
AN OVERVIEW OF DECODING PROCEDURES
FOR TRELLIS CODES

Vojin�âHQN��3UHGUDJ�5DGLYRMDF��DQG�,YDQ�6WDQRMHYLü
University of Novi Sad, School of Engineering

(invited paper)

I. INTRODUCTION

Although most of the early work in coding included alge-
braic code constructions and fast decoding methods, latest
trends definitely favor probabilistic i.e. trellis codes with soft-
decision decoding algorithms. Recent emerge of parallel con-
catenated convolutional (so-called turbo) codes together with
MAP iterative decoding achieved performance very close to
the channel capacity.

Trellis codes are still dominant in applications to deep
space and satellite communications where power is very ex-
pensive and bandwidth abundant, spectrally efficient applica-
tions to data transmission (TCM) over narrowband channels,
digital audio broadcasting, and mobile systems (both TDMA
and CDMA) of the next generation [8]. On the other hand,
block codes still prevail in all types of data storage systems
due to their simplicity, small buffering requirements, and
high speed and file transfer protocols where hard-decision
decoding provides natural form of ARQ based protocols. It
seems that turbo codes will soon penetrate into these isolated
areas.

Algorithms for decoding trellis codes are thus an impor-
tant and active area of research from the very beginning until
now. Although the optimal codeword-oriented (Viterbi) and
symbol oriented (BCJR) algorithms are well-known and fre-
quently used, the quest for suboptimal algorithms whose
complexity is greatly reduced and probability of error not
significantly increased yields new efficient procedures almost
regularly.

Trellis decoding algorithms have found a wide application
in different areas outside the strict region of decoding trellis
(including turbo) codes. Block (including lattice) codes are
very efficiently decoded using trellis search procedures,
maximum-likelihood sequence estimation (as in ISI equali-
zation) is also performed using trellis-search techniques.
Trellis search is used for data compression with a fidelity
criterion, for pattern recognition, as well as in many other
applications.

This paper will try to give a systematization of these algo-
rithms, from the well-known to some that are less known or
entirely new and presented here for the first time.

II. DEFINITION OF TRELLIS CODES

A trellis encoder can be simply described as a Mealy’s fi-
nite-state machine whose structure may be displayed with the
aid of a graph, tree or trellis diagram. The trellis encoder
maps sequences of K-dimensional q-ary alphabet input vec-
tors into sequences of N-dimensional r-ary alphabet output
vectors. Although the encoder is generally nonlinear and
time-varying, virtually all trellis encoders of practical interest
are linear time-invariant (also called fixed convolutional en-

coders – FCE), for which q = r. Mapping of an FCE, F(⋅),
satisfies the following conditions:

)()()(

)()(

),0[),0[),0[),0[

),0[),0[

∞∞∞∞

∞∞

′′+′=′′+′
⋅=⋅

iiii

ii

FFF

FaaF
(1)

where a belongs to the input/output alphabet, i[0, ∞) is any in-
put sequence and F(i[0, ∞)) is the corresponding output se-
quence. It is assumed that input and output symbols belong to
some finite field. Also, for any d > 0, if x[0, ∞) = F(i[0, ∞)) and

dll −=′ ii ,)0[),0[,dd 0i =′ then),0[),0[)(∞∞ ′=′ xiF , where =′lx

dl −x ,)0[),0[,dd 0x =′ .It is easily verified that F(⋅) can be repre-

sented by the convolution, i.e., if),,,()()2()1(K
llll iii K=i and

),,,()()2()1(N
llll xxx K=x , then

}.,,2,1{,
1

),(

0

)()(Nngix
K

k

nk
m

m

k
ml

n
l K∈⋅= ∑∑

=

∞

=
− (2)

where),(
),0[

nkg ∞ , k ∈ {1,2,…,K}, n ∈ {1,2,…,N} are generator

sequences. If all),(
),0[

nkg ∞ are finite, i.e. there exists some 0 ≤ s <

∞, such that),(
),(
),(0 ∞∞ = s

nk
sg for all k, n, then the smallest such

value s, denoted 0, is called the code memory and the en-
coder is of feedforward type.

Let us now consider a feedforward convolutional encoder
with memory length 0. At any time instant (depth or level) l,
the encoder output N-tuple xl depends on the current input K-
tuple il, and 0 previous inputs il − 1,… , i l − 0. The overall
functioning of the encoder can be mapped on a trellis dia-
gram, whereon a node represents one of qK0 encoder states,
while a branch connecting two nodes represents the encoder
output associated to the transition between the corresponding
encoder states.

A trellis, which is a visualization of the state transition
diagram with a time element incorporated, is characterized by
qK branches stemming from and entering each state, except
in the first and last 0 branches (respectively called head and
tail of the trellis). The branches at the l-th time instant are
labeled by sequences xl ∈ ; N. A sequence of l information K-
tuples, i[0, l) specifies a path from the root node to a node at
the l-th level and, in turn, this path specifies a codeword x[0, l)

= x0∗ x1∗ ...∗ xl − 1, where ∗ denotes a concatenation of two se-
quences. The code rate is defined as R = (K/N)⋅ log2(q).

An overwhelming majority of today’s digital communi-
cation forms incorporate transfer of information separated in
frames of some length. Here, we consider framed data, where
the length of each information frame equals L branches (thus
K⋅L q-ary symbols) and the length of the coded frame is L+0
branches (N⋅(L+0) r-ary symbols), where the 0 known K-
tuples (usually all zeros) are added at the end of the sequence
to force encoder into the desired terminal state. It is said that
such codes suffer a fractional rate loss giving overall code

rate R = (L/(L + 0))⋅(K/N)⋅ log2(q) information bits per chan-
nel symbol. Clearly, this rate loss has no asymptotic signifi-
cance.

