
An Application of the Bidirectional Stack
Algorithm to Speech Coding

Vojin ŠHQN��3UHGUDJ�5DGLYRMDF��DQG�2JQMHQ�7RGLü

Abstract Performance of the bidirectional metric-first tree
encoding algorithm is measured on real speech data coded at 1
bps. The main drawback of the unidirectional stack algorithm,
variability of its decoding effort as well as decoding erasures, is
slightly alleviated. Comparisons, with respect to SNR and time
complexity, with unidirectional stack algorithm (SA) and the M-
algorithm (MA) are made. A procedure for nonlinear bidi-
rectional code design, based on SGL algorithm is proposed.

Keywords Tree encoding, sequential algorithms, bidirec-
tional tree search, nonlinear bidirectional trellis code design

I. INTRODUCTION

Trellis coding is a proven technique for source coding. It
can be considered in terms of an encoder-decoder pair.
Decoder consists of a finite state machine driving a table-
lookup codebook of reproduction values. Encoder is a trellis
search algorithm that chooses the channel sequence so as to
minimize the distortion between the input sequence and the
decoder output sequence. Whether fixed or time-varying,
trellis codes can be most conveniently described and analyzed
by means of the trellis diagram. Figure 1 shows a trellis
source decoder and Fig. 2 shows the corresponding trellis
diagram for the binary trellis code with 0 delay elements and
a delayless transformation.

We assume a q-ary trellis code with n source and destination
symbols per branch, resulting in a code rate

 symbol ebits/sourc)log(
1

q
n

R = , (1)

where log (⋅) stands for log2(⋅). This means that for each q-ary
input, from the channel alphabet ; = {c1, c2,..., cq}, the trellis
source decoder emits n symbols from the user alphabet
9 = {b1, b2,..., bB}, and the sequence of input symbols defines
a path-map in the trellis diagram. The trellis is assumed to be
initiated and terminated in 0 state (there are q0log(q) states), and
we let the total code length be L branches followed by the 0
branches in the tail. We also assume the same source and
destination alphabet, i.e. 8 = {a1, a2, ..., aA} = 9.

The source encoder searches for that path in the trellis
whose destination (i.e. user) sequence v most closely resem-
bles the source sequence u. Once a source encoder picks a
path, it sends q-ary symbols x through a channel. Channel is
assumed to be noiseless and its output sequence x drives the
trellis source decoder through the sequence of states
producing the trellis source decoder output. This procedure is
equivalent but reverse to the channel coding problem where
one of the known search algorithms is used to find the path
that is closest to the output channel sequence.

II. SEQUENTIAL ALGORITHMS IN SOURCE CODING

The Viterbi algorithm (VA) is known to be the optimal
algorithm for trellis search. However, time-space complexity
of the VA grows exponentially with the memory length of the
decoder so that for the large number of states (e.g. in universal
coding) suboptimal algorithms like the M-algorithm, or the
stack algorithm have to be used. The Viterbi and the M-
algorithm fall into category of breadth-first search algorithms.
These techniques extend at once all branches that will ever be
extended at the given level. At most M candidate paths are
preserved at any time. Another group of search techniques is
characterized by extending at any time the path with the best
metric – these are metric first algorithms and stack algorithm
falls into this class.

Vojin Šenk is with the University of Novi Sad, Faculty of Engineer-
ing, Trg Dositeja ObradoYLüD����������1RYL�6DG��<XJRVODYLD��
ram_senk@uns.ns.ac.yu

Predrag Radivojac is with the University of Novi Sad, Faculty of
Engineering, Trg Dositeja�2EUDGRYLüD����������1RYL�6DG��<XJRsla-
via, radivojac@uns.ns.ac.yu

2JQMHQ�7RGLü�LV�ZLWK�WKH�6WDQIRUG�8QLYHUVLW\��Department of Electri-
cal Engineering,161 Packard, 350 Serra Mall, Stanford, CA 94305-
9505, todic1@stanford.edu

D DDD

Delayless transformation

xi

xi-0xi-2xi-1

vi

Fig. 1. Trellis decoder

0000

0 1 0 L

00

L+ -10 L+0

. . .

