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ABSTRACT

Summary: We propose here a new concept of peptide detectability

which could be an important factor in explaining the relationship

between a protein’s quantity and the peptides identified from it in

a high-throughput proteomics experiment. We define peptide

detectability as the probability of observing a peptide in a standard

sample analyzed by a standard proteomics routine and argue that

it is an intrinsic property of the peptide sequence and neighboring

regions in the parent protein. To test this hypothesis we first used

publicly available data and data from our own synthetic samples in

which quantities of model proteins were controlled. We then applied

machine learning approaches to demonstrate that peptide detectab-

ility can be predicted from its sequence and the neighboring regions

in the parent protein with satisfactory accuracy. The utility of this

approach for protein quantification is demonstrated by peptides with

higher detectability generally being identified at lower concentra-

tionsover thosewith lowerdetectability in thesyntheticproteinmixtures.

These results establish a direct link between protein concentration

and peptide detectability. We show that for each protein there exists

a level of peptide detectability above which peptides are detected

and below which peptides are not detected in an experiment. We

call this level the minimum acceptable detectability for identified

peptides (MDIP) which can be calibrated to predict protein concentra-

tion. Triplicate analysis of a biological sample showed that these MDIP

values are consistent among the three data sets.

Contact: predrag@indiana.edu

1 INTRODUCTION

Rapid and reliable identification of thousands of peptides from

a complex protein mixture sample using liquid chromatography

tandem mass spectrometry (LC/MSMS) and other MS related

technologies has established the foundation of high throughput

proteomics experiments. Quantitative proteomics, i.e. quantifying

proteins in a complex sample, or comparing protein abundances

across different samples, however, often requires additional experi-

mental strategies. Several labeling techniques applied to various

MS instruments including isotopic coded affinity tag (ICAT)

(Gygi et al., 1999), mass-coded abundance tagging (MCAT) (Cag-

ney and Emili, 2002), stable isotopic labeling (Oda et al., 1999) and
global internal standard technology (GIST) (Chakraborty and

Regnier, 2002), were developed to profile the differential protein

expression of two samples. In spite of their success in some

quantitative proteomics experiments, these approaches have their

own limitations. For example, some of them target one or several

specific amino acids (e.g. ICAT targets Cys and MCAT targets

Lys) and thus are limited to those proteins/peptides containing

the amino acid that is modified by the reagent. A more important

limitation of these approaches is that they all require performing

a proper chemical reaction prior to the proteomics analysis. In

addition to the expense of chemical reagents involved in this pro-

cedure, it remains unclear how the efficiency of these reactions and

the protein capturing techniques used in the procedure will affect the

quantification of different proteins (Zhang and Regnier, 2002).

Label-free protein quantification approaches attempt to quantify

relative protein abundances directly from high-throughput pro-

teomics analyses without applying labeling techniques. Different

measures that can be derived from proteomics experiments and

presumably correlated to protein abundance were proposed for

different MS instruments. For instance, the integration of extracted

ion chromatogram (XIC) peaks is thought to be a good measure for

LC/MS experiments (Higgs et al., 2005) and sophisticated data

analysis tools have been proposed to improve its accuracy (Leptos

et al., 2006). In addition, it has been shown that the spectral count,

i.e. the number of times a particular peptide is identified in an

experiment, is correlated with the number of protein copies in

the sample. Spectral counts have been successfully used to quickly

estimate large changes in protein abundance (Pang et al., 2002;
Gao et al., 2003), however the method appears to be significantly

less sensitive when the count is relatively small and/or when the

difference in protein abundance is 1–2 orders of magnitude (Liu

et al., 2004; Bonner and Liu, 2006). In summary, there is still lack

of systematic testing of the accuracy, robustness and applicability of

the label-free protein quantification methods across different MS
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Here we propose a new approach to label-free protein quanti-

fication in high-throughput proteomics experiments based solely on

peptide identification, a method that has already been shown to be

quite reliable, by learning and applying peptide features to increase

the reliability and accuracy of protein quantification. It is commonly

observed that the sequence coverage of identified peptides differs

from one protein to another in the same proteomics experiment. One

may hypothesize that the number of identified peptides or sequence

coverage of a protein is highly correlated to its abundance, because

the more protein copies in the sample, the higher chance a peptide

derived from this protein will be identified (Washburn et al., 2001;
Ishihama et al., 2005; Nesvizhskii and Aebersold, 2005). Although