In this overview we restrict the discussion to binary fixed
trellis channel codes for which r = q = 2. Any further gener-
alization will be straightforward.

III. DISCRETE MEMORYLESS CHANNELS AND
DECODING METRIC

In the sequel we further restrict our discussion to trans-
mission over a discrete memoryless channel (DMC) that can
be provided by equalization that is incorporated into the
waveform channel. Also, we suppose there is no feedback
from the receiver to the transmitter. The term discrete memo-
ryless channel means that

]|[],,,,,,|[1010 nnnnnn xyPyyxxxyP =−− KK , (3)
and

∏ =
= N

n nnNN xyPxxyyP
111]|[],,|,,[KK . (4)

The DMC arises when the waveform signal is exposed to
additive white Gaussian noise and then sampled and quan-
tized to enable digital processing. If quantization is binary,
the quantizer is generally called a hard quantizer, in contrast
to multilevel quantizer which is called a soft quantizer. The
resulting hard-quantized output channel is the binary sym-
metric channel (BSC) with channel error (or crossover) prob-
ability p ∈ [0, ½].

The task of a decoder which minimizes the sequence error
probability is to find a sequence which maximizes the joint
probability of input and output channel sequences

][]|[],[)0[)0[)0[)0[)0[00000 +++++ ⋅= ,L,L,L,L,L PPP xxyxy . (5)

Since a source and secrecy coding that come before chan-
nel coding usually set all probabilities][),0[0+LP x to be equal,

it is sufficient to find a procedure that maximizes
]|[),0[),0[00 ++ LLP xy , and a decoder that always chooses as

its estimate one of the sequences that maximize it or

∑ +

=+

++++

−⋅=−

⋅=
0

0

0000
L

l lllL

LLLL

fPAf

PA

0),0[

),0[),0[2),0[),0[

))(]|[()(

]|[(log)|(

yxyy

xyxyµ
, (6)

(where A is a suitably chosen constant, and f(⋅) any function)
is called a maximum-likelihood decoder (MLD). This expres-
sion is called a metric. This type of metric suffers one signifi-
cant disadvantage because it is suited only for comparison
between paths of the same length. Some algorithms, however,
employ a strategy of comparing paths of different length or
assessing likelihood of such paths with the aid of some
thresholds. The metric that enables comparison for this type
of algorithms is called the Fano metric. It is defined as

∑ ⋅

=
−⋅=

⋅=

Nl

n
n

nn

l

ll
llF

R
yP

xyP
A

P

P
A

0 2

),0[

),0[),0[
2),0[),0[

)
][

]|[
(log

][

],[
log)|(

y

xy
xyµ

 (7)

IV. DECODING TRELLIS CODES

In this paper our primary goal is to classify and analyze
trellis decoding algorithms. As stated above, the aim of the
search procedure is to find a path with the highest possible
likelihood i.e. metric. There are several possible classifica-
tions of decoding procedures. According to the decoder’s

strategy in extending the most promising path candidates we
systematize them into breadth-first, metric-first, depth-first
algorithms and into sorting and nonsorting if the procedure
performs any kind of path comparison (sifting or sorting) or
not. Moreover, decoding algorithms can be classified into
searches that minimize the sequence or symbol error rate.

The usual measure of algorithm efficiency in channel
coding is its complexity (arithmetic and storage) for a given
probability of error. In the strict sense arithmetic or computa-
tional complexity is the number of arithmetic operations per
decoded symbol, branch, or frame. However, it is a usual
practice to track only the number of node computations,
which makes sense because all such computations require
approximately the same number of basic machine instruc-
tions. A node computation (or simply computation) is defined
as the total number of nodes extended (sometimes it is the
number of metrics computed, which is 2K times greater) per
decoded branch or information frame i[0, L + 0). One single
computation consists of determining the state in which the
node is and computing the metrics of all its successors. For
most practical applications with finite frame length it is usu-
ally sufficient to observe node computations since a good
prediction of search duration can be precisely predicted. Nev-
ertheless, for asymptotic behavior it is necessary to track the
sorting requirements too. Another important aspect of com-
plexity is storage (memory or space) which is the amount of
auxiliary storage that is required for decoding (memory,
processors working in parallel etc.). Thus, space complexity
of an algorithm is the size (or number) of resources that must
be reserved for its use, while the computational or more pre-
cisely time complexity reflects the number of accesses to this
resources taking into account that any two operations done in
parallel by the spatially separated processors should be
counted as one. The product of these two, the time-space
complexity is possibly the best measure of the algorithm cost
for it is insensitive to time-space tradeoff such as paralleliza-
tion or the use of precomputed tables, although it also makes
sense to keep the separate track of these two. Finally, for se-
lecting which algorithm to use one must consider additional
details that we omit here but which can sometimes cause un-
expected overall performance or complicate the design of a
real-time decoder. They include complexity of the required
data structure, buffering needs and applicability to available
hardware components.

A. Maximum-Likelihood Decoding

The Viterbi Algorithm

The Viterbi algorithm (VA) is an optimal decoding algo-
rithm in the sense that it always finds the nearest path to the
noisy modification of the encoder output sequence x[0, L + 0),
and it is quite useful when the code has a short memory. The
key to Viterbi (maximum-likelihood) decoding lies in the
Principle of Non-Optimality [4]: If the paths),0[li ′ and),0[li ′′
terminate at the same state of the trellis and

),(),(),0[),0[),0[),0[llll xyxy ′′>′ µµ , (8)

then),0[li ′′ cannot be the first l branches of one of the paths

),0[0+Li that maximize (gore). This principle which some

authors call the Principle of Optimality literally specifies the
most efficient MLD procedure for decoding trellis codes.

