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Precision medicine and personalized health efforts propose leveraging com-

plex molecular, medical and family history, along with other types of per-

sonal data toward better life. We argue that this ambitious objective will

require advanced and specialized machine learning solutions. Simply skim-

ming some low-hanging results off the data wealth might have limited poten-

tial. Instead, we need to better understand all parts of the system to define

medically relevant causes and effects: how do particular sequence variants

affect particular proteins and pathways? How do these effects, in turn, cause

the health or disease-related phenotype? Toward this end, deeper understand-

ing will not simply diffuse from deeper machine learning, but from more

explicit focus on understanding protein function, context-specific protein

interaction networks, and impact of variation on both.

Keywords: computational prediction; molecular mechanism of disease;

protein function; variant effect

To avoid problems with the next car you buy, you

may consult the reliability statistics for every make

and model that you are considering. This may reduce

the odds of unpleasant experiences and may help avoid

lemons (car jargon: an, often new, car that is found to

be defective only after it has been bought). Once your

specific car fails, however, such precautions no longer

help. Then an expert has to cycle through a diagnostic

protocol, excluding potential problems one at a time,

until finding the actual cause of failure. In some ways,

health and car problems are similar; failure of many

disparate parts may ultimately lead to the same

observable effect. In this analogy, we might argue that

medicine has so far been often investing into mitigat-

ing the inconvenience with lemons and much less into

improving and augmenting the protocols for finding

the individual causes of problems.

In his recent State-of-the-Union address, the US Pres-

ident Barack Obama announced the Precision Medicine

Initiative, making this challenge a national and interna-

tional priority. Precision medicine refers to all attempts

to merge complex data from molecular biology and

medicine, e.g., from genome, proteome, metabolome,

microbiome, imaging, electronic health records, and

mobile devices, ‘to tailor treatment and prevention

strategies to people’s unique characteristics’ [1]. Human

cognitive abilities of compressing the available data into

a coherent and consistent diagnostic or prognostic set of

conclusions are fairly limited [2]. On the other hand,

machine learning, a subfield of artificial intelligence

‘that gives computers the ability to learn without being

explicitly programmed’ [3], can be used to reasonably

model the level of complexity of this precision-medicine

relevant data for predictive understanding.

Abbreviations

AUC, area under the ROC curve; COSMIC, Catalogue of Somatic Mutations in Cancer; HGMD, Human Gene Mutation Database; OMIA,

Online Mammalian Inheritance in Animals; OMIM, Online Mammalian Inheritance in Man; ROC, receiver operating characteristic.
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Today, one major problem in the way of any

health-related advances is the lack of data availability,

owing to both the difficulties of acquiring high-resolu-

tion molecular information and to the regulatory

restrictions governing access to such data. For over a

decade, the expertise for the analysis of complex data

in molecular biology and medicine cannot be encapsu-

lated in transferable programs. Instead, experts in

computational biology and biomedical informatics

need to access the data in ways that do not limit their

success. The ‘completely open behind completely

closed doors’ model realized by Genomics England

illustrates the complexity of the situation [4]. We pro-

pose that the available crucial (and expensive) biologi-

cal data cannot any longer stay hidden from the most

appropriate expert and/or optimal processing tools.

Once this human-imposed obstacle is eliminated, some

of the major challenges for precision medicine will

reside in combining advanced machine learning with

deep annotations of mechanistic molecular models that

explain observed effects, to point out correlations and,

more importantly, identify causes.

Here, we discuss an extraordinarily important subset

of these challenges [5,6] – the need to broaden the cov-

erage and deepen the annotation of (tissue-specific)

protein functions, as well as to improve meaningful

predictions of variant effects on protein stability and

interactions with small chemicals and other macro-

molecules. We suggest that the efforts toward this end

will necessarily include the development of new

machine learning techniques. However, perhaps more

importantly, these problems will require learning to

correctly identify, quantify, and present the biological

problems to existing and novel machine learning algo-

rithms. For all higher eukaryotes, including humans,

these approaches will contribute to substantially

improving the efforts to unravel the dark proteome [7].

Machine learning: teaching machines
to understand biology

Advanced machine learning implies

understanding through prediction

Over the past few decades machine learning has influ-

enced many aspects of research and everyday life.

