser
(gray squares), and Tyr residues (black circles) predicted to be phosphorylated. Only
residues possessing DEPP scores more than 0.5 are shown. Note: on your computer
screen, results of prediction will be present in color: Thr, Ser, and Tyr residues predicted
to be phosphorylated will be shown by green triangles, blue squares, and red circles,
respectively.
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