Software realization of the Viterbi algorithm is a classical
application of dynamic programming. Structurally, the algo-

rithm contains 0K2 lists, one for each state, where the paths
whose states correspond to the label indices are stored, com-
pared, and the best one of them retained. The algorithm can
be described recursively as follows
1. Initial Condition: Initialize the starting list with the root

node and set its metric to zero.
2. Path Extension: Extend all the paths (nodes) by one

branch to yield new candidates (there is only one succes-
sor for each l ≥ L) and classify these candidates into cor-

responding 0K2 lists (or less for l < 0 and l > L). Each
list (again, except in the head and tail of the trellis) con-
tains 2K paths.

3. Path Selection: From each list at depth l, a path x[0, l)

with the largest metric is selected for the next step, and
the others discarded. If two or more paths have the same
metric, i.e. if they are equally likely, choose the best one
at random. If l = L + 0 take the only survivor from its
list and transfer the corresponding information sequence
to the output; otherwise go to step 2.
Consider now the amount of “processing” done at each

depth l, 0 < l ≤ L, where all of the 0K2 states of the trellis
code are present. For each state it is necessary to compare 2K

paths that merge in that state, discard all but the best path,
and then compute and send the metrics of 2K of its successors
to the depth l + 1.

Consequently, the computational complexity of the VA
exponentially increases with 0. These operations can be eas-
ily parallelized, but then their number rises as its number of
node computations decreases. The total time-space complex-
ity of the algorithm increases exponentially with the memory
length.

B. Sequential Decoding

Since the total time-space complexity of the VA expo-
nentially grows with the code memory length this is a serious
limitation to achieving very low error rates that exponentially
decrease with 0. Therefore, it is essential to find a decoding
scheme whose error-probability exponentially decreases with
0, but with computational and space complexity linearly
dependent on it. Although this scheme is not completely fea-
sible, there is a number of algorithms that are close to it. All
these techniques that in fact search only the high-probability
paths through a trellis (or tree) are known as sequential de-
coding and employ breadth-first, metric-first, or depth-first
search strategy.

Breadth-first Algorithms

a) The M-algorithm

Since most survivors in the VA usually possess much
smaller metrics than does the best one, all the states or nodes
kept are not equally important. It is intuitively reasonable to
assume that unpromising survivors can be omitted with a
negligible probability of discarding the best one. The M-
algorithm [3] is one such modification of the Viterbi algo-
rithm; all candidates are stored in a single list and the best

0KM 2≤ survivors are selected from the list in each cycle.
The steps of the M-algorithm are:
1. Initial Condition: Initialize the list with the root node

and set its metric to zero.
2. Path Extension: Extend all the paths of length l by one

branch and classify all contenders (paths of length l + 1)

into the list. If two or more paths enter the same state
keep the best one.

3. Path Selection: From the remaining paths find the best M
candidates and delete the others. If l = L + 0 take the
only survivor and transfer its corresponding information
sequence to the output; otherwise go to step 2.

Defined in this way, the M-algorithm performs trellis search,
while, when the state comparison in step 2 is omitted, it
searches the tree, saving much time on comparisons but with
slightly increased error probability. When applied to decod-
ing infinitely long sequences, it is usual that comparisons
performed in step 2 are substituted with the so-called ambi-
guity check [3] and a release of one decoded branch. In each
step this algorithm performs M node computations, and em-
ploying any sifting procedure (since the paths need not be
sorted) perform ∼ M⋅2K metric comparisons. If performed, the
Viterbi-type discarding of step 2 requests KM 2~ 2 ⋅ state and
metric comparisons. This type of discarding can be per-
formed with ~ M⋅ log2 M comparisons (or even linearly) but
than additional storage must be provided (in the letter case it
grows exponentially with 0). The space complexity grows
linearly with the information frame length L and parameter
M.

b) The Generalized Viterbi Algorithm

In contrast to the Viterbi algorithm which is a multiple-
list single survivor algorithm, the M-algorithm is a single-list
multiple-survivor algorithm. The natural generalization to a
multiple-list multiple-survivor algorithm was first suggested
by Hashimoto [2]. Since all the lists are not equally impor-
tant, this algorithm, originally called the generalized Viterbi
algorithm (GVA), utilizes only 120 lists (labels), where

01 ≤ 0. In each list from all)1(12 +−00K paths it retains the
best M1 candidates. The algorithm can be described as fol-
lows.
1. Initial Condition: Initialize the starting label with the

root node and set its metric to zero.
2. Path Extension: Extend all the paths from each label by

one branch and classify all successors into the appropri-
ate label. If two or more paths enter the same state keep
the best one.

3. Path Selection: From the remaining paths of each label
find the best M1 and delete the others. If l = L + 0 take
the only survivor and transfer its information sequence to
the output; otherwise go to the step 2.

When 01 = 0, and M1 = 1 the GVA reduces to the Viterbi
algorithm, and for 01 = 0, M1 = M it reduces to the M algo-
rithm. Like the M-algorithm GVA in each step performs M1

node computations per label, and employing any sifting pro-
cedure (since the paths need not be sorted) performs ∼ M1⋅2K

metric comparisons. If performed, the Viterbi-type discarding

of step 2 requests ∼ KM 22
1 or less state and metric compari-

sons per label.

c) The T-algorithm

Another breadth-first algorithm, popularly called the T-
algorithm, was suggested by Simmons [1]. Its steps are:
1. Initial Condition: Initialize the list with the root node

and set its metric to zero.
2. Path Extension: Extend all the paths of length l by one

branch and classify all contenders (paths of length l + 1)

into the list. If two or more paths enter the same state
keep the best one.