Recently, deep learning [8] has led to many advances,

including publicity-effective breakthroughs such as a

machine (AlphaGo) besting man in the board game

Go [9], Google learning computer games from players

[10], or even an algorithm predicting who will survive

the next episode of the Game of Thrones series [11].

Its success in molecular biology, arguably, began with

the leap resulting from a machine first learning to pre-

dict protein secondary structure [12–15]; its applica-

tions have become ubiquitous ever since. Machine

learning often succeeds by matching the complexity of

the solution to that of the problem. This complexity

matching is generally overlooked, and frequently leads

nonexperts and novices to confuse advanced methods

for ‘black boxes’ that obfuscate rather than reveal the

underlying mechanisms. When machine learning does

succeed, it captures understanding, but on a level of

complexity that may be difficult to grasp for its human

designers and users.

Over almost three decades of experience with

machine learning in biology, we learned that the major

usability challenges lie in ascertaining the machine’s

abilities to understand the mechanistic principles

underlying the data, instead of tripping over correla-

tions. In school, we all encounter the difference

between understanding and learning by heart. Turning

machine learning into predictive understanding is a

challenging endeavor that requires deep familiarity

with the theoretical foundations of the field, dataset

and model selection, performance estimation, and

ways in which probabilistic models can be applied.

What are we trying to learn? Formalizing the

prediction task and data selection

A major challenge in computational biology and medi-

cine pertains to how representative of reality the avail-

able experimental data are. Ideally, the data used to

train computational models should be a uniformly ran-

dom sample from the data on which the predictor will

be used in all future applications. This, however, is

impossible to assure, e.g., predictors of effects of pro-

tein variants on molecular function are often used to

judge mutation involvement in disease. Moreover, even

when the future application is explicitly specified, the

uniform sampling of biological reality in training is

almost never true. Databases of experimentally deter-

mined protein structures [16,17] and annotations

[18,19], are extremely biased, i.e., they are representa-

tive of the current state-of-the-art of experimental

science, investigators’ abilities and preferences, and

concentrated exploration efforts (e.g., cancer initiatives

or drug target searches). Hence, they are unrepresenta-

tive of reality [7, 20–22].
We illustrate some issues with problem formulation

and data selection on an example of relating blood

pressure to heart disease. For this task, we can obtain

sets of blood pressure measurements from people with

and without disease (Fig. 1A). These datasets may be

of a similar size and intended to characterize the
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difference between the two populations. For example,

a two-sample t-test applied to these data can provide a

good measure of the difference between the average

blood pressure of the two groups. The resulting

P-value should, hopefully, be small enough to demon-

strate statistical significance.

The problem with this type of setup in learning is

that the collected samples may reflect a ‘survivorship

bias’ [23]. That is, the odds of sampling ‘healthy’

patients from a population of those with family history

of disease are generally higher than the odds of sam-

pling truly healthy individuals who rarely consult

physicians for this indication. Furthermore, both

cohorts of individuals may contain health status

errors, i.e., some seemingly healthy people may be

sick, but below the threshold of diagnostic capabilities,

and some of those with disease might have been

misdiagnosed.

Although statistical significance of a difference

between cohorts is often a useful metric, it is impor-

tant to understand that it may be poorly related to the

predictability of the phenomenon, i.e., the ability of

the model to accurately assign a person’s health status,

given his/her blood pressure. The P-value from the

example above reflects the probability that the

observed difference between means of the two popula-

tions would be as large or larger if the sets of blood

pressures were drawn from the same underlying distri-

bution. Note that, in this definition, simply increasing

the number of people in each cohort reduces the P-

value until it reaches zero, if there is any discernible

difference between the sample means. The accuracy of

a health status prediction, on the other hand, is limited

by the overlap between the two distributions and can-

not be reduced below a certain quantity, regardless of

the sample size.

We argue that, here, the goal of a machine learning

approach is to approximate the posterior probability

of the target concept, i.e., health status equals heart

disease, given the evidence (here blood pressure). We

write this probability as P(Y = 1|x), where Y is the

random variable indicating health status (1 = disease;

0 = healthy) and x is the observation (blood pressure).