it is intuitively sound, it is not the case in practice. For example, in

the analysis of an artificial protein mixture sample, even though

twelve proteins were mixed at about the same concentration, the

resulting sequence coverage of proteins based on identified

tryptic peptides were very different, ranging from almost full cov-

erage to no coverage (Purvine et al., 2004). This indicates that the
abundance of a protein (or a tryptic peptide from it) is not the only

dominant factor that determines whether or not a particular peptide

can be observed in a proteomics experiment (Kuster et al., 2005).
Several factors related to the nature of the peptides clearly

explain the fact that some peptides have higher chances of being

missed in the identification than the others even though they are

from the same abundant proteins in the sample. Let us use the

commonly utilized platform, trypsin digestion coupled with

LC/MS analysis, as an example. Peptides with masses smaller

than 200 Da and greater than about 6000 Da produce ions (as

+1, +2, or +3 ions) that are beyond the m/z range analyzed by

the mass spectrometer, typically 200 to 2000 Da, and will not be

observed. Other peptides will be so hydrophobic (water-insoluble)

that they are not soluble in the LC mobile phase. Still others will

be so hydrophilic (water-soluble) that they are not retained by the

LC stationary phase in the sample trapping column. In both cases,

the peptides will not be ionized for analysis by mass spectrometry.

The amino acid composition of some peptides, such as those with

multiple acidic residues, may dictate that they do not ionize effi-

ciently in the mass spectrometer ion source. Alternatively, a peptide

might ionize well but produce a fragmentation pattern in theMS/MS

spectrum that cannot be easily interpreted. Some predicted peptides

might never be generated because they exist in a region of the

protein’s structure that is very stable and thus resistant to proteolysis

by trypsin. Finally, each peptide will typically co-elute from the

chromatography with other peptides against which it must compete

for limited ionizing protons in the electrospray ionization process.

Although these factors are relatively simple and understandable

when considered separately, determining the reason for the absence

of a peptide is often not straightforward. In fact, it is likely that

multiple factors contribute to the overall result—lack of identifica-

tion. We attempt to learn these ‘factors’ that govern the likelihood

of identifying a peptide by a data driven approach, thus subtract

them from the direct correlation between peptide identification

and protein quantification, and finally obtain an accurate measure

of protein abundance using peptide identification.

This paper is organized as follows. First, we introduce the

notion of peptide detectability and discuss its relationship to protein

quantification. Next, we show that peptide detectability can be

predicted solely from the protein’s primary structure with useful

accuracy and analyze the sequence features most important for this

process. Then, we propose a computational method to quantify a

specific protein by using the coverage of identified peptides from a

proteomics experiment as well as the predicted peptide detectabil-

ity. Finally, we demonstrate the robustness of this approach by

replicated proteomic analysis on the same sample.

2 PEPTIDE DETECTABILITY

There are four classes of factors that govern the likelihood of

observing a peptide in a proteomics experiment: (i) the chemical

properties of the peptide (and its parent protein); (ii) the limitation

of the peptide identification protocol, including the pre-processing

of the sample, the MS instruments and software tools used for mass

spectrum analysis; (iii) the abundance of the peptide in the

sample; and (iv) the other peptides present in the sample that com-

pete with this peptide in the identification procedure. We define the

detectability of a peptide as the probability that the peptide will

be observed in a standard sample analyzed by a standard pro-

teomics routine. Specifically, we are investigating data from sam-

ples treated by trypsin digestion followed by reversed-phase liquid

chromatography tandem mass spectrometry in an ion trap and

searched against known protein sequences using Mascot (Perkins

et al., 1999). By standard sample we mean the sample has a fixed

number of different proteins (peptides) and they are mixed at the

same fixed concentration (e.g. 1 pmol/injection). We stress that, by

this definition, peptide detectability is an intrinsic property of a

peptide that is determined by its primary sequence as well as its

location within the context of the entire protein. Peptides with

higher detectabilities have a greater chance of being identified

than those with lower detectabilities. As a result, if a peptide

with low detectability is identified in a sample, it indicates that

this peptide (or the protein this peptide is from) has a high abun-

dance; if a peptide with high detectability is missed (not identified)

in a sample, it indicates that this peptide (or the protein this peptide

is from) has a low abundance. In addition, a situation in which

a peptide with very low detectability is identified while those

with higher detectabilities are not, suggests a false positive identi-

fication. Therefore, the notion of peptide detectability may be used

to establish a direct correlation between peptide identification and

protein identification/quantification.

