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Abstract

Motivation: The computational prediction of gene function is a key step in making full use of newly sequenced
genomes. Function is generally predicted by transferring annotations from homologous genes or proteins for which
experimental evidence exists. The ‘ortholog conjecture’ proposes that orthologous genes should be preferred when
making such predictions, as they evolve functions more slowly than paralogous genes. Previous research has pro-
vided little support for the ortholog conjecture, though the incomplete nature of the data cast doubt on the
conclusions.

Results: We use experimental annotations from over 40 000 proteins, drawn from over 80 000 publications, to revisit
the ortholog conjecture in two pairs of species: (i) Homo sapiens and Mus musculus and (ii) Saccharomyces cerevi-
siae and Schizosaccharomyces pombe. By making a distinction between questions about the evolution of function
versus questions about the prediction of function, we find strong evidence against the ortholog conjecture in the
context of function prediction, though questions about the evolution of function remain difficult to address. In both
pairs of species, we quantify the amount of information that would be ignored if paralogs are discarded, as well as
the resulting loss in prediction accuracy. Taken as a whole, our results support the view that the types of homologs
used for function transfer are largely irrelevant to the task of function prediction. Maximizing the amount of data
used for this task, regardless of whether it comes from orthologs or paralogs, is most likely to lead to higher predic-
tion accuracy.

Availability and implementation: https://github.com/predragradivojac/oc.

Contact: mwh@indiana.edu or predrag@northeastern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole-genome sequencing of new species continues to outpace the
experiments needed to annotate the function of every gene in these
genomes. As a result, computational prediction of gene function is
an essential tool for researchers in a range of biomedical fields. The
prediction of gene function generally proceeds by the transfer of
function from genes with experimental evidence to unannotated, or
less-annotated, genes that are similar by some measure (Radivojac
et al., 2013). While several methods use multiple data types to carry
out predictions (Cozzetto et al., 2016; Lan et al., 2013; Sokolov
et al., 2013), many solely rely on evolutionary relationships (Clark
and Radivojac, 2011; Cozzetto and Jones, 2017; Engelhardt et al.,
2005; Hawkins et al., 2006) and are the focus of this study.

One of the most important distinctions in evolutionary relation-
ships among genes is between orthologs and paralogs (Fitch, 1970).
Orthologous genes originate via a speciation event, whereas paralo-
gous genes arise through a duplication event. By definition, ortho-
logs are always found in different species, though paralogs can be

found in either the same or different species (e.g. when duplication
precedes a speciation event; Fig. 1). Identifying orthologous genes
across species is important for many tasks, including the inference of
species relationships (but see Du et al., 2019; Legried et al., 2019;
Zhang et al., 2019). In the context of function prediction, orthologs
have traditionally taken a privileged role based on the belief that
they are more functionally similar to one another than are paralogs
(Dolinski and Botstein, 2007; Fang et al., 2010; Gabaldón and
Koonin, 2013; Tatusov et al., 1997). Indeed, prediction of function
often proceeds by first identifying orthologs, and sometimes only
single-copy orthologs, discarding all genes with other relationship;
e.g. as in Wang et al. (2018).

The idea that orthologous genes share greater functional similar-
ity than do paralogous genes has been termed the ‘ortholog conjec-
ture’ (Nehrt et al., 2011). Historically, this conjecture has rarely
been questioned in either evolutionary biology (but see Gibson and
Goldberg, 2009; Koonin, 2005; Studer and Robinson-Rechavi,
2009) or function prediction studies (but see Engelhardt et al., 2005;
Mika and Rost, 2006; Nadimpalli et al., 2015). In a previous study,
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we tested the ortholog conjecture using experimental evidence
gleaned from the Gene Ontology (GO) database and gene expres-
sion data from 25 different tissues in human and mouse (Nehrt
et al., 2011). We found no evidence that orthologs were more func-
tionally similar than paralogs of equivalent levels of protein diver-
gence, and in fact showed that the highest functional similarity was
shared by within-species homologs. A simple model was proposed
to explain these data: functional differences evolve over time, so that
pairs of genes that have been diverged for a smaller amount of time
are more functionally similar, and that genes found in the same spe-
cies share a cellular context, making their functions more similar
(Nehrt et al., 2011). Because within-species paralogs can have a
common ancestor much more recently than any particular speci-
ation event (which will delimit the age of orthologs)—and are obvi-
ously found within the same species—such genes will share higher
levels of functional similarity.