.

.

State

00 . . . 00

00 . . . 01

11 . . . 11

(2 states)0

. .
 .

. .
 .

. .
 .

vi-1

v’i

vi

v’i-1

Fig. 2. Trellis diagram, q = 2

 Sequential search is a very powerful technique for trellis
codes. It has been applied to many problems in recent years
and also finds its application in speech coding and recogni-
tion. When the search conditions are favorable, Mohan and
Anderson [1] discovered that for the same performance stack
algorithm is only one half to two thirds as costly as the M-
algorithm.

On the other hand, the bidirectional stack algorithm (BSA)
is for the first time proposed for decoding convolutional codes
in channel coding independently by Kallel and Li [2] and
>enk and Radivojac [3], [4]. Their findings suggest that the
Pareto exponent of the unidirectional stack algorithm can be
practically doubled by using BSA. In this paper we apply this
algorithm to source coding.

Let us first describe the bidirectional procedure. BSA is
based on the notions of: 1) reverse trellis code obtained from
the original one by time reversing; 2) the tunnel, the unique
sequence 0 ≤ 7 ≤ 0 branches long that connects two states in
the trellis; 3) the tentative decision, the best so far sequence
that connects known initial and terminal states; 4) a set of
discarding criteria based on the tentative decision aimed to tell
beforehand whether a partly explored path is likely to be a
part of the finally encoded sequence or not.

BSA uses two stacks: F (forward) and B (backward, used
for the reverse code) that can operate almost independently.
Its steps are:

BSA1. Put the root node into F stack, and the terminal
node into B stack, associating them zero metric. Make one of
these stacks active (e.g. the F one);

BSA2. Eliminate the node with the largest metric (of
length, say, l) from the active stack. Link it via a tunnel to all
the eligible paths from the other stack whose lengths are L –
 l + 0 − 7. Store the best path into the tentative decision
register. If there is already a path in the register, keep the
better. Establish new discarding criteria and discard the paths
from both stacks according to them. If both stacks are emptied
in this way, the tentative decision is the decoder’s final
decision. Otherwise, evaluate the metrics of all the successors
of the processed path, and eliminate all of them that do not
conform to the discarding criteria;

BSA3. Sort the remaining successors into the active stack
according to their metrics. Change the active stack and return
to step BSA2.

After each tentative decision, a discarding criterion based
on non-selection principle [5] is established. This principle
states that from two paths diverging from the same node, SA
keeps the one whose minimum Fano metric until the end node
is maximal. Accumulated distance d(⋅) and metric µ(⋅) are in
source coding tied via

),()(*
nlnlnl dDnl ⋅⋅⋅ −⋅⋅=µ vuv (2)

where uln represents l⋅n source symbols, d(⋅) is the distortion
incurred in representing the source symbols uln by l⋅n
reproduction symbols vln, and D* is a bias factor that we call
the search bias according to [1]. 10log10D

* is the value of D*

expressed in decibels. Search bias additionally controls the
search and enables better comparison between paths at
different depths. There is another discarding criterion, based
on the finiteness of the stack size. Namely, as soon as a stack
(F or B) becomes full, the path with the lowest metric in it is
being discarded.

III. CODE DESIGN

We have used SGL procedure [6] for finding optimal
codes and extending the codebook. This procedure consists of
iterative improvement of the codebook by:

1. finding a channel sequence that minimizes distortion
between input sequence and decoded sequence using one of
the search algorithms described (VA, MA, SA...). This en-
coding partitions a training sequence such that each parti-
tion consists of training samples that were mapped to a par-
ticular codeword,

2. given the partition of the training sequence, find a mini-
mum distortion codebook, i.e. calculate new codewords as
centroids of each cell.