In fact, we can even state that all that predictive

machine learning needs to learn is the probability dis-

tribution; this abstract view is illustrated in Fig. 1B.

For machine learning applications in computational

biology and medicine, data have usually much higher

complexity (dimensionality) than a simple blood pres-

sure observation. Thus, this task is extremely complex,

but entails the same concepts: training a classification

model, say f(x), that approximates as faithfully as pos-

sible the fixed but unknown underlying posterior prob-

ability (of heart disease, given the particular blood

pressure) P(Y = 1|x), for every x. The simple binary

decision then becomes 1 (heart disease) when P(Y = 1|

x)>P(Y = 0|x) and 0 (no heart disease) otherwise.

Solid theory already supports using neural networks to

approximate posterior distributions [24], while other

models can be calibrated [25,26].

Why does the data need to be representative? To

show this we use Bayes’ rule to re-write the posterior

probability as

PðY ¼ 1jxÞ ¼ PðxjY ¼ 1ÞPðY ¼ 1Þ
PðxÞ ð1Þ

where we assume that x is discrete. We refer to P(x|

Y = 1) as the class-conditional probability (of a partic-

ular blood pressure, given heart disease), P(Y = 1)

(probability of heart disease) as the class prior, and P

(x) = P(x|Y = 1)P(Y = 1) + P(x|Y = 0)P(Y = 0) as the

A B

Fig. 1. Example for probability distributions. (A) Histograms of systolic blood pressure measurements from cohorts of subjects without (red)

and with (blue) heart disease. (B) Probabilistic formulation where the cohort without heart disease (red, dashed) is represented by the

distribution p0ðxÞ, the cohort with heart disease (blue, dashed) is represented by the distribution p1ðxÞ, and the underlying unlabeled data

(yellow, solid) is represented by the distribution pðxÞ ¼ ap1ðxÞ þ ð1� aÞp0ðxÞ. The parameter a = P(Y = 1) is referred to as class prior. In this

example, we set a = 0.25, i.e., we assume that a quarter of the population suffers from heart disease.
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probability of observing evidence x. If the distribution

of P(x|Y = 1) is not representative of the true distribu-

tion for the disease cohort, the classifier f(x) will be

biased and unable to approximate P(Y = 1|x) cor-

rectly. Similar reasoning holds for the distribution of

the values in the healthy cohort, which we can easily

see by noting that P(Y = 0|x) = 1�P(Y = 1|x).

The problem of biased data has been extensively

studied in statistics and machine learning [27,28], offer-

ing a number of solutions supported by theory. How-

ever, none of these solutions fully apply to biology

(much less to medicine) where the community expecta-

tion of the ‘tool’ is to recognize the concept regardless

of any development issues or usability side-notes. Rais-

ing the awareness in the end user that the model relies

on the data distribution P(x) may raise the yield from

these models. However, working to remove bias from

training as much as possible would probably prove sig-

nificantly more effective.

In molecular biology, some intriguing solutions to

this problem were offered early on in the prediction of

protein secondary structure or intrinsically disordered

protein regions. There, data are clustered based on

sequence identity thresholds [29], retaining a single rep-

resentative sequence from each group. By eliminating

‘redundant’ sequences, these methods produce data dis-

tributions that are more uniform in the feature space as

the similarity groups are unequal in size. This approach

results in models that resemble having learned a con-

cept, instead of a probability distribution. Well-defined

theoretical support for this situation is an open problem

that will formalize and improve understanding of this

long-standing practice in computational biology.