Results questioning the ortholog conjecture have been received
with a range of reactions. Some researchers were ‘baffled’ that such
an obvious assumption would be tested (Sonnhammer et al., 2014),
whereas others pointed out important limitations in using GO simi-
larity for answering questions about the evolution of function
(Altenhoff et al., 2012; Chen and Zhang, 2012; Thomas et al.,
2012). In the rush to cement the primacy of orthologs, several analy-
ses were reported in which orthologs appeared significantly more
similar than paralogs (Adipietro et al., 2012; Altenhoff et al., 2012;
Chen and Zhang, 2012; Kryuchkova-Mostacci and Robinson-
Rechavi, 2016; Rogozin et al., 2014). While orthologs may be more
similar than paralogs for some traits (Soria et al., 2014) and for
some types of genes (Adipietro et al., 2012), the higher similarity of
orthologs in some newer datasets was accompanied by either no
change in functional similarity over time (Altenhoff et al., 2012;
Chen and Zhang, 2012) or the increase in functional similarity over
time (Rogozin et al., 2014). As a decrease in structural (Peterson
et al., 2009; Mohan et al., 2009) and functional (Cao and Cowen,
2017; Coolon et al., 2014; Gu et al., 2002; Laurent et al., 2019;
Liao and Chang, 2014; Makova and Li, 2003) similarity with diver-
gence is a widely expected and observed pattern for both paralogs
and orthologs, the patterns of evolution in these studies are indeed
baffling. Further examination of several of these studies has uncov-
ered problems with the analyses such that there is either no longer
support for the ortholog conjecture (Dunn et al., 2018) or that there
was no statistical support for the ortholog conjecture in the first
place, as in the case of human–mouse comparisons by Altenhoff
et al. (2012).

Further testing of the ortholog conjecture using experimental
data must deal with several issues, mostly concerned with the non-
random nature of experiments done by individual researchers and in
individual species (Altenhoff et al., 2012; Nehrt et al., 2011;
Thomas et al., 2012). An important distinction that can help to

overcome these issues can be drawn between two different interpre-
tations of the ortholog conjecture, one evolutionary and one predict-
ive. Evolutionarily, questions about the tempo and mode of
functional evolution require that the same traits and experimental
methods be used in all species considered. If this is not done, then
differences in the types of traits studied can bias results in favor of
within-species paralogs (Nehrt et al., 2011; Thomas et al., 2012).
For instance, if tails are only studied in mice, then obviously more
genes in mice will be predictive of tail-related functions. But a se-
cond interpretation of the ortholog conjecture is only concerned
with the prediction of function, regardless of the evolutionary his-
tory of these functions. For this interpretation of the ortholog con-
jecture, there is no bias associated with the nonrandom collection of
experimental data, as long as we assume that all types of annota-
tions are equally accurate on average. Following from the example
given above, if more genes in mice are useful for predicting tail-
specific functions, then these genes should be preferred when pre-
dicting function.

Regardless of the validity of the ortholog conjecture, its import-
ance to the task of function prediction remains unclear. That is,
even if orthologs are slightly better for predicting functions than
paralogs, this should not imply that paralogs should be ignored, and
vice versa. In fact, including paralogs in prediction results in higher
accuracy than orthologs alone (e.g. �Skunca et al., 2012) and meth-
ods that include both orthologs and paralogs (Engelhardt et al.,
2005, 2011) are some of the most successful in the Critical
Assessment of Functional Annotation (CAFA) challenge (Jiang
et al., 2016; Radivojac et al., 2013; Zhou et al., 2019). Therefore,
quantifying the increase in the number and accuracy of functional
predictions made possible by including paralogs represents an equal-
ly valuable task in the context of the ortholog conjecture. Given a
large enough benefit of inclusion, it may be that there is no need to
distinguish between orthologs and at least some types of paralogs in
the first place.

In this article, we revisit the ortholog conjecture and related
questions using experimentally verified functional annotations from
almost 43 000 genes. We attempt to control for some of the factors
that can bias evolutionary tests of the ortholog conjecture, finding
that within-species paralogs are overwhelmingly favored in compari-
sons between two mammalian species, Homo sapiens and Mus mus-
culus, and between two yeast species, Saccharomyces cerevisiae and
Schizosaccharomyces pombe. We also quantify the enormous gain
in number and accuracy of predictions that is manifested when all
types of homologs, and not just orthologs, are included. Our results
reaffirm the lack of support for the ortholog conjecture, and further
suggest that its accuracy is irrelevant to the task of predicting
function.