Given a protein, we anticipate that the detectability of all

tryptic peptides can be predicted from their sequences. It is, how-

ever, important to generate a sample that satisfies the standard

conditions we described above, as the learning set for such a pre-

diction. An artificial sample (sample B in Section 3) mixed from

12 model proteins in the similar concentration (1 pmol/microliter)

was prepared and analyzed using LC/MS (see Section 5 for details)

and the identification results were used as a learning data set for

a predictor of peptide detectability in LC/MS experiments. We

note that a normal (cellular) proteome sample is not completely

suitable for training purposes because proteins in these types of

samples have different and unknown abundances.

3 PREDICTION OF PEPTIDE DETECTABILITY

Data sets. We used four groups of data sets of mass spectra in

this paper. The first group (data set A) was generated as a standard

protein mixture consisting of 12 model proteins and 23 model

peptides mixed at similar concentrations from 73 to 713 nM

for proteins and from 50 to 1800 nM for peptides (Purvine
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et al., 2004). The second group consisted of six data sets (data sets B
and B1–B5), prepared in our labs, each representing a mixture of the

same 13 model protein chains. To mimic a similar peptide com-

petition environment in the LC/MS analysis, we intentionally mixed

similar total amounts of protein in each sample as indicated in

Table 1. The third group is a data set (data set C) generated

from a real rat proteome, as described later. The last group consists

of three data sets (data sets D1–D3) representing three replicate

analyses of the fruit fly head proteome. With the exception of

data set C, all samples were reduced and alkylated with iodoac-

etamide prior to trypsin digestion. The rat samples were digested in

the presence of an acid-labile surfactant. All MS experiments were

carried out on an ion trap mass spectrometer, either a 3-D ion

trap (data sets A, C, and D) or a linear ion trap (data set B). The

low m/z cut-off was between 250 and 400, and the high m/z cut-off

was between 1500 and 2000 for all experiments.

Due to the large differences in protein concentrations in

the whole cell lysates, we included in our analysis and learning

procedures only those proteins whose coverage of identified pep-

tides was 10% or higher. In the case of the synthetic sample by

Purvine et al. (2004), one of the proteins contained only one iden-

tified peptide and was also removed from the subsequent analysis.

The total number of protein chains, the number of tryptic peptides

and the number of identified peptides in each data set are summa-

rized in Table 2.

Machine learning methodology. Given an unseen n-residue
long protein sequence S¼ s1s2� � �sn and a database of peptides

already detected by Mascot with high confidence, we construct a

model that can approximate the probability of detecting any

particular tryptic peptide from S with the same confidence. We

denote this probability as P(score(s[i, j]) � t j S), where s[i, j] ¼
sisi + 1 � � � sj is a residue sequence of a tryptic peptide from S and t
is an appropriately selected Mascot threshold (by default 40 in all

our experiments). In the case when a Pro residue directly follows a

basic residue (Arg or Lys) the peptide was extended until the first

accessible Arg/Lys or until the C-terminus. As previously men-

tioned, in order to reduce the dependency of the detectability on

the concentration of the protein in a cell, only proteins with �10%

sequence coverage of the detected peptides were used in our

analysis. All peptides whose m/z was outside of the instrument

range were eliminated from training and testing as trivial.

Data representation. To enable learning, each input peptide

sequence s[i, j] was represented by a fixed-length vector of real-

or discrete-valued features. Two groups of features were consid-

ered: those that depend on s[i, j] only and those that also depend on

the flanking regions. Thus, an identical peptide observed in the

contexts of different sequence neighborhoods will in general

have different detectability. The following groups of features

were constructed solely from s[i, j]: (i) amino acid compositions

in the peptide; (ii) length of the peptide, i.e. j – i + 1; (iii) ion

mass m(s[i, j]); (iv) N- and C-terminal residues, si and sj; (v)

sequence complexity (Wootton and Federhen, 1996); (vi) physico-

chemical properties averaged over the entire peptide—aromatic

content and hydrophobicity (Kyte and Doolittle, 1982) and (vii)