How do we evaluate success? Effective

performance estimation through cross-validation

In computer science terms, cross-validation implies

data partitioning and (iteratively) using only some

fraction of the available data to train/develop a model

[30]. In any iteration, the remainder of the data points

is used to establish whether the machine memorizes or

understands. Here, for a true evaluation of perfor-

mance, data points in each partition need to be unre-

lated in the defined feature space, to model as closely

as possible appearance of new data. In standard out-

of-the-box machine learning packages such as WEKA

[31], cross-validation is applied to avoid getting stuck

in local minima. However, data in biology are atypical

for machine learning; it is too sparse and incomplete,

too biased, and too noisy for the application of stan-

dard protocols. Furthermore, there often exist underly-

ing relationships between data points, such as spatial

proximity of two amino acids or two medical records

of the members of the same family. As a result, most

performance estimates remain short-lived and even

experts often fail to distinguish fraudulently faulty esti-

mates from the sustained sound ones. Data limitations

make the task even more complicated, as illustrated by

our development of a method that uses only protein

sequence as input to predict whether two proteins

physically interact [32]. Despite many levels of caution

on top of standard cross-validation protocols, we ini-

tially ended up with a method predicting whether the

two protein sequences originated from the PDB [16] or

from UniProt [33], rather than whether their proteins

interact [22]. This was a surprising result with interest-

ing implications that created an irrelevant method.

Proper cross-validation requires careful processing of

the available experimental data, e.g., in this case, bias

and overlap between training, cross-training, and test-

ing sets had to be avoided through clustering. In fact,

the application of machine learning methods in biol-

ogy typically requires a detailed analysis of how to

cluster the data and how to avoid overlap [22].

In a field marked by noisy and imbalanced data, the

selection of proper performance measures is impera-

tive. However, this is often an underappreciated aspect

of applied machine learning – a place where theory

meets practice. In binary classification, and in the

absence of well-defined costs of (erroneous) classifica-

tion, the field has converged to using a variety of mea-

sures such as the area under the receiver operating

characteristic (ROC) curve (AUC), or F-measure [30].

However, each of these measures is flawed in some

aspects, e.g., the AUC can provide deceivingly high

numbers for imbalanced data, both ROC and AUC

put the emphasis on performance in areas possibly not

of interest for users, and the F-measure relies on

unknown class priors (see Section ‘How frequent are

the concepts that we try to model? Estimation of class

priors and posteriors’). We are yet to understand how

to reason about score distributions of the prediction

models on unlabeled data and how to best evaluate

the outputs. In more complex classification tasks, such

as the prediction of hierarchical structure in function

prediction (e.g., Gene Ontology [34] or Human Pheno-

type Ontology [35]), the evaluation objectives are even

less clear, as we are required to define similarities on

ontological terms or subgraphs in the ontology [36–
39]. For these reasons, characterizing the accuracy of a

probabilistic model in computational biology and med-

icine approaches a form of art. While the community

experience provides invaluable feedback about perfor-

mance, it is necessary to further standardize evaluation

protocols.
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Overall, dataset selection and performance estima-

tion are among the major challenges for turning

machine learning into practically applied tools that

enable us to fish for understanding in the ocean of big

data. Unfortunately, most machine learning practition-

ers tend to spend a small fraction of their time and

resources on dataset selection and performance evalua-

tion and instead commit major effort to creating a

new method. We argue that advanced machine learn-

ing applications in biology necessitate inverting this

effort ratio.

How frequent are the concepts that we try to

model? Estimation of class priors and posteriors

As we saw in Eqn (1), the representativeness of class-

conditional distributions is necessary but not sufficient

for the correct estimation of posterior probabilities;

that is, not unless the positive and negative examples

initially come in the right proportions. Therefore, one

of the fundamental tasks in machine learning is proper

estimation of prior probabilities, i.e., P(Y = 1) in bin-

ary classification.

Semisupervised learning has been extensively

researched. When both positive (a sample from p1ðxÞ;
Fig. 1B) and negative (a sample from p0ðxÞ; Fig. 1B)
data are available and representative of class-condi-

tional distributions, the presence of representative

unlabeled data (a sample from p(x); Fig. 1B) guaran-

tees a correct estimate of class priors [40]. However, in

many cases, labeled data points are exclusively posi-

tive. For example, in training a model to recognize dis-

ease predisposition, it is easy to recruit positive

samples as certain lab results can reliably establish that

a person is sick. Negatives, on the other hand, are

much harder to ascertain, as in many cases, it is nearly

impossible to show definitively that the person is not

currently sick (e.g., just below a diagnostic threshold),

or will not get sick in the near future. In semisuper-

vised learning, working in these scenarios is usually

referred to as learning from positive and unlabeled

data, or positive-unlabeled learning [41]. Here, class

priors are not identifiable [42,43], i.e., there is no

unique solution to the problem. Unless restrictive

assumptions are made, we are only guaranteed to iden-

tify the upper bounds [43] of class frequency distribu-

tions. Several ideas have been recently explored in

positive-unlabeled learning, from more [44–46] to less

restrictive [43] approaches, giving reasonable estimates.