2 Materials and methods

2.1 Sequence data and evolutionary relationships
We collected protein-coding genes from H.sapiens (Hs),
M.musculus (Mm), Sa.cerevisiae (Sc) and Sc.pombe (Sp). Ensembl
Biomart (release 91, December 2017) and Ensembl Fungimart (re-
lease 38, January 2018) gene trees were used to specify different
homologous relationships for human–mouse and cerevisiae–pombe
comparisons, respectively (Zerbino et al., 2018). A total of 8606
gene trees contained human and mouse genes, whereas 3059 gene
trees contained cerevisiae and pombe genes.

Homologous relationships between proteins were divided into
four main categories, two for homologs found in different species
(orthologs and between-species outparalogs) and two for homologs
found in the same species (inparalogs and within-species outpara-
logs). Orthologs were further classified as one-to-one, one-to-many
and many-to-many. We used duplication events inferred from gene
trees to distinguish between inparalogs and within-species outpara-
logs: if the duplication event occurred more recently than the speci-
ation event, the protein pairs were identified as inparalogs;
otherwise, they were identified as within-species outparalogs
(Fig. 1). All genes included in the final dataset had at least one type

M1 H2M1

M2H1

M2

within-species

inparalogs orthologs

H3 H2

H1 M2M1H3

speciation

duplication

duplication

H2 outparalogs
between-species

outparalogs

Fig. 1. Four different types of homology relations. A family of five genes sampled

from human (in blue) and mouse (in green) evolves through speciation and duplica-

tion events (left-hand tree). The relationships among genes are highlighted in the

four trees on the right. Human genes H1 and H3 are inparalogs, arising from a du-

plication event after the most recent speciation event in the tree. Genes H2 and M2

are orthologs, as they are related through a speciation event. Gene pairs M1–M2

and M1–H2 are outparalogs because they arose from a duplication that predates the

reference speciation event. Pair M1–M2 is within-species outparalogs, while M1–

H2 is between-species outparalogs
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of homologous relationship with another gene. This dataset was
composed of 19 514 human genes, 21 398 mouse genes, 4205 cere-
visiae genes and 3487 pombe genes.

2.2 Function data
We used Biological Process, Molecular Function and Cellular
Component ontologies released by the Gene Ontology (GO) consor-
tium in March 2018 (Ashburner et al., 2000; Consortium, 2016).
Functional annotations were obtained from the UniProt-GOA data-
base (release 176, March 2018) (Huntley et al., 2015). Only annota-
tions supported with evidence codes EXP, IDA, IMP, IPI, IGI, IEP,
TAS or IC were considered. The comparative genomics data
obtained from Ensembl uses Ensembl gene IDs, whereas protein
functional annotation data obtained from the UniProt-GOA data-
base uses UniProt accession numbers. In some cases, especially for
human and mouse, when there were one-to-many mappings from
Ensembl gene to UniProt accession numbers, we only kept annota-
tions for the protein with the longest sequence. This gave 22 280
human proteins, 12 859 mouse proteins, 5135 cerevisiae proteins
and 2669 pombe proteins annotated with at least one functional
term from any ontology. A total of 81 332 unique publications were
used to assign experimental annotations to these proteins.

Our analysis requires pairs of homologs that both have function-
al annotations to quantify their similarity. Therefore, our final data-
set consisted of 8637 ortholog pairs, 1917 inparalog pairs, 33 741
between-species outparalog pairs and 40 021 within-species outpar-
alog pairs for human–mouse comparisons. For cerevisiae and
pombe, there were 1724 ortholog pairs, 2072 inparalog pairs, 193
between-species outparalog pairs and 892 within-species outparalog
pairs.

We also identified proteins that had been annotated in the same
publication or by the same researchers. To do so, we retrieved
PubMed identifiers for each protein-term assignment and, ultimate-
ly, associated a list of authors with each protein. This list was then
used to narrow the analysis only to pairs of proteins that were
studied by nonoverlapping groups of investigators.

2.3 Similarity calculations
2.3.1 Sequence identity

Pairs of protein sequences were aligned using the Needleman–
Wunsch algorithm (Needleman and Wunsch, 1970), with the
BLOSUM62 matrix (Henikoff and Henikoff, 1992), a gap opening
penalty of 11 and a gap extension penalty of 1. Sequence identity
was obtained by dividing the number of matches in the alignment by
the length of the longer protein sequence.