predictions obtained from various bioinformatics tools and aver-

aged over s[i, j]—namely, protein flexibility predictors (Radivojac

et al., 2004; Vihinen et al., 1994), hydrophobic moment (Eisenberg

et al., 1984), and predictions of intrinsic disorder (Obradovic et al.,
2003; Romero et al., 2001; Vucetic et al., 2003). Since the

detectability of the peptide may also be influenced by the neigh-

boring regions, the composite features from (vii) were averaged

over the regions of ±5, ±10, and ±15 residues flanking both

sides of s[i, j]. In addition, the residue at position sj + 1 was also

accounted for. Individual amino acids were encoded using orthogo-

nal data representation (Qian and Sejnowski, 1988) while the com-

positional features were encoded by real values. Overall, the total

number of features was 175. A binary class label was finally added

Table 1. Composition (fmol per one microliter injection) of six mixtures of 13 model protein chains (12 proteins). This mixture constitutes six data sets: B and

B1–B5. See Section 5 for detailed description of the sample preparation protocols. MW indicates molecular weight

Protein Swiss-Prot ID MW (kDa) B1 B2 B3 B4 B5 B

Serum albumin, bovine P02769 66.4 3000 300 1000 30 100 1000

Myoglobin, horse P68082 17.0 3000 300 1000 30 100 1000

Beta-casein, bovine P02666 23.6 1000 3000 100 300 30 1000

Catalase, bovine P00432 59.8 1000 3000 100 300 30 1000

Lactoferrin, bovine P24627 76.1 300 30 3000 100 1000 1000

Lysozyme, chicken P00698 14.3 300 30 3000 100 1000 1000

Alpha-casein, bovine P02662 23.0 100 1000 30 3000 300 1000

Pyruvate kinase, rabbit P11974 57.9 100 1000 30 3000 300 1000

Ovalbumin, chicken P01012 42.8 30 100 300 1000 3000 1000

DNase I, bovine P00639 29.1 30 100 300 1000 3000 1000

RNase A, bovine P61823 13.7 30 100 300 1000 3000 1000

Hemoglobin alpha, human P69905 15.1 2000 2000 2000 2000 2000 2000

Hemoglobin beta, human P68871 15.9 2000 2000 2000 2000 2000 2000

Table 2. Summary of the four data sets used in this study. Protein chains with

less than 10% sequence coverage were eliminated from all data sets

Data set Protein chains Total tryptic peptides Identified peptides

A 11 346 100

B 13 294 91

C 124 3403 359

D1–D3 200 3722 526
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to each feature vector; 1 (positive) for a detected peptide and 0

(negative) otherwise.

Model selection. To build predictors we employed ensembles

of 30 two-layer feed-forward neural networks trained using the

resilient backpropagation algorithm (Riedmiller and Braun,

1993). Due to the asymmetric class sizes and small positive

set (detected fragments), each network was trained on a balanced

selection of positive and negative examples. Each individual

training set contained all the examples from the positive class

and the same number of randomly selected negative examples.

The network contained 1 output neuron, while the number of

hidden neurons h was varied from h 2 {1, 2, 4}. All neurons

contained the logistic activation function. Prior to the network train-

ing, unpromising features were eliminated using the t-test filter

in which features whose p-values were above a given threshold

tfswere eliminated. The threshold tfs for feature selection was varied
from tfs 2 {0.01, 0.1, 1}. Note that in the case of tfs ¼ 1, all features

were retained. Finally, correlated features were removed by

employing principal component analysis and retaining 95% of

the variance. A validation set containing 20% of the training

data was used for model selection and overfitting prevention for

each of the training sets in the ensemble. Thus, the final prediction

was averaged over 30 different models and the single estimated

accuracy is reported.

Performance evaluation. The performance of the predictor

was evaluated within each data set (A to D) and also across various

data sets. In the following, we refer to these two types of perfor-

mance evaluation as cross-validation and out-of-sample estimation,

respectively. In the first case we used a per protein 10-fold cross-

validation. The entire set of available proteins D was first split into

10 non-overlapping sets {Di j i ¼ 1� � �10}. In each step i, dataset
D – Di was used for training while the prediction accuracy was

estimated on the test set Di. The final performance estimates were

obtained as averages over all 10 iterations. In the out-of-sample

case, we were interested in training and evaluating predictor per-

formance on two independent experiments. In particular, a predictor

was trained and optimized on one data set (say, data set A) and then

applied and evaluated on all other data sets (say, data sets B, C and

D). All twelve combinations were explored.