An extension of the positive-unlabeled framework

should be further considered when the positive exam-

ples are contaminated with incorrectly labeled data

points. Class priors in this situation remain

unidentifiable [47,48] with the only available estimation

algorithm of the upper bound just recently proposed

[48]. A generalization of these solutions will be able to

correct some forms of biased sampling in the estima-

tion procedure. However, we are not aware of any

algorithms that simultaneously handle biased class-

conditional distributions.

Interestingly, Jain et al. [43,48] have also formulated

the problem of learning the posterior probabilities

from (noisy, high-dimensional) positive-unlabeled data.

The authors propose that the optimal solution can be

obtained by developing classifiers that distinguish

between positive and unlabeled data. These positive-

unlabeled classifiers can then be converted into classi-

fiers that distinguish between positive and negative

data using (nonlinear) deterministic transformations. It

is important to keep the distinction between these two

types of classifiers in mind because the unlabeled data

may be ‘contaminated’ with a potentially large fraction

of positives. That fraction equals P(Y = 1), the posi-

tive class prior.

Precision medicine: proteins and
disease mechanisms

Personalized to precision medicine: going

molecular

While recent years have seen a push for personalized

medicine, the term has been fiercely opposed by doc-

tors who (accurately) noted that they ‘practice person-

alized medicine’ with every patient. To quote Sir

William Osler, who was the first to require bedside

clinical training for medical students so that they can

better understand the difference between theory and

practice [49]: ‘If it were not for the great variability

among individuals, medicine might well be a science

and not an art’ [50]. Unlike personalized medicine,

precision medicine implies a more scientific approach

to patient categorization, encompassing the idea that

molecular and other individual-specific information

could improve the precision with which the patients

are diagnosed and treated [51]. For instance, integrat-

ing the patient hemoglobin levels, gender, age, tumor

stage and location, and treatment dose could predict

survival probability after a laryngeal carcinoma diag-

nosis [52]. Adding in gene expression profiling could

then further contribute to accurate diagnosis, progno-

sis, and treatment assessment of this disease in individ-

ual patients [53]. Precision medicine is, thus, about

increasing the level of resolution in medical practice

and health choices. As such, it should integrate as

many diverse types of high-resolution data as possible,
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which could contribute to the proper patient catego-

rization, selection of treatment, and informed lifestyle

adjustments.

Hereafter we narrow down the focus of our review

to the molecular aspects of precision medicine, particu-

larly those related to the understanding of protein

function and functional consequences of mutation. We

argue that the interplay of recent research in basic life

sciences and machine learning, together with techno-

logical advances, lays the foundation for successful

translation of decades of biological, statistical, and

computer science research into successful drug discov-

ery and clinical practice.

How different are we? Understanding the effects

of sequence variants

Sequence variation and structural changes that cause

disease were first linked for sickle-cell anemia (or

sickle-cell disease) through the work of Pauling and

Perutz [54,55]. The sickle-cell disease is an autosomal

recessive disorder caused by the amino acid substitu-

tion E6V in the b-chain of human hemoglobin [56],

i.e., a replacement of glutamic acid (E) by a valine (V)

at position 6 (not counting the first methionine, other-

wise E7V, Fig. 2). Today, the Human Gene Mutation

Database (HGMD [57]), Online Mammalian Inheri-

tance in Man (OMIM [58]), Online Mammalian Inher-

itance in Animals (OMIA [59]), the Catalogue of

Somatic Mutations in Cancer (COSMIC [60]), and

other resources collect thousands of such single amino

acid variants causative of or associated with disease, in

addition to many other types of sequence variation.

The disease-causing variants from genetic databases

are in sharp contrast to the numerous single amino

acid differences between healthy individuals: any pair

of (random) individuals differs by almost one variant

in every other protein (roughly 10 000 in total) [63].