2.3.2 Functional similarity

To calculate functional similarity between pairs of annotated pro-
teins, we used two groups of similarity measures. The first group
uses topological measures of the structure of the GO graph to meas-
ure similarities of its subgraphs, whereas the second group uses
information-theoretic (probabilistic) measures that further incorpor-
ate the database of all characterized proteins with their respective
annotations. Each measure considered in this work returns values
between ½0;1�, with 1 indicating identical annotations. As our main
functional similarity measure is Yang–Clark similarity, we introduce
it below. Two alternative measures, i.e. the Maryland bridge simi-
larity (Glazko et al., 2005) and Schlicker’s similarity (Schlicker
et al., 2006), are defined in the Supplementary Materials.

Yang–Clark semantic similarity. The Yang–Clark distance metric
is based on the previously introduced concept of information con-
tent of a subgraph within an ontology (Clark and Radivojac, 2013).
We used the normalized version of this semantic distance, as pro-
posed by Yang et al. (2019), to calculate functional similarities be-
tween protein pairs. This model first assumes that protein
annotations are generated by a probabilistic model; i.e. a Bayesian
network that has the same structure as GO, with each node in the
ontology treated as a binary random variable. The marginal

probability for a consistent subgraph T associated with a protein is
then defined as

PðTÞ ¼
Y

v2T

PðvjPaðvÞÞ; (1)

where v is a node in the annotation graph and PaðvÞ is the set of par-
ent nodes of v. PðvjPaðvÞÞ defines the probability that a node v
belongs to the functional annotation of a protein in the database
given that all of its parents are present in the annotation. The infor-
mation content of a subgraph T annotating a protein is then defined
as

iðTÞ ¼ log
1

PðTÞ ¼
X

v2T

iaðvÞ (2)

where iaðvÞ ¼ �log PðvjPaðvÞÞ stands for information accretion of a
node (Clark and Radivojac, 2013). We estimated ia(v) using the
maximum likelihood approach over the entire UniProt-GOA data-
base as the negative binary logarithm of the relative frequency that
the term v is present in a protein’s annotation given that all its par-
ent terms are also present. We also considered species-specific term
frequencies to understand the impact of averaging over the entire
UniProt-GOA.

The semantic distance between annotations of two proteins can
now be calculated as follows. Suppose that A and B are two sets of
nodes presenting propagated annotations for two proteins a and b,
respectively, and that A is used as a prediction of B. Misinformation
(mi) is defined as the total information content of the nodes that are
present in annotation A but not in B, whereas remaining uncertainty
(ru) is defined as the total information content of the nodes that are
present in annotation B but not in A (Clark and Radivojac, 2013).
More formally,

miðA;BÞ ¼
X

v2A�B

iaðvÞ and ruðA;BÞ ¼
X

v2B�A

iaðvÞ: (3)

We define the total normalized Yang–Clark distance of the order
p � 1 between the two annotations A and B as

dYCðA;BÞ ¼
ðrupðA;BÞ þmipðA;BÞÞ1=pP

v2A[B iaðvÞ : (4)

The Yang–Clark semantic similarity is then defined as

sYCðA;BÞ ¼ 1� dYCðA;BÞ: (5)

Based on previous works (Clark and Radivojac, 2013; Jiang
et al., 2014; Yang et al., 2019), we used p¼2 throughout this study.

2.3.3 Background similarity

Background functional similarity is defined as the expected func-
tional similarity for a pair of randomly selected genes. We calculate
such similarity for different groups of genes with the same labels,
such as orthologs or inparalogs. To calculate background similarity,
we randomly selected with replacement 1000 protein pairs from a
pool of all proteins forming a certain group; e.g. the pool of all pro-
teins forming human–mouse orthologous pairs. The average func-
tional similarity over these pairs can then be subtracted from the
functional similarity of the actual homologous pairs to form the so-
called excess similarity (Altenhoff et al., 2012).

We calculated background similarities separately for each hom-
ology type. Orthologs were further split between one-to-one and
other orthologs (one-to-many, many-to-many). Background similar-
ities for nonhomologous genes both within and between species
were also calculated.

2.4 Protein function prediction and its evaluation
To understand and quantify the influence of particular types of
homologs in protein function prediction, we selected one of the
most intuitive predictors used in this field. This predictor transfers
protein annotations from a database of experimentally annotated
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‘target’ proteins to an unannotated ‘query’ protein as follows: (i) the
query protein is first aligned to all target proteins; (ii) each annota-
tion term is transferred from the target database to the query with a
score equaling the largest global sequence identity between the query
and any of the target proteins containing that term. Eventually, each
term in the query protein is associated with a score between 0 and 1.
This model is equivalent to the BLAST baseline algorithm that has
been used in the CAFA experiments (Jiang et al., 2016; Radivojac
et al., 2013; Zhou et al., 2019), except that we used global sequence
identity instead of local identity. We selected this algorithm because
of the ability to easily track the influence of target proteins from
which the annotations were transferred.