We measured sensitivity (sn)—the fraction of detected

peptides correctly predicted, and specificity (sp)—the fraction of

undetected peptides correctly predicted. Given sn and sp, the class-
balanced accuracy can be calculated as accuracy ¼ (sn + sp)/2. In
this setup, a predictor always outputting the same class and a pre-

dictor outputting uniformly at random would have a balanced-

sample accuracy of 50%. In addition to accuracy, we estimated

the area under the ROC curve (AUC) using the trapezoid rule.

Both accuracy and area under the curve are essentially unaffected

by the asymmetry in class sizes.

Feature analysis. To gain insights into sequence and physico-

chemical properties governing peptide detectability, we analyzed

features that best discriminate between identified and unidentified

peptides. These features were selected using the standard two sam-

ple t-test on each feature independently. More precisely, a feature

was split into two 1-D samples according to the class label and the

hypothesis that these samples were generated according to the same

probability distribution was tested. Even though the features may

not come from a Gaussian distribution, the t-test is known to be

robust to violations of this assumption. In Table 3 we present a

ranking according to the increasing p-value of the 15 individually

best features obtained on data set B. Nine of these features were

based on the overall properties of the peptide including its neigh-

borhood, while the top ranked features based solely on the peptide

itself were sequence complexity, its length, the mass/length ratio

and presence of Lys, Val, and Gly. Other data sets had similar

ordering of the features (data not shown). As a general rule, it

appears that peptides within flexible neighborhoods have lower

detectability. On the other hand, presence of hydrophobic amino

acids (Val, Gly) and peptide length were positively correlated

with peptide detectability. Further work is needed toward deeper

understanding of these properties.

Prediction accuracy. Predictor evaluation was performed in

two steps. In the first step, a 10-fold cross-validation was used to

estimate the prediction accuracy on each data set. In the second

Table 3. Fifteen best features estimated using the t-test on data set B. Features of the same type, but averaged over flanking regions of different sizes, are

presented only for the best performing window. Window ±15 indicates that the feature is averaged over s[i � 15, j + 15]

Feature Window p-value Correlation Reference

Vihinen et al. flexibility ±15 3.1 · 10�10 � Vihinen et al. (1994)
Hydrophobic moment ±15 6.0 · 10�10 � Eisenberg et al. (1984)

B-factor prediction ±15 2.9 · 10�9 � Radivojac et al. (2004)

VL2 disorder ±15 1.3 · 10�7 � Vucetic et al. (2003)

Sequence complexity 0 1.8 · 10�7 + Wootton and Federhen (1996)

VL2V disorder ±15 3.5 · 10�6 � Vucetic et al. (2003)

VLXT disorder ±15 4.1 · 10�6 � Romero et al. (2001)

VL2S disorder ±15 4.3 · 10�5 � Vucetic et al. (2003)
VL3 disorder ±15 5.5 · 10�5 � Obradovic et al. (2003)

Composition of Lys 0 3.3 · 10�4 � N/A

Mass/length ratio 0 1.0 · 10�3 � N/A

VL2C disorder ±15 4.1 · 10�3 � Vucetic et al. (2003)
Composition of Val 0 1.6 · 10�2 + N/A

Length 0 1.8 · 10�2 + N/A

Composition of Gly 0 2.1 · 10�2 + N/A
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step, performance evaluation was performed across data sets, as

described above. The summary of systematic evaluations is

shown in Table 4. Generally, these results strongly support our

hypothesis that peptide detectability is influenced by its sequence

and flanking regions from the parent protein. Interestingly, the

data sets can be grouped into synthetic and whole cell, based on

their out-of-sample performance. For example, best out-of-sample

accuracy on data sets A and B was achieved when the training sets

were B and A, respectively. Training on these synthetic data sets

also achieved good performance even on data sets C and D, despite

small training sizes. On the other hand, the best out-of-sample

performance on data set C was achieved by training on data set

D, while the best out-of-sample performance on data set D was

achieved by training on C.