3. Path Selection: From the remaining paths find the best
one and discard all paths whose metric satisfies
µpath ≤ µbest path − T, where T is a parameter. If l = L + 0
take the only survivor and transfer its information se-
quence to the output; otherwise go to step 2.

For this algorithm it is important to consider one more
detail. Since the number of survivors depends on channel
noise, it is therefore a random variable and may grow quite
large. Therefore, a limit must be enforced on the list size, say
M, in order to enable practical implementation. Simulations
and comparative analysis show that for the same error-rate,
the T-algorithm yields lower average computational effort
than the M-algorithm [1] [7], but buffering requirements are
increased. This is a consequence of the variable list size that
enables better recovery of the correct path when the channel
noise is relatively high. Additionally, the T-algorithm saves
much time on sifting since the path elimination can be per-
formed in only 2 passes through the list.

d) The Generalized Viterbi-T algorithm

One more variation of the breadth-first procedures, gener-
alized Viterbi-T algorithm is presented in [7]. The algorithm
is similar to the GVA, but instead of retaining best M1 paths,
in each label it retains those paths whose metric is
µpath ≤ µbest path − T1, where T1 is a suitably chosen threshold.
Similarly to the comparison in c) this algorithm is equivalent
to the VA for 01 = 0 and T → ∞, and to the T-algorithm for
01 = 0 and T1 = T. The performance of the GVTA was tested
on BSC, and simulations showed [7] that it reaches similar
number of node computations as the GVA but with reduced
sorting effort.

Metric-first Algorithms

Metric-first and depth-first sequential decoding is a name
for a class of algorithms that compare paths according to their
Fano metric (one against another or with some thresholds)
and on that basis decide which node to extend next, which to
delete in metric first procedures or whether to proceed with
current branch or go back. These algorithms generally extend
fewer nodes for the same performance, but have increased
sorting requirements.

Sequential decoding algorithms have a variable computa-
tion characteristic which results in large buffering require-
ments, and occasionally large decoding delays and/or incom-
plete decoding of the received sequence. Sometimes, when
almost error-free communication is required or when re-
transmission is possible, this variable decoding effort can be
an advantage. For example, when a decoder encounters an
excessive number of computations, it indicates that a frame is
possibly very corrupted meaning that the communication is
insufficiently reliable and can ultimately cause error patterns
in decoded sequence. In such situations the decoder gives up
decoding and simply requests retransmission. These situa-
tions are commonly called erasures, and decoding incom-
plete. A complete decoder such as the Viterbi decoder would
be forced to make an estimate, which may be wrong. The
probability of buffer overflow is several orders of magnitude
larger than the probability of incorrect decision when the
decoder operates close to the computational cutoff rate.

The performance of sequential decoding has traditionally
been evaluated in terms of three characteristics: the probabil-
ity of sequence error, the probability of failure (erasure), and
the Pareto exponent associated with decoding effort.

a) The Stack Algorithm

 The stack (or ZJ) algorithm was for the first time sug-
gested by Zigangirov [6] and later independently by Jelinek
[6]. As its name indicates, the algorithm contains a stack (in
fact, a list) of already searched paths of varying lengths, or-
dered according to their metric values. At each step, the path
at the top of the stack (the best one) is replaced by its 2K suc-
cessors extended by one branch, with correspondingly aug-
mented metrics. The check whether two or more paths are in
the same state is not performed. This algorithm has its nu-
merous variations and we first consider the basic version that
is closest to Zigangirov’s:
1. Initial Condition: Initialize the stack with the root node

and set its Fano metric to zero (or some large positive
number to avoid arithmetic with negative numbers, but
low enough to avoid overflow).

2. Path Extension: Extend the best path from the stack by
one branch, delete it, sort all successors, and then merge
them with the stack so that it is ordered according to the
path metrics.

3. Path Selection: Retain the best Z paths according to the
Fano metric. If the top path has the length l = L + 0
branches, transfer its information sequence to the output;
otherwise go to step 2.

It is obvious that this algorithm does not consider path
merging since the probability that the paths of the same depth
and the same state can be stored in the stack is rather small.
Nonetheless, some authors [6] propose that a following action
should be added to the step 2
2a. If any of the 2K new paths merges with a path already in

the stack, keep the one with the higher metric.
The stack algorithm is based on the Non-Selection Princi-

ple [4]: If the paths),0[0+′ Li and),0[0+′′ Li through the tree di-

verge at depth j and

{ } { }
),1[),0[),0[),1[),0[),0[),(min),(min 00 ++∈++∈

′′>′
LjlllLjlll yxyx µµ

(9)
then),0[0+′′ Li cannot be the path at the top of the stack when

the stack algorithm stops.
The computational complexity of the stack algorithm is

almost unaffected by the code memory length but well de-
pends on the channel performance. Its computational com-
plexity is a random variable and so is its stack size if not oth-
erwise limited. The upper bound on the computational com-
plexity is given by

10][≤<⋅<≥ − ρηη ρACP , (10)

where A is a constant and ρ is a power that goes to unity as
R → R0 < RC and to zero as R → RC, where RC is the channel
capacity and R0 is called cutoff rate [4]. The distribution de-
scribed in (10) is called a Pareto distribution, and ρ is called a
Pareto exponent. It also holds that for time-varying trellis
codes ρ is upper bounded by ∞.