The performance of protein function prediction was evaluated
using a leave-one-out strategy based on both topological and
information-theoretic accuracy measures. As in pairwise functional
similarity between proteins, the Yang–Clark semantic similarity was
used as the main evaluation metric and is presented below. The Fmax

topological metric, a criterion regularly seen in CAFA (Jiang et al.,
2016; Radivojac et al., 2013; Zhou et al., 2019), was used as an al-
ternative measure and is presented in Supplementary Materials.

To summarize this performance evaluation, we consider a pre-
diction algorithm on a set of n proteins, where each protein i is
assigned a score (say, between 0 and 1) for each functional term v in
the ontology. The normalized remaining uncertainty (nru) and mis-
information (nmi) are defined as

nruðsÞ ¼ 1

n

Xn

i¼1

P
v iaðvÞ � 1 v 62 PiðsÞ ^ v 2 Tið ÞP
v iaðvÞ � 1 v 2 PiðsÞ _ v 2 Tið Þ (6)

nmiðsÞ ¼ 1

n

Xn

i¼1

P
v iaðvÞ � 1 v 2 PiðsÞ ^ v 62 Tið ÞP
v iaðvÞ � 1 v 2 PiðsÞ _ v 2 Tið Þ ; (7)

where PiðsÞ contains predicted terms with a score greater than or
equal to s for the ith protein, Ti is the experimental annotation for
the ith protein, and 1 is an indicator function. The term ia(v), as be-
fore, is the information accretion corresponding to the ontology
term v (Clark and Radivojac, 2013). The maximum semantic simi-
larity, Smax, is now defined as

Smax ¼ 1�min
s
ðnrupðsÞ þ nmipðsÞÞ1=p; (8)

for p � 1. Smax takes values between 0 and 1. Higher values corres-
pond to better predictions, with the value of 1 corresponding to a
perfect prediction for each protein in the dataset. As before, we used
p¼2.

It is important to mention that all functional similarity measures
between proteins are susceptible to problems caused by incomplete
(Dessimoz et al., 2013) and noisy (Schnoes et al., 2009) experimen-
tal annotations. There is a small effect of annotation incompleteness
on topological measures and a somewhat larger effect on unnormal-
ized semantic distance (Jiang et al., 2014). However, compared with
topological measures, semantic similarity avoids a form of double-
counting of nodes caused by the directed acyclic graph structure of
GO, and thus properly treats hierarchical dependencies in the
ontology.

3 Results

3.1 Higher functional similarity in within-species

homologs
We analyzed patterns of functional similarity versus sequence iden-
tity for pairs of proteins separated by their type of homology: ortho-
logs, inparalogs, within-species outparalogs and between-species
outparalogs (Fig. 2). We observe that for both pairs of species and
across all three functional ontologies, within-species homologs—es-
pecially inparalogs—generally exhibit higher average functional
similarity than between-species homologs (orthologs and between-
species outparalogs). Inparalogs by definition share a more recent
common ancestor with each other than do orthologs, and it

therefore may not be surprising that they are more functionally simi-
lar than pairs of orthologs at essentially all levels of divergence
(Nehrt et al., 2011). Outparalogs are not constrained by such rela-
tionships, but our results show that within-species pairs are consist-
ently more functionally similar than are between-species pairs. This
result is also consistent with the previously proposed effect of cellu-
lar and organismal context on measured protein function (Nehrt
et al., 2011). The patterns, shown for the Yang–Clark similarity
measure in Figure 2, also hold when using Maryland bridge and
Schlicker’s similarity measures (Supplementary Figs S2 and S3).

3.2 Controlling for potential annotation bias
While the results presented in Figure 2 clearly show that within-
species homologs have more annotated functional terms in common
than do between-species homologs, it is not clear whether this is due
to underlying biological differences. We studied two sources of bias
that could inflate functional similarities of within-species homologs,
in an attempt to control for them. The first factor examined was
‘authorship bias’, which proposes that pairs of proteins experimen-
tally annotated by the same authors will be annotated more similarly
(Altenhoff et al., 2012; Nehrt et al., 2011). This effect could be due
either to a limited range of GO terms known by individual authors
or to experiments preferentially testing similar functions. In either
case, proteins studied by the same authors could have higher func-
tional similarity compared to pairs annotated by different authors.
The second potential factor is referred to as ‘background similarity’
between pairs of homologs (Altenhoff et al., 2012). Such similarity
arises because certain functions are studied more or less in different
organisms, leading to similarities even between nonhomologous pro-
teins found in the same species.