Steps 1 and 2 are repeated until relative distortion impro-
vement falls below a specified threshold. This training mecha-
nism ensures that given an optimal encoding algorithm new
codebook can be no worse than the previous one. It is
reasonable to believe that codebooks obtained by this method
will correspond to some local optimum even for suboptimal
trellis search.

Stewart et al. also suggested a method for extension of the
decoder. Given a decoder of memory length 0, a new decoder
of dimension 0 + 1 can be found by creating a new codebook
such that decoder initially gives same values at the output
regardless of the value of the channel word that is stored in
the extended part of the register. In other words, the algorithm
copies the content of the codebook q – 1 times into q0 + 1(q –
 1) allocated positions for new codewords, and then refines
them according to above steps.

However, this procedure is intended for and originally
applied using optimal search algorithm, i.e. the Viterbi algo-
rithm. This means that, if a search procedure does not perform
a full search (of either corresponding trellis or tree), the per-
formance of the code design algorithm can be degraded. In the
case of the bidirectional stack algorithm, it is especially true
due to the small stack size, so that paths can evade one
another seldom forming tentative decisions. This can cause
that the best path from either stack reaches the depth L + 0
without merging with a path from the opposite stack, making
the same decision as the unidirectional SA. In that case the
code tends to the one obtained by the unidirectional SA,
sometimes forward, sometimes backward. For the purpose of
finding codes with good bidirectional properties (i.e. with the
best possible bidirectional column distance function) we have
modified the SGL algorithm in the following way:

1. find two channel sequences that minimize the distortion
between input and destination sequences using unidir-
ectional stack algorithms from both sides (the backward

stack algorithm uses the reverse trellis code and reads a
table using reverse states). These two encoded sequences
introduce a partition of the training sequence in the same
way as in the original SGL algorithm

2. given the partition of the training sequence, find the
minimum distortion codebook by calculating reproduction
symbols (codewords) as the average values over those ele-
ments of the training sequence indexed by the partition cell
corresponding to that codewords.

As a consequence of averaging samples from both direc-
tions this procedure gives a more balanced code with approxi-
mately equal forward and backward column distance profile.
The bidirectional stack algorithm is then used as a means for
measuring the performance, eventually stopping code design.
Once the SNR of the i-th iteration falls below the SNR of the
(i − 1)-th, the code design is stopped. In order to speed up the
process, the number of codes generated during the code search
procedure is limited.

IV. CODING SPEECH SOURCES

In order to compare different algorithms we have chosen
to track their computational complexity since memory requ-
irements are quite small. In tree or trellis coding it is conve-
nient to observe only the calls to the copy-decoder (readings
from the lookup table). Sometimes, it is reasonable to monitor
the inevitable arithmetic operations whose number is propor-
tional to sorting requirements. However, we have measured
that such operations are far less time-consuming then the ones
corresponding to the copy-decoder calls.

One utterance from the TIMIT database of read speech
was used as a training sequence and a second one was used as
a test sequence. These recordings were made with sampling
frequency of 16 kHz and 16 bits per sample. Total number of
samples used for training was 50280, and the number of
samples used for testing was 42190. One bit per sample trellis
codes (q = 2) were generated on training data using the
modified SGL procedure proposed in this paper.

Table 1. shows the number of copy-decoder calls and
SNR on a test sequence for different stack sizes for decoder
memory length 0 = 5 and 7 = 0 (there is no gain for higher
memory lengths when a single code for all modes of speech
stationarity is designed [7]). The data are encoded in 30 ms
frames.

TABLE I
SA vs. BSA - performance

 SNR [dB] Copy-decoder calls

Stack size SA BSA SA BSA

2 6.42 7.51 149347 170437

4 9.35 9.85 309901 260876

8 10.26 10.31 774531 479988

16 10.41 10.47 931420 1208543

32 10.62 10.60 2058222 2115267

For M = 4 the M-algorithm reaches SNR = 9.45 dB with
337214 copy-decoder calls, and for M = 8 SNR = 10.32 dB
with 674374.