b) The Haccoun-Ferguson’s Algorithm

Haccoun and Ferguson [17] generalized the stack algo-
rithm in order to trade error probability with decreased era-
sure probability. Instead of extending one node before sort-
ing, their algorithm extends several most promising candi-
dates thus having increased number of node computations
when SNR in channel is high, but reducing it for low SNR-s.
Šenk and Radivojac [18] further generalized this procedure
since each following node extension can be adjusted to a dif-
ferent type of channel.

c) The Multiple Stack Algorithm

The multiple stack algorithm is an example of a metric-
first and depth-first search. It is designed to exploit the good
characteristics of the basic stack algorithm with decreased
erasure probability. This algorithm performs a metric-first
search with a smaller initial stack than the original stack algo-
rithm. If no path reaches decision depth, a small number of
paths are taken off the stack and placed into another stack of
smaller size; if the second search is unsuccessful it generates
a new search in the same way. This procedure continues until
some path reaches the decision depth or limit on node com-
putations, Clim, is violated. The steps of the algorithm are
1. Obtain the root node, set its Fano metric to zero, and

place it into the initial stack.
2. Execute a standard stack algorithm until the present stack

is full. If the total stacks exceed a limit release as output
the path in the best path buffer and stop. If a path reaches
depth L + 0, go to step 4.

3. Make a new stack with the best T paths from the previous
one, and go to step 2.

4. If a path that reached the decision depth is in the initial
stack, release it as output and stop. Else proceed to step 5.

5. Check whether a path is the best so far found at depth
L + 0 and store it as the decoder’s tentative decision
buffer if it is. Drop the present stack, return to the previ-
ous one and go to step 2.

The advantage of the MSA over the conventional stack algo-
rithm arises from the use of additional stacks. The initial
stack is made large enough that only very noisy channel se-
quences require the use of the additional stacks. In such cases
instead of extensively exploring the code tree, the algorithm
quickly moves through it and finds a reasonable tentative
decision. It then drops the current stack and goes back to ex-
plore previous stacks in detail searching for the most likely
path. This is provided by the size of auxiliary stacks that is
substantially lower than the initial stack size Zinit. If the limit
on node computations is not small, it is highly likely that the
algorithm will make at least one tentative decision, thus de-
creasing the erasure probability.

When the channel sequence does not contain a large
amount of errors the complexity of the algorithm is the same
as that of the original stack algorithm. On the other hand,
when it encounters a very noisy sequence it reduces the
search, but it highly depends on the algorithm parameters:
Clim and the size of auxiliary stacks. The extensive simulation
of the MSA is performed in [12], and suggests the use of the
MSA for channels with high signal to noise ratio. This algo-
rithm can be also used for the channels with intersymbol in-
terference, e.g. magnetic recording channel. All the modifi-
cations of the original stack algorithm that reduce the sorting
cost can be applied here as well.

Depth-first algorithms

a) The Fano algorithm

The Fano algorithm [11] is one of the most practical algo-
rithms for implementation. Its basic feature is that it exam-
ines only one path at a time and proceeds along it as long as
its metric grows. When its metric begins to decrease it back-
tracks along the path and explores other extensions stemming
from it. It accomplishes this by varying a comparison thresh-
old in steps of magnitude ∆ or its multiples. Since the algo-
rithm expects metric always to grow, the threshold T is tight-
ened (increased by the largest multiple of ∆ such that the met-
ric of the path does not violate the threshold) whenever the
metric is growing sufficiently on a forward search. When the
algorithm encounters a metric dip, it goes backward and the
metric is relaxed (lowered by ∆). No node is visited twice
with the same threshold value. In each subsequent visit of the
same node, the threshold must be lower than when it was
previously searched, which prevents it from being in a loop
forever. It is assumed that there is a fictitious node, back-
wards from the root node, with metric −∞, so that a look back
from the root node always results in lowering of the thresh-
old. The flowchart of the algorithm is shown in Fig. 1.

The Fano algorithm has very low storage and sorting re-
quirements. It trades them for a large number of node com-
putations since it has to visit some nodes many times as the
channel worsens. The extensive research showed that the
Fano algorithm has practically the same performance as the
stack algorithm.

Some other depth-first procedures of less importance, e.g.
the single stack algorithm or the 2-cycle algorithm can be
found in [3].

Bidirectional Algorithms

Another class of decoding algorithms are those that ex-
ploit bidirectional decoding which is designed for framed
data. Almost all unidirectional procedures have their bidirec-






∆
µ

⋅∆=T

Look forward to
the best node

Look forward to
the next best node

Move forward

Move backward

Tighten threshold
if possible

Look back

Was
threshold

tight?

l L = + 0 µB ≥ T

µF ≥ T

From
the worst
 node?