To examine the effects of these factors on our results, we first
calculated functional similarity between pairs of proteins annotated
by different authors. We did this by removing any homologous pair
for which experimental annotations were derived from either the
same paper or different papers sharing one or more of their authors
(Section 2). Across all ontologies, and for both species pairs, func-
tional similarity for inparalogs remained higher than for orthologs
for high sequence similarity, whereas the results were mixed in the
lower sequence identity groups (Supplementary Fig. S4). The effect
of filtering of functional annotations was more noticeable for
within-species outparalogs: these become comparable in functional
similarity to orthologs across the entire sequence identity range,
with fluctuations likely influenced by smaller dataset sizes
(Supplementary Fig. S4). Finally, between-species outparalogs
remained the least predictive of functional annotations
(Supplementary Fig. S4). These results were consistent regardless of
the similarity measure used (Supplementary Figs S4–S6). To control
for background similarity, we calculated this measure separately for
the different types of homologous relationships (Supplementary Figs
S7–S9). We then subtracted the background similarity from the total
functional similarity between homologous pairs of the same type;
these values were subtracted from the similarities calculated above
using annotations only from different authors. Inparalog pairs
remained functionally slightly more similar to each other than
orthologs after accounting for both sources of biases (using all three
measures and over all three ontologies; Supplementary Figs S10–
S12). While there remain several unavoidable problems with experi-
mental data collected from different species (Section 4), these results
suggest that orthologs do not evolve functions more slowly than
paralogs.

3.3 The impact of ignoring paralogs: number of genes
Regardless of whether paralogs are more or less functionally similar
than orthologs of the same sequence identity, using only orthologs
for function prediction means that we are discarding some amount
of functional information. We therefore attempted to characterize
the impact of discarding paralogs both in terms of the number of
proteins that are ignored and the loss of predictive ability. As before,
these results are shown for human versus mouse and cerevisiae ver-
sus pombe. Using Ensembl gene trees (Zerbino et al., 2018), we
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extracted 8606 gene families for human–mouse and 3059 for cerevi-
siae–pombe that contained at least two proteins within them of
some homology type. We were interested in quantifying the number

of families and the number of proteins in the two pairs of species
where functional transfer is possible given: (i) only orthologs, (ii)
only paralogs and (iii) both orthologs and paralogs.
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Fig. 2. Left: The relationship between Yang–Clark functional similarity and sequence identity for human and mouse over three different ontologies in GO. The breakdown is

presented for four types of homologous relationships between pairs of proteins (orthologs, between-species outparalogs, within-species outparalogs and inparalogs). The

dashed line in each panel shows the estimated functional similarity for a randomly selected pair of proteins, obtained by averaging 1000 randomly selected proteins from the

available pool. The data are presented for each sequence identity bin in which at least three pairs of proteins could be used to calculate functional similarity. Right: The rela-

tionship between Yang–Clark functional similarity and sequence identity for Sa.cerevisiae and Sc.pombe over three different ontologies in GO. The breakdown is presented for

four types of homologous relationships between pairs of proteins (orthologs, between-species outparalogs, within-species outparalogs and inparalogs). The dashed line in each

panel shows the estimated functional similarity for a randomly selected pair of proteins, obtained by averaging 1000 randomly selected proteins from the available pool. The

data are presented for each sequence identity bin in which at least three pairs of proteins could be used to calculate functional similarity. The results in which term frequencies

were separately computed over each pair of species are very similar, as presented in Supplementary Figure S1
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Figure 3 shows a significant overlap between protein families
where functional transfer is possible using both orthologs and any
type of paralogs. In human and mouse, a total of 4744 families with
9488 proteins contain only orthologous assignments, whereas 260
families with 1396 proteins contain only paralogous assignments,
mostly from the same species (i.e. either human–human or mouse–
mouse). In contrast, 3602 gene families containing 30 000 proteins
contain both types of homologs and thus could potentially benefit
from both groups in function transfer. For Sa.cerevisiae versus
Sc.pombe, we find that 1969 gene families (3968 proteins) only
have orthologous assignments, 571 families (1590 proteins) only
have paralogous assignments, whereas 519 families (1772 proteins)
contain both types of homologous assignments. Additional break-
downs are provided in Supplementary Materials.