It can be observed from Table 4 that prediction accuracies

vary between 62.7% and 86.8%, with the mean accuracy of

71.0%, while the area under the curve varied between 68.7% and

93.0%, with the mean of 78.3%. Surprisingly, training on one data

set and testing on another did not generally reach similar perfor-

mance when the two sets were switched. On the one hand, consid-

ering the small size of synthetic data sets, such performance could

be explained by normal variation. On the other hand, the differences

between data sets C and D were large and could be partially

explained by the different sample densities in the feature space.

In particular, it appears that data sets D1–D3 cover only part of the

feature space covered by data set C. Thus, while training on C and

testing on D1–D3 could produce good performance results, the

opposite did not hold true. In order to verify this statement we

trained a separate classification model to distinguish solely between

tryptic peptides from data set C and data set D. A prediction accu-

racy of 57.4% indicates that there exists a difference between these

two samples which can partially explain the inconsistency on the

out-of-sample evaluations. In addition to the sequence biases

between these two sets, there are also differences in the experi-

mental protocol that could contribute to the discrepancy in perfor-

mance, e.g. the way in which cysteines were modified in the samples

was different for data set C (no modification) and D (reduced and

alkylated).

4 PEPTIDE DETECTABILITY AND PROTEIN
QUANTIFICATION

In the previous section, we showed that our predictor can approxi-

mate detectability of a peptide from its sequence as well as from its

context in the complete protein with good prediction accuracy. In

this section, we show the results of utilizing the predicted peptide

detectability to measure protein abundances in the sample.

Here we analyze samples B1–B5 using a predictor trained on

sample B in which all chains were similarly abundant. Figure 1a

shows the predicted detectabilities of all tryptic peptides from

each protein from sample B1. Peptides from the same protein are

shown in the same column, sorted by their detectabilities. Proteins

were sorted by their relative abundances (concentrations) in the

mixture. The identified peptides are shown as empty squares,

while the missed peptides are shown as dashes. It is clear that,

for each protein in sample B1, the identified peptides tend to

have higher detectabilities than those not identified. This is consis-

tent to the prediction accuracy results as shown in the last section.

For each protein, we can determine its minimum acceptable
detectability of identified peptides (MDIP), a cutoff value of

detectability which maximizes the sum of true positive and true

negative rates. If all peptides from a protein are detected, the MDIP

of this protein is set to 0, and if none of the peptides from a protein is

detected, theMDIP of this protein is set to 1. It can be observed from

Figure 1a that the MDIP values, shown as black squares, increase as

the protein abundance decreases. This trend is approximated by a

solid regression line. Similar results were obtained in the remaining

samples B2–B5 (data not shown).

We computed the MDIP for each protein in five different

synthetic mixtures (B1–B5) and show them in Figure 1b. Each

column in Figure 1b corresponds to a particular concentration

and represents proteins from different experiments. For example,

in column 2 the grey diamond and circle represent proteins

ALBU_BOVIN and KPYM_RABIT, respectively, both with con-

centration 1000 fmol. However, ALBU_BOVIN was mixed at this

concentration in sample B3, while KPYM_RABIT was mixed at

concentration 1000 fmol in sample B2 (see Table 1). Similarly to the

trend observed in Figure 1a, we can see from Figure 1b a linear

relationship between MDIP and protein concentration. Moreover,

their relationships are generally similar from one protein to the next.

Figure 2 shows the MDIP for hemoglobin A and hemoglobin B,

which were mixed in the same amount in all experiments (Table 1),

across different samples. It shows low variation of MDIP, suggest-

ing it is a robust measure of protein abundance.

In the last experiment, we show that MDIP may be used as a

measure of protein quantification in high throughput proteomics

experiments. Here, we used three replicate data sets (D1–D3) to

demonstrate the robustness of the protein quantification method

we propose. Using the same predictor trained on data set B, we

predicted the detectability of all proteins in D. melanogaster pro-
teome. In each of the three experiments (D1–D3), we computed the

MDIP score for each protein. Figure 3 shows the scatter plots of

pairwise comparisons of MDIP scores between any two experi-

ments.

5 MASS SPECTRUM ACQUISITION AND
ANALYSIS

Data sets B and B1–B5. Mixtures of twelve standard proteins (listed

in Table 1) were paired or triply-grouped such that the combined

molecular weights in each group totaled about 80 to 90 kDa.