T T = − ∆

Obtain root node
 = 0; = 0; = 0T lµ

S T A R T

S T O P

µ =
 = + 1

Fµ
l l

µ
−

 =
 = 1

Bµ
l l

µ < + ∆B T






∆
µ

⋅∆=T

YES

YES

YES

YES

NO

NO

NO

NO

NO

YES

Fig. 1. The Fano algorithm - flowchart

tional supplements since Forney showed that decoding can
start from the end of the sequence provided that the trellis
contains a tail. All bidirectional algorithms employ two
searches from both sides. The forward search is performed
using the original trellis code while the backward one em-
ploys the reverse code. The reverse trellis code is obtained
from the original code by time reversing.

a) The Bidirectional Stack Algorithm

This algorithm is independently proposed by Šenk and
Radivojac [5][15][16], and Kallel and Li [14]. It uses two
stacks: F (forward) and B (backward, that uses the reverse
code). It is based on notions of tunnel, tentative decision and
discarding criteria. The tunnel is the unique sequence 7
(0 ≤ 7 ≤ 0) branches long that connects two states in the trel-
lis. The tentative decision is the sequence L + 0 branches
long that connects the known initial and terminal trellis states
(direction does not matter here) that has the highest accumu-
lated metric of all the sequences of that length analyzed so
far. A set of discarding criteria is a means to tell beforehand
whether a partly explored path is likely to be a part of the
finally decoded sequence or not (in the latter case, the path
may be eliminated from the subsequent search). Since the
second version of the algorithm is a special case of [15]
(when 7 = 0) we give the steps of the BSA as:
1. Place the root node into F stack, and the unique terminal

node into B stack, associating them the zero metric. Make
one of this stacks active (e.g. the F one).

2. Choose the node with the largest metric (of length, say, l)
from the active stack and eliminate it from the stack. Link
it via a tunnel (if a tunnel is possible, i.e. if the states
match) to each of the existing paths in the other stack
whose lengths are L – l + 0 – 7 (if a tunnel is 0 branches
long, then the best path from the active stack can be
linked to all the paths from the other stack whose lengths
are L – l). The total length of the paths obtained in this
way is l + 7 + (L – l + 0 – 7) = L + 0 branches. Store the
best one into the tentative decision register. If there is al-
ready a path in the register keep the better. Prune the
paths remaining in both stacks according to any of dis-
carding criteria used. If both stacks are emptied in this
way, output the tentative decision as the decoder’s final
decision and terminate the algorithm. Otherwise, evaluate
the metrics of all the successors of the processed path, and
eliminate all of them that do not conform to the discard-
ing criteria established.

3. Sort the remaining successors into the active stack ac-
cording to their metrics applying any tie-breaking rule.
Change the active stack and return to step 2.

After each tentative decision,
several discarding criteria can be
applied. In [15] Šenk and Radivojac
applied the Non-Selection Principle
and the maximum-likelihood crite-
rion described. The algorithm can
be easily performed by two proces-
sors, although one node computa-
tion lasts longer then in the original
stack algorithm. Simulations show-
ed [15] that the Pareto exponent of
the BSA in the moment when the
final decision is obtained is ap-
proximately doubled, but the dis-

carding criteria used did not provide the termination at the
same time. However, the algorithm may be stopped after the
assigned time for its execution has elapsed, and in such cases
the erasure probability is substantially decreased.

Two additional bidirectional algorithms are worth men-
tioning. Belzile and Haccoun [19] investigated the bidirec-
tional M-algorithm. Since the M-algorithm inherently avoids
erasures by its breadth-first nature it still suffers from the
correct path loss as its unidirectional version. Another inter-
esting algorithm is the Bidirectional Multiple Stack Algo-
rithm [13]. It additionally decreases the erasure probability of
the MSA without compromising the error performance.

A New Bidectional Algorithm

The algorithm [20] uses 2⋅(L + 0 − 7) processing units (in
practice, this number can be somewhat smaller), half of
which are intended for forward search and the others for
backward (using the reverse code). Processing units, shown
in Fig. 2, are arranged in two arrays so that the processing
unit at depth l deals only with paths of depths l – 1, l, and l +
1 (except for the processors at the ends of a row). Each proc-
essing unit contains a stack of size Ml (l being the depth of
the unit, l = 1, 2, …, L + 0 – 7) associated with it.

The steps of the algorithm are:
1. Put the root node into the first stack on the F side, and the

(unique) terminal node into the first stack on the oppo-
site side, associating them the zero metric.
The steps 2 – 4 are performed simultaneously in all proc-
essing units from both directions.

2. Choose the node with the best metric and eliminate it
from the stack. Link it via a tunnel to each of the existing
paths in the stack whose length is L − l + 0 − 7. The total
length of the paths L + 0 branches. Store the best one into
the tentative decision register. If there is already a path in
the register, keep the better. Prune the paths remaining in
all stacks according to any of discarding criteria used. If
all the stacks are emptied in this way, output the tentative
decision as the decoder’s final decision and terminate the
algorithm.

3. Evaluate the metrics of all the successors of the processed
path, and eliminate all of them that do not conform to the
discarding criteria established. Pass them to the process-
ing unit at the following depth;

4. Receive all the successors from the previous depth and
sort them according to their metrics. Return to step 2.
After each tentative decision, several discarding criteria

for the paths stored in all processing units are established.
The first one is as for the BSA based on the Non-Selection
Principle. Since this does not increase the probability of error

F processing units (FPU-s)

7 branches
long tunnel

B processing units (BPU-s)

1. make tunnels with
 BPUL l + 0 7− −

3. pass
 successors
 to FPUl + 1

4. receive
 successors
 from FPUl − 1

2. extend best path
5. sorting

Fig. 2. Organization of the new bidirectional decoder

significantly, all the paths from any direction that do not sat-
isfy this criterion when compared with the tentative decision
should be discarded. Another type of discarding is based on
the path distance. Denoting by dinv(L − l + 0 − 7) the mini-
mum path metric from any stack from the reverse direction at
depths from L − l + 0 − 7 to L + 0 − 7, a path of length l and
distance d can be discarded whenever d + dinv(L − l + 0 − 7)
 ≥ dTD, where dTD is the total accumulated distance of the
tentative decision. This is a maximum-likelihood criterion,
and used alone produces the MLD result. Moreover, a path
may be discarded whenever it is ranked below the Ml-th place
in its current stack (as in the M-algorithm), or when the met-
ric difference between the best path ever from a stack and the
path in question is greater than Tl (as in the T-algorithm).
Figure 3 shows the immense reduction of the decoding effort
in comparison with the BSA.