These results point to the potentially large impact paralogs could
have on function transfer. Although orthologs are the only source of
function transfer in 55% of human and mouse families and 64% of
yeast families, 73% of proteins in human and mouse and 24% of
proteins in the yeast species are in families containing genes with
both orthologous and paralogous relationships. In addition, 3% of
families in human and mouse (3% of proteins) contain only paralo-
gous relationships and 19% of families (22% of proteins) in the
yeast species contain only paralogous proteins. Together, these num-
bers suggest that a large amount of functional information is poten-
tially ignored if paralogs are not included in function transfer.

3.4 Impact of ignoring paralogs: prediction performance
We estimated the performance accuracy of protein function predic-
tion when different groups of targets (i.e. different types of homo-
logs) were used to transfer GO terms. We first estimated the
prediction accuracy when orthologs and all paralogs were used for
the prediction. We then removed orthologs and paralogs one at a
time to gauge the impact on prediction performance. Figure 4a–c
shows the prediction performance in each ontology for the proteins
that have an experimentally characterized ortholog and at least one
paralog, regardless of the type (gray circles). Removing orthologs
(blue circles) resulted in significantly reduced performance across all
ontologies and across both pairs of species (10.2% reduction on
average in human–mouse and 13.4% reduction on average in cerevi-
siae–pombe). Similarly, removing paralogs from function transfer
(yellow circles) resulted in reduced performance by an equivalent
margin to that for the case of orthologs (10.0% reduction on aver-
age in human–mouse and 16.8% on average in cerevisiae–pombe).
These results suggest that the two groups of homologs provide ap-
proximately equivalent contributions to accurate function transfer.

Figure 4d–f summarizes a similar experiment, but where we only
considered proteins with both orthologs and inparalogs having ex-
perimentally determined functions. Once again, the removal of
inparalogs resulted in a significant decrease in prediction perform-
ance across all ontologies and both pairs of species (12.6% reduc-
tion on average in human–mouse and 11.1% reduction on average
in cerevisiae–pombe). Interestingly, however, the exclusion of ortho-
logs from function transfer resulted in slight performance increases
in all six experiments, although this result was not statistically sig-
nificantly (6.2% increase on average in human–mouse and 6.5%

increase on average in cerevisiae–pombe). These results suggest that
the annotated inparalogs, when available, constitute the most reli-
able source of functional annotation and can be readily used in func-
tion transfer. The results show that accuracy actually decreased
when orthologs were included alongside the inparalogs. Further
experiments with the removal of other types of homologs and differ-
ent performance measures are summarized in the Supplementary
Materials (Supplementary Figs S13–S24).

4 Discussion

We have revisited the problem of the ‘ortholog conjecture,’ with a
focus on assessing the value of orthologs and paralogs in the task of
sequence-based protein function prediction. Exploiting significantly
larger datasets of experimentally characterized proteins than have
been used before, we repeated the analysis of Nehrt et al. (2011),
finding that those original results still hold for two different pairs of
species. We then moved beyond this analysis to quantify the value of
different types of homologs on both the number of possible predic-
tions that can be made and their accuracy. Several conclusions and
implications of our results deserve additional discussion.

We believe that the ortholog conjecture as originally operational-
ized in our previous work conflated two different ideas about the
value of orthologs: their role in automated function prediction ver-
sus their rate of evolution of function (Nehrt et al., 2011). Although
these are obviously related issues, different types of experiments—
and more importantly, different types of experimental biases—can
affect the conclusions drawn about the roles of orthologs in each.
Questions about the role of orthologs in functional annotation have
been satisfactorily answered, with no problems due to experimental
bias: the cumulative evidence suggests that paralogous genes are
highly important for functional transfer, and in certain cases, even
more useful than orthologs in transferring function from one gene
and/or species to another. The analyses presented here continue to
show that paralogs can offer both more and better predictions of
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Fig. 3. The numbers of gene families with different types of homologous relation-

ships in them. The numbers in parentheses represent the counts of genes in the re-

spective gene families. (a) Gene families containing H.sapiens and M.musculus

proteins and (b) gene families containing Sa.cerevisiae and Sc.pombe proteins
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Fig. 4. The impact of excluding orthologs or paralogs from prediction. Smax values

for proteins having orthologs and one other homolog (panels a-c) and proteins hav-

ing orthologs and inparalogs (panels d-f), in human–mouse (Hs–Mm) and

Sa.cerevisiae–Sc.pombe (Sc–Sp), are lower when ignoring either homolog. Points are

100 bootstrap samples of each protein set, and asterisks indicate a significant de-

crease in Smax (bootstrap P< 0.05)
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protein function; that is, given a query protein and experimentally
annotated orthologs and paralogs, the combination of orthologs and
paralogs consistently improves functional annotation compared to
prediction based on orthologs alone. These results hold across both
a comparison of human and mouse and a comparison of two yeast
species. Nehrt et al. (2011) and Altenhoff et al. (2012) have previ-
ously shown the same patterns in human and mouse, though
Altenhoff et al. (2012) did not find the same pattern in their analysis
of the two yeasts. We do not know exactly why the two results are
different, but our work is based on six more years of accumulated
data.