For most variants, even those experimentally impli-

cated in disease, we have very little experimental infor-

mation. In fact, while the sequence conservation of

OMIM residues is higher than expected, for most of

the known OMIM variants [64,65], their protein 3D

structure is neither experimentally known, nor can be

modeled [65,66]. Similarly underrepresented are func-

tional annotations and there is a clear lack of experi-

mental evaluations of variant effects [65]. Simply put,

only in silico predictions can at this time bridge the

gap between existing and desired information.

Many methods predict the effect of variants on pro-

tein structure or molecular function, as well as their

involvement in disease [67–73]. However, due to the

lack of comprehensive and unbiased experimental data

for evaluation, their performance remains to be fully

understood. The methods tend to perform well for

existing data and to agree more with each other for

annotated variants than for unknown variants. This

might hint at a tendency of over-training [74]. How-

ever, what is even more alarming is that the goals of

individual methods are often not well defined. For

instance, a method trained to recognize ‘disease’ vari-

ants from variants between orthologous proteins may

be labeled and used as predicting ‘functional effect,’

even in the absence of explicit evaluation of this par-

ticular ability. Furthermore, directional non-neutrality

of variants, as compared to wild-type, is often missed,

i.e., the class of variants termed ‘deleterious’ or ‘dam-

aging’ does not represent ‘advantageous’ variants.

Finally, destabilizing variants are not always ‘deleteri-

ous’ and variants that do not impact structure are not

Fig. 2. The molecular mechanism underlying sickle-cell disease through an E6V mutation. (Left) The unmodified version of hemoglobin as a

hetero tetramer consisting of two a and two b hemoglobins; PDB ID: 4hhb [61]. (Right) The introduction of valine recruits another molecule

of hemoglobin likely through a hydrophobic interaction with F85 and L88 of the interacting molecule. The octameric complexes further

polymerize, ultimately leading to fibrils that physically alter the shape of red blood cells. PDB ID: 2hbs [62].
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necessarily ‘neutral.’ The various impacts of variants

are correlated, but the concepts are not interchange-

able. In fact, the effect of variants can be thought of

in three categories – impact on evolutionary fitness,

change in molecular functionality or protein struc-

ture/dynamics, and pathogenicity, i.e., induction of

disease. A recent study proposed to expand the clinical

utility of these models by focusing on the prediction of

endophenotypes [75].

Directly disease-causing, often monogenic, variants

will by definition alter protein function. Methods that

predict molecular effects in turn identify variants from

OMIM and OMIA as having very strong effects [64,76].

In fact, the predicted effects for these variants are even

stronger than those of data points used in training a

classifier to distinguish functionally significant variants

[64,76]. A surprising behavior in machine learning, this

result is most likely explained by the unusual experimen-

tal observation consistency, i.e., experimentally deter-

mined functional effects may vary between experiments

and subjective evaluations, particularly for weak effects,

but disease variants stand out objectively as unusually

devastating to molecular function. This observation

highlights another strength of machine learning in biol-

ogy: consistent reproducibility of data tends to imply

stronger effects. Prediction methods are then able to

pick up strength of signal without ever learning to rec-

ognize these strengths on experimentally labeled data,

i.e., we can predict protein–protein interaction hotspots

[77] and the strength of variant effects [78,79] without

using strength of effect labels in training. Here, the

probabilistic outputs of machine learning tools correlate

with severity of effect.

Arguably, for the purposes of elucidating disease

mechanisms, one major challenge for both experimen-

tal and computational methods is to correctly identify

variants with molecular and/or cellular effects. How-

ever, this knowledge of individual variant functional

effects alone is not sufficient. As many as a quarter to

nearly half of the variants between healthy individuals

are predicted to impact function [80]. A significant

fraction is predicted to have very strong effects. How

can we pick the one that causes an OMIM-like disease

in a sea of those that appear equally strong for each

of us? And what about the others? These variants most

certainly cannot all be pathogenic in the causative

sense. However, they can (and likely do) create a dis-

ease-permissive background, which is likely involved in

triggering manifestations of complex disease, providing

support in favor of the so-called infinitesimal model of

complex genetic disease [81]. Specifically, this can be

interpreted as a vulnerability of an interaction path-

way, whose multiple members are affected by individ-

ual-specific variation. In this light, many groups have

been trying to move from the level of individual resi-

dues and proteins to that of protein interaction net-

works and the investigation of pathway-specific

enrichments [82–85], and on to disease trajectories [86].