The algorithm may also be terminated after the time as-
signed for its execution has elapsed. Since the algorithm in
both directions easily follows the correct path till it meets an
error burst, and since the distribution of errors in the tunnel
does not affect the performance in step 2, no correctable error
pattern confined to 7 successive branches may affect the
number of steps to correct tentative decision (the one ob-
tained by the VA). This would stimulate the choice of longer
tunnels if there were not the negative effect of pursuing a
great number of unnecessary tunnels when 7 approaches 0.

Although the space complexity of the new algorithm is
linear with the information frame length, there are some
practical difficulties with passing on the discarding criteria to
all the processing units and analyzing new candidates for the
path stored in the tentative decision register. These problems
may be dealt easily if transfer of these data is pipelined, too.
A certain delay in passing on discarding criteria and candi-
date tentative decisions thus imposed would yield somewhat
worse results.

C. Algorithms That Minimize Symbol Error Rate

a) The BCJR Algorithm

So far, we have considered the algorithms that minimize
the error probability of information sequence i[0, L + 0). They
accomplish it by searching for the “closest” sequence x[0, L + 0)

according to the metric chosen. However, these algorithms do
not necessarily minimize the symbol or bit error rate. It is
independently proposed by Bahl et. al. and McAdam et. al.
[10], but more detailed description can be found in [9]. The
algorithm is a special case of a more general problem of es-
timating the a posteriori probabilities of the states and transi-
tions of a Markov source observed through a DMC, i.e. the
probabilities

]|,[),0[1 0++ == Lll jsisP y , (11)

or equivalently
],,[),(),0[1 0++ === Llll jsisPji yσ , (12)

where sl is the state of the trellis during l-th branch. Intro-
ducing

],|,[),(

],|[)(

],,[)(

1

),[

),0[

isyjsPji

isPi

isPi

llll

lLll

lll

===

==

==

+

+

γ
β
α

0y

y

 (13)

it is not hard [9] to show that

)(),()(),(

],|[]|[

],|[),(

,),()()(

,),()()(

1

1

12

0 1

12

01

jjiiji

xyPisjsP

jsisxPji

ijij

jiij

llll

llll

x llll

i lll

i lll

l

K

K

βγασ

γ

γββ

γαα

⋅⋅=
⋅==

⋅===

⋅=

⋅=

+

+

−

= +

−

=+

∑
∑
∑

0

0

 (14)

The known initial conditions, i.e. ,1)0(0 ==iα
,0)0(0 =≠iα ,1)0(==+ iL 0β ,0)0(=≠+ iL 0β meaning that

the initial and terminating state in the trellis is the all zero
state, the steps of the algorithm are

1. Initialize),(0 iα and),(iL 0+β for i = 0,1,…,2K0 − 1 ac-
cording to (14).

2. As soon as yl is received compute αl(i) and γl(i, j). Store
αl(i) for all l and i.

3. When the complete sequence y[0, L + 0) is received, com-
pute βl(i) using (14), and immediately the probabilities
σl(i, j). Group those σl(i, j) that have the same information
sequence il, and choose the largest as the decoder esti-
mate.
The basic problem with the algorithm is that it requires

both large storage and great number of computations. All the
values of αl(i) must be stored, which requires almost
(L + 0)⋅2K0 memory locations. The number of multiplica-
tions required for determining the αl(i) and βl(i) for each l is
2K⋅(0 + 1), and there are 2K0 additions of 2K numbers as well.
The computation of γl(i, j) is not costly and can be accom-
plished by a table lookup. Finally, the computation of all
σl(i, j) requires 2K⋅(0 + 1) + 1 multiplications for each l, and 2K –
 1 comparisons in choosing the largest il, Consequently, this
is an algorithm with exponential complexity and in practice
can be applied only to decoding trellis codes with short 0
and block length L. Nevertheless, it is used for iterative
decoding where such requirements can be fulfilled. The main
advantage of the algorithm in such cases is decoder’s ability
to estimate]|[1 isjsP ll ==+ , which for the possible transi-

10
2

10
3

10
-3

10
-2

10
-1

10
0

Fig. 3. Computational distributions
a) BSA – in the moment of reaching the final decision
b) BSA – in the moment when algorithm is terminated

c) New alg. – in the moment of reaching the final decision
d) New alg, – in the moment when algorithm is terminated

c)

a)

b)

d)

timate]|[1 isjsP ll ==+ , which for the possible transitions

equals 2−K only in the first iteration.

a) The SOVA Algorithm

The soft-output Viterbi algorithm (SOVA) [7] is a modi-
fication of the Viterbi algorithm designed with the aim to
estimate the reliability of every decoded bit by the VA. It is
applicable only to punctured codes (of any rate), whose
mother codes are of rate 1/N. The VA is used here in its
sliding window form, which differs from the ordinary VA in
the 3rd step
3. Path Selection: From each list at depth l, select a path

x[0,l) with the largest metric for the next step, and discard
the others. If two or more paths have the same metric,
choose the best one at random. Find the best of all the
survivor paths,),0[lx′ , and its corresponding information

sequence),0[li ′ and release the bit δ−′li . Go to step 2.

The sliding window VA decodes infinite sequences with de-
lay of δ branches from the last received one. In order to
minimize its memory requirements (δ + 1 trellis levels), and
achieve bit error rate only insignificantly higher than with
finite sequence VA, δ is chosen as δ ≈ 40.