In contrast, questions regarding the evolution of function in dif-
ferent types of homologs are still unsettled. The results presented
here are consistent with a model in which protein functions evolve
over time, with no difference between orthologs and paralogs except
with respect to whether two genes are found within the same species
(Nehrt et al., 2011). In previous work, there was also no evidence
for a greater conservation of function in orthologs between human
and mouse when using GO terms, even after correcting for experi-
mental evidence coming from the same paper (Nehrt et al., 2011) or
from the same authors (Altenhoff et al., 2012). However, issues re-
main in the experimental data reported in the GO database that are
hard to overcome in downstream analyses of protein function evolu-
tion. One such issue is that current measures of functional similarity
treat a lack of overlap in GO terms as evidence for a difference in
function, without properly accounting for the possibility that the
relevant experiments have simply not been carried out (Thomas
et al., 2012). Such problems can only be addressed as more experi-
ments are added to the GO database, especially experiments report-
ing negative results. Indeed, by tracking the accumulation of data in
GO, Chen and Zhang (2012) predicted that the functional similarity
of ortholog pairs would be higher than for outparalog pairs by the
year 2018 for all three ontologies. We used experimental data from
more than six times as many publications in this study than in our
previous work (Nehrt et al., 2011) and did not find evidence for this
(Fig. 2). Moreover, Chen and Zhang (2012) predicted that function-
al similarity between orthologs would exceed those of inparalogs for
the biological process and cellular context ontologies in 2013 and
2015, respectively; these predictions are also not supported by our
results. In addition, a previous analysis of gene expression diver-
gence between orthologs and paralogs, which avoids any problems
of incomplete annotation, also found higher similarity between
paralogs (Nehrt et al., 2011). Nevertheless, further work is clearly
necessary to directly assess the rate of evolution of protein function
among different classes of homologs.

The results presented here suggest an important modification to
approaches for assigning protein function. Regardless of the validity
of the ortholog conjecture for this task—that is, no matter whether
orthologs are better or worse than paralogs at predicting function—
adherence to the ortholog conjecture is often accompanied by the
idea that only orthologs should be used to predict function
(Sonnhammer et al., 2014). This is clearly not a necessary conse-
quence of the ortholog conjecture: including paralogs could still aid
in function prediction even if orthologs had more conserved func-
tions. As we have shown, ignoring paralogs involves throwing away
a huge amount of data, and often means that no prediction can be
made because there are no available orthologs (Fig. 3). Stricter
schemes can also involve only using one-to-one orthologs
(Supplementary Fig. S25), so as to avoid the inclusion of any dupli-
cation events in the history of the orthologs. This strategy means
that even fewer genes can be used in function prediction.

As sequence and function data further accumulate, future analy-
ses, particularly those including multiple species at a time, could re-
veal more refined relationships between types of homology and
function. Until such a time, however, we propose that homology
types should be ignored in methods for transferring protein function,
with a caveat that the functions from between-species outparalogs
are slightly less transferable from one species to another. Our results
suggest both that we are ignoring large amounts of data and that the
accuracy of prediction is lower if we do not use paralogs. Even stud-
ies written in favor of the ortholog conjecture provide only slim-at-

best victory margins (Adipietro et al., 2012; Altenhoff et al., 2012;
Chen and Zhang, 2012; Kryuchkova-Mostacci and Robinson-
Rechavi, 2016; Rogozin et al., 2014), while still presenting data that
support the value of paralogs. Furthermore, evolutionary relation-
ships among genes (i.e. a gene tree) can still be used to predict func-
tion, even when the labeling of orthologs and paralogs is ignored
(Engelhardt et al., 2011). Such approaches are some of the most ac-
curate in function prediction (Jiang et al., 2016; Radivojac et al.,
2013; Zhou et al., 2019), and support the idea that having more
high-quality data will almost always improve prediction accuracy.
While distinguishing between orthologs and paralogs is a necessary
step for answering important biological questions, we find both
groups to be predictive of protein function and therefore valuable
for function transfer.
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