Samples of each protein were prepared as stock solutions of 60,

20, and 2 micromolar concentration, or 90, 30, and 3 micromolar for

Table 4. Results of learning peptide detectability using different training and

testing sets. Each field contains balanced sample accuracy (accuracy) [%]

and the area under the ROC curve (AUC) [%] for a particular training/test set

combination

accuracy/AUC Training set

A B C D1–D3

Test set

A 75.8/79.7 74.8/80.3 68.0/72.0 63.0/79.2

B 68.3/77.5 65.5/70.0 62.8/69.6 62.7/68.7

C 66.7/74.6 66.8/73.5 75.0/84.0 68.0/78.1

D1–D3 78.7/86.5 73.1/79.0 79.9/87.6 86.8/93.0
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the triply-grouped samples. Proteins were then mixed in various

ratios such that the same molecular weight equivalent was present at

3000, 1000, 300, 100, and 30 fmol per microliter of final digestion

solution, combined with buffer, reduced with dithiothreitol

(DTT), alkylated with iodoacetamide (IAM), and digested at

37�C for 18 hours. After acidification, samples were loaded onto

a 15 mm by 100 micron i.d. trapping column packed with 5-micron

BioBasic 18 particles with 300 Å pores (Thermo Hypersil-

Keystone, San Jose, CA). Peptides were separated using a

30-minute reversed-phase liquid chromatography gradient from

3% to 40% acetonitrile at 250 nL/min (Eksigent Technologies,

Livermore, CA) on a 12 to 15 cm, 75 micron i.d. capillary column

pulled to a small (�10 micron) tip and packed in-house with

5 micron C-18 coated particles (Betasil C18, Thermo Hypersil-

Keystone, San Jose, CA). As peptides eluted from the column,

they were electrosprayed into the source of a Thermo Electron

(San Jose, CA) LTQ linear ion trap mass spectrometer and analyzed

by mass spectrometry and tandem mass spectrometry. By using

dynamic exclusion, the mass spectrometer was limited to acquiring

only one tandem mass spectrum for a given parent m/z over a 30-

second window.

Data set C. Rat brain regions (amygdala, caudate putamen, fron-

tal cortex, hippocampus, hypothalamus, and nucleus accumbens)

were digested separately with proteomics grade (modified) trypsin

in the presence of an acid-labile surfactant. Tryptic peptides were

separated by nano-flow reversed-phase liquid chromatography and

electrosprayed directly into a ThermoFinnigan (San Jose, CA)

LCQ Deca XP ion-trap mass spectrometer which recorded mass

spectra and data-dependent tandem mass spectra of the peptide

ions. Dynamic exclusion was employed to limit acquisition of

tandem mass spectra for the same parent m/z over a 60-second

window.

Data set D. Drosophila genotype: elav-GAL4 (Stock number:

Bloomington/458) flies were harvested and separated according

to sex at day 1 of adult life. Flies were cultured on standard corn-

meal medium and maintained at 25�C. Flies (n ¼ 250) were anes-

thetized with CO2, flash frozen and decapitated with shaking in

liquid N2. Heads were collected on dry ice and stored at �80�C.
Proteins were extracted using a mortar and pestle in 0.2 M phos-

phate buffer saline plus 8 M urea plus 0.1 mM phenylmethylsul-

fonyl fluoride (pH 7.0) solution. Proteins were centrifuged (15700 g

at 4�C) for 10 minutes and the supernatant was kept for the deter-

mination of protein concentration using Bradford assay. Extracted

proteins were reduced with DTT, alkylated with IAM, and digested

with TPCK-treated trypsin after diluting the urea to 2 M with

(a) (b)

Fig 1. (a) Peptide detectability of proteins in sample B1. Each column displays peptide detectabilities from the same protein. Proteins are sorted according to the

decreasing concentration (from left to right), however in order to avoid overlaps, proteins with the same concentration were separated (e.g. columns 1 and

2 correspond to the amount of 3000 fmol). Peptides identified by Mascot are shown as empty squares; peptides not identified are shown as dashes. Minimum

acceptable detectability of identified peptides (MDIP) is shown as black squares for each protein. (b) MDIP of the proteins from samples B1–B5 as a function

of protein amount. The columns represent protein amounts and not different experiments. For example, in column 1 RNAS1_BOVIN (top detectability)

corresponds to experimentB5, whileCATA_BOVIN (second highest detectability) corresponds to experimentB2 (see Table1). Both proteins have the abundance

of 3000 fmol.