The reliability (or soft value) of a bit i, L(i), is defined as
L(i) = ln(P[i = 0] / P[i = 1]). The SOVA further extends the
3rd step in order to obtain this value, in the following way:

3. Path Selection (extension): Let)(
),0[

j
jli − , j ∈ {0,1,…,δ−1},

be the information sequences which merge with),0[li ′ at

depths l − j. Their paths have earlier been discarded due
to their lower metrics. Let the corresponding metric dif-
ferences in the merging states be denoted ∆j, and let

}:{)(
−− ′≠= l

j
l iij- . Then j

j
ll iiL ∆⋅′−≈′

∈−− -
min)21()(.

Since VA decoding metric can be modified in a way to take
into account a priori knowledge of input bit probabilities, the
SOVA can be used as soft input-soft output (SISO) block in
turbo decoding schemes.

Abstract: An overview of the existing trellis decoding tech-
niques is presented. The paper compares various algorithms
that minimize sequence error probability and symbol error
probability, focusing on their time-space complexity vs. per-
formance. A new bidirectional algorithm is briefly described.

AN OVERVIEW OF DECODING PROCEDURES FOR
TRELLIS CODES – Vojin Šenk, Predrag Radivojac, and
,YDQ�6WDQRMHYLü�

REFERENCES

[1] S. J. Simmons, “Breadth-First Trellis Decoding with
Adaptive Effort,” IEEE Trans. Comm., vol. COM-38,
No. 1, pp. 3-12, Jan. 1990.

[2] T. Hashimoto, “A List-Type Reduced-Constraint Gener-
alization of the Viterbi Algorithm,” IEEE Trans. Inf.
Theory, vol. IT-33, No. 6, pp. 866-876, Nov. 1987.

[3] J. B. Anderson, S. Mohan, “Sequential Coding Algo-
rithms: A Survey and Cost Analysis,” IEEE Trans.
Comm., vol. COM-32, No. 2, pp. 169-176, Feb. 1984.

[4] J. L. Massey, Coding and Complexity, CISM courses and
lectures No. 216, Springer-Verlag, Wien, 1976.

[5] V. Šenk, “Bistack – A Bidirectional Stack Algorithm for
Decoding Trellis Codes,” Proc. of XXXVI Conference on
ETAN, pp. 153-160, Kopaonik, Yugoslavia, 1992.

[6] A. J. Viterbi, J. Omura, Principles of Digital Communi-
cation and Coding, McGraw-Hill, Tokyo, 1979.

[7] J. Hagenauer, “Source-Controlled Channel Decoding,” .
IEEE Trans. Comm., vol. COM-41, pp. 370-380, Feb.
1995.

[8] -, “Applications of Error-Control Coding,” IEEE Trans.
Inf. Theory, vol. IT-44, No. 6, pp. 2531-2560, Oct 1998.

[9] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
Decoding of Linear Codes for Minimizing Symbol Error
Rate,” IEEE Trans. Inf. Theory, pp. 284-287, Mar. 1974.

[10] P. L. McAdam, L. R. Welch, and C. L. Weber, “M.A.P.
bit decoding of convolutional codes,” Proc. of ISIT 1972,
Asilomar, USA.

[11] R. M. Fano, “ A heuristic discussion of probabilistic de-
coding,” IEEE Trans. Inf. Theory, vol. IT-9, pp. 64-74,
April 1963.

[12] P. R. Chevillat and D. J. Costello Jr., “A Multiple Stack
Algorithm for Erasure free Decoding of Convolutional
Codes,” IEEE Trans. Comm., vol. COM-25, pp. 1460-
1470, Dec. 1977.

[13] K. Li, S. Kallel, “A Bidirectional Multiple Stack Algo-
rithm,” IEEE Trans. Comm., vol. COM-47, No. 1, pp. 6-
9, Jan. 1999.

[14] S. Kallel, K. Li, “Bidirectional Sequential Decoding,”
IEEE Trans. Inf. Theory, vol. IT-43, No. 4, pp. 1319-
1326, July 1997.

[15] V. Šenk and P. Radivojac, “The Bidirectional Stack Al-
gorithm,” Proc. of ISIT'97, p. 500, Ulm, Germany, July
1997.

[16] V. Šenk and P. Radivojac, “The Bidirectional Stack Al-
gorithm - Simulation Results,” Proc. of TELSIKS ’95,
pp. 349-352, Niš, Yugoslavia, Oct. 1995.

[17] D. Haccoun, M. J. Ferguson, “Generalized Stack Algo-
rithms for Decoding Convolutional Codes,” IEEE Trans.
Inf. Theory, vol. IT-21, No. 6, pp. 638-651, Nov. 1975.

[18] V. Šenk, P. Radivojac, "A Multi-Path Stack Algorithm
for Decoding Trellis Codes", Proc. of TELSIKS ’97, pp.
780-783, Niš, Yugoslavia, Oct. 1997.

[19] J. Belzile, D. Haccoun, “Bidirectional Breadth-First Al-
gorithms for the Decoding of Convolutional Codes,”
IEEE Trans. Comm., vol. COM-41, pp. 370-380, Feb.
1993.

[20] V. Šenk, P. Radivojac, "A New Bidirectional Algorithm
for Decoding Trellis Codes", submitted for ISIT 2000.

[21] P. Radivojac, V. Šenk, “The Generalized Viterbi-T algo-
rithm,” Proc. of XXXIX Conference on ETRAN, Vol. 2,
pp. 13-16, Zlatibor, Yugoslavia, June 1995.