Figure 3 shows SNR on a training sequence as a function
of the memory length, and Fig. 4 SNR obtained on test
sequence as a function of computational complexity. The
frame length was 20 ms.

We have also tested the unidirectional stack algorithm
with codes designed for the bidirectional version and vice
versa. The performance of the stack algorithm is ~1 dB worse
for bidirectional codes. On the other hand, a bidirectional
algorithm always improves performance of its unidirectional
counterpart for at least 0.2-0.3 dB for the same or lower
complexity. This is due to the two almost independent stacks
so that the complexity of the algorithm is the maximum value
of those obtained for two directions

V. CONCLUSION

In applications where synchronism is not a crucial factor,
such as in stored voice answer-back, metric-first algorithms
provide an attractive alternative. In this paper, we have pro-
posed another metric-first algorithm for source coding. How-

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4
3

4

5

6

7

8

9

10

11

SNR [dB]

log10(η)

SA

BSA

Figure 4. SNR vs. complexity (η)

0 1 2 3 4 5 6
2

3

4

5

6

7

8

9

10

Figure 3. SNR vs. memory length

SNR [dB]

0�

BSA

SA

ever, unlike in channel coding, improvement of the BSA over
SA is not that noteworthy. One of the reasons for that is that
this algorithm has to be competitive with the M-algorithm and
stack algorithm so that stack size cannot exceed 16 or 32. The
overall best path is thus in danger of being discarded from one
of the stacks, leaving its counterpart from the other stack the
task of recreating the discarded part. In that case, the BSA
performs worse than SA in terms of computational comp-
lexity, with the same result. If the overall best path is dis-
carded from both stacks, it would also happen for the uni-
directional SA, so that no loss is encountered. Another
problem is that the bidirectional stack algorithm outperforms
the classical SA for longer memories (in channel coding > 30)
which allow tunneling thus providing earlier tentative deci-
sions and smaller erasure probability. Unfortunately, the un-
segmented speech signal is not so highly correlated to enable
using memories greater than 5-6 or 10-12 in universal
(segmented) applications. Finally, it is difficult to say whether
good covering codes with good bidirectional column distance
profile exist, as do packing codes needed for channel coding.

REFERENCES

[1] S. Mohan and J. B. Anderson, “Speech Encoding by a
Stack Algorithm,” IEEE Transactions on Communica-
tions, VOL. COM-28, pp. 825-830, No. 6, June 1980.

[2] S. Kallel and Kaiping Li, “Bidirectional Sequential
Decoding,” IEEE Transactions on Information Theory,
vol. IT-43, No. 4, pp. 1319-1326, July 1997.

[3] V. Šenk and P. Radivojac, “The Bidirectional Stack Algo-
rithm - Simulation Results,” Proceedings of TELSIKS’95,
2-nd Conference on Telecommunications in Modern
Satellite and Cable Services, pp. 349-352, Niš, Yugo-
slavia, October 1995.

[4] V. Šenk and P. Radivojac, “The Bidirectional Stack Algo-
rithm,” Proceedings of the 1997 IEEE International
Symposium on Information Theory, ISIT'97, p. 500, Ulm,
Germany, July 1997.

[5] J. L. Massey, “Error Bounds for Tree Codes, Trellis
Codes and Convolutional Codes with Encoding and
Decoding Procedures,” CISM Courses and Lectures No.
216, Coding and Complexity, 1975.

[6] L. C. Stewart, R. M. Gray, and Y. Linde, “The Design of
Trellis Waveform Coders,” IEEE Transactions on Com-
munications, vol. COM-30, No. 4, pp. 702-710, April
1982.

[7] V. Šenk and P. Radivojac, “Universal Trellis Coding of
Speech,” Proceedings of the International Conference on
Telecommunications, ICT'98, Vol. II, pp. 273-277, Porto
Carras, Greece, June 1998.