Fig 2. Minimum acceptable detectability of identified peptides (MDIP) of

hemoglobin A (HBA_HUMAN, black diamonds) and hemoglobin B

(HBB_HUMAN, white squares) in samples B1–B5. Each column x in the

figure corresponds to a data set Bx.
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0.2 M Tris buffer (pH 8.0). Tryptic peptides were isolated by C-18

solid-phase extraction, vacuumed to dryness, and stored at �80�C
until future use. Peptides from each SCX fraction were separated by

nano-flow reversed-phase liquid chromatography (15 cm · 75 mm
i.d. fused silica capillary column pulled to a fine tip and packed with

5 mm, 100 s amino-terminated C-18 packing material (Michrom

Bioresources, Auburn, CA), eluted with a gradient from 5 to 45%

acetonitrile at 250 nL/min). Eluting peptides were electrosprayed

directly into the source of a Thermo Finnigan LCQDeca XP ion trap

mass spectrometer and analyzed by MS (m/z 250–1500) and data-

dependent MS/MS on the three most intense ions.

Tandem mass spectra were searched against protein sequences

for the twelve known proteins (data set B), R. norvegicus in the

Swiss-Prot database (data set C) or D. melanogaster (data set D)

using a licensed copy of Mascot (Perkins et al., 1999) for peptide
identification. Searches were performed with fixed modification of

carbamidomethyl cysteine (where appropriate) and variable modi-

fications of protein N-terminal acetylation and methionine oxidation

selected and a maximum of one missed cleavage site. Mascot result

files were parsed using a Protein Results Parser program written

in-house to create training sets including all peptides with Mascot

scores of 40 or higher for doubly-charged precursors. Peptides

with Mascot scores below 40 were treated as negatives in the

training sets.

6 CONCLUSIONS

In this study we propose a new concept of peptide detectability, an

intrinsic property of a peptide in the context of its parent protein.

This detectability can be used to quantify proteins from the peptide

identification results in a standard proteomics experiment. We sug-

gest that peptide detectability can be successfully approximated

from its amino acid sequence and neighboring regions of its parent

protein. To this goal, we carried out a controlled proteomics experi-

ment in which all protein concentrations were similar to create a

‘‘standard’’ data set from which peptide detectability can be

learned. In addition to the standard data set B we used other samples

to train and evaluate neural-network predictors. Despite small and

noisy data sets, these predictors achieved useful cross-validation

and out-of-sample accuracies, ranging from 62% to 87%, while the

areas under the ROC curves ranged from 69% to 93%.

At this stage, our work is a proof-of-concept study of utilizing the

predicted peptide detectability to measure protein abundances in

high-throughput proteomics experiments. Further experiments will

be necessary in order to precisely determine its sensitivity. It should

also be noted that, while demonstrated here as a method to improve

quantitative measurements of proteins in proteomics experiments,

this approach also offers promise to improve protein identification

in cases where only a limited number of peptides are identified.

From the machine learning perspective, we provide only first

indications that peptide detectability is predictable from the

sequence of its parent protein, thus leaving substantial room for

improvement. It is likely that increased data set sizes and variability

of samples will contribute to the overall increase in accuracy of

detectability prediction, thus somewhat compensating for the class-

label noise in the real proteomic samples used in this study. This

noise was in part introduced by our simplifying the original problem

in which all peptides with Mascot scores <40 were labeled as nega-
tive. In addition, we believe that further improvements can be

achieved by controlled proteomics experiments in which the infor-

matics approaches proposed here could be properly calibrated.

The results presented here are based on data from a common pro-

teomics analytical platform; nanoflow reversed-phase liquid chro-

matography coupled by electrospray ionization to tandem mass

spectrometry in an ion trap mass spectrometer. Several other ana-

lytical methods, such as 2-D liquid chromatography, capillary elec-

trophoresis, MALDI ionization, electron-capture/electron-transfer

dissociation, and photoinduced dissociation, as well as alternative

proteases are also commonly used in the analysis of complex pro-

teomics samples. Measurements of peptide detectability for analyti-

cal platforms based on combinations of these techniques allows for

further training, and the potential to determine the most sensitive

analytical platform to be used for detection of a specific protein.
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