Why is mechanistic understanding important?

Mapping sequence variants to molecular

mechanisms through function prediction

The alteration of overall cellular activity often arises

as a consequence of altered function of one or more

individual proteins. The limiting factor in

Fig. 3. The number of experimentally annotated (evidence codes: EXP, IPI, IMP, IGI, IDA, and IEP) proteins in the Swiss-Prot database (July

2016) shown separately for each of the three ontologies. The graph shows that the major annotation efforts are concentrated around a

handful of model organisms, with more than 85% of annotated proteins being from these species. The total number of annotations equals

31 212 (from 1211 species) for Molecular Function, 45 075 (from 1303 species) for Biological Process, and 44 586 (from 665 species) for

Cellular Component. Although some of the organisms appear well annotated by the GO terms, many of these annotations are shallow [89].

Evidence also suggests that some of the experimentally derived functional annotations may be incorrect [90].
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understanding pathogenesis is the often missing

knowledge of specific molecular events/functions that

individual proteins are associated with Fig. 3. While

we have some experimental data and computational

inferences about the function of many human pro-

teins, for a vast number of these macromolecules, the

details remain experimentally unresolved [87,88]. In

creating GO, the Gene Ontology, Michael Ashburner

(University of Cambridge) and colleagues have recog-

nized the complexity of defining function and pro-

posed three views on every protein’s (or gene’s)

function: (a) molecular function, largely describing

biochemical activities, (b) role in a process, largely

describing emergent biological functions, and (c) local-

ization, describing cellular or extracellular locale

where the protein is active [34]. Ultimately, however,

biological function is better captured in a detailed nar-

rative than in any one number. High-resolution

human-interpretable function prediction is thus the

next frontier in probabilistically inferring molecular

mechanisms of disease.

In the meantime, prediction methods can help

close the sequence-annotation gap [87,91], but with

respect to deep annotations of function, in silico

methods remain as limited as their experimental

‘teachers’ [39,92,93]. Machine learning plays critical

roles in capturing protein function from the vast

biomedical data resources [39,89]. However, if we

are to compare among many different possible func-

tions for a given molecule, it is critical to revisit the

aforementioned importance of accurately identifying

posterior probabilities (Section ‘What are we trying

to learn? Formalizing the prediction task and data

selection’). Suppose that we were to computationally

assign either tyrosine kinase or tyrosylprotein sulfo-

transferase activity to an unannotated human gene.

The decision to choose one of these functions must

be modulated by our knowledge (or expectation) of

the number of proteins in either functional group

that are present in the entire proteome. The lack of

these de facto class priors confines the (proper) use

of functional annotation to a single biological func-

tion, or a GO term, at a time and limits the extent

of the probabilistic reasoning. Although the natural

world is characterized by nonuniform distributions

of functional categories, the hierarchical nature of

biomedical ontologies further exacerbates the prob-

lem [39,89].

In addition to the whole-molecule-based view of

protein function, it is often important to reason about

the function at the level of individual residues. Is a

particular residue involved in catalysis, does is bind

DNA, is it important for stability and dynamics of

the protein? We argue that a probabilistic approach

to this problem offers an opportunity to move

towards understanding molecular mechanisms of dis-

ease. Consider a function of the ith residue (si) in the

protein sequence s and suppose our method can

approximate the probability that si is functional, i.e.,

learn PðYi ¼ 1jsÞ. Suppose now we are given another

protein sequence s0 that differs from s at a single

position j (we can later extend this view). Naturally,

an accurate predictor of function will be able to out-

put a value similar to PðYi ¼ 1js0Þ. These simple

building blocks now lead us to a formal model for

predicting loss of protein function in the presence of

mutation as

Pðloss of function at sijs; s0Þ
¼ PðYi ¼ 1jsÞ � ð1� PðYi ¼ 1js0ÞÞ:

where the first term on the right-hand side is the

probability that the residue i is functional in the ref-

erence sequence s and the second term is the proba-

bility that the residue i is not functional in the

mutant sequence s0. We can similarly model an

increased propensity for particular function and

loosely refer to it as gain of function, i.e.,

Pðgain of function at sijs; s0Þ
¼ ð1� PðYi ¼ 1jsÞÞ � PðYi ¼ 1js0Þ:

A comprehensive review of the methodologies for

the computational function prediction at a residue

level is beyond the scope of this text; we refer the

reader to available reviews [87,94]. Our main concern

is that these algorithms and tools, despite their

breadth and availability, remain underexplored in

understanding disease. Although some methods that

predict specific molecular mechanisms of disease have

been proposed either from sequence [95,96] or struc-

ture [97,98], the size of the pool of these tools sug-

gests that it will soon be possible to probabilistically

reason among many potential options. Of particular

importance will be methods for intrinsically disor-

dered proteins [99], i.e., proteins that cannot be

characterized by a single dominant macro state due

to their conformational dynamics. Disordered regions

are known to exhibit conformational sensitivity to

amino acid variants and environment [100], and have

been implicated in disease upon mutation [101–103].
Better understanding of conformational dynamics

and molecular recognition specific for disordered

proteins will play significant roles in broadening the

scope of molecular mechanisms involved in disease

[104].
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How does biological context define functionality?

Functional pathways and tissue specificity

Regardless of data availability and our accuracy in pre-

diction, understanding the function of individual pro-

teins will not have the power to elucidate the causes of

most diseases. However, grouping proteins and various

other interactors into pathways, will. The field of phar-

macogenomics can, arguably, serve as a training exercise

for elucidating causative mechanisms of disease. Identi-

fying all components of drug metabolism pathways is

difficult [105]. However, the start and end points of

these pathways are predefined and, once the specific sets

of pathway components are identified, finding causes of

individual differences in drug efficacy (including effec-

tiveness and toxicity) is ‘simply’ mapping correlated

genome variation to these genes/proteins. Thus, patients

with mutations that cause functional deficiencies in

drug-metabolizing enzymes will need lower doses of

drugs (e.g., UGT1A1+ patients treated with irinotecan

[106]). On the other hand, patients with a poorly

expressed drug target (e.g., ER-negative breast cancer

patients treated with tamoxifen [107]) or affected bottle-

neck genes in pathways downstream from the target

(e.g., mutations in KRAS genes of the nonsquamous cell

lung cancer patients treated with EGFR inhibitors

[108]) will likely not respond to the drug. In these exam-

ples, potentially affected pathways could be first

hypothesized and then the reasons for particular

responses to a drug can be predicted and, eventually,

validated. Pharmocogenomics has thus been at the fore-

front of melding together hypothesis-generating and

hypothesis-driven approaches of drug metabolism path-

way analysis [109].

In the case of disease, however, pathways are rarely

known and need to be inferred from circumstantial

evidence. As every person suffers from his/her individ-

ual disease manifestation, regardless of the overall dis-

ease label, the process of identifying molecular

pathway culprits is often complicated by (a) the

idiosyncrasies of individual genomic and epigenomic

background, (b) pathway involvement in multiple dis-

eases, whose symptoms may overlap or not, and (c)

differences in environmental effects. Note that break-

ing down a disease into individual symptoms could

potentially facilitate mapping of pathways to disease

[110,111]. The specifics of the protein interactions

within and outside the pathway, and the effects of gen-

ome variation on the required quantities and activities

of each of the pathway components, define the type

and severity of the resulting disease.

The definition of a molecular pathway itself presents

a problem. Broadly, a molecular pathway is a set of

interdependent molecular events that collectively pro-

duce some emergent functionality. Among many other

activities, pathways lead to DNA, fat, and protein

molecule assembly, signal changes in the environment,

toggle genes on and off, and metabolize drugs. To

define a specific pathway, one may need to establish

the set of interacting genes/proteins and cofactors/

metabolites leading to a particular endpoint. One way

to visualize a pathway is as a specific route from state

A to state B through a predefined map of all (possible)

molecular interactions in a cell. Here, all molecular

interactions can be described as a network, where indi-

vidual nodes represent genes/proteins and edges are

probabilistically weighed and assigned necessary inter-

actors (e.g., enhancers for gene regulation or small

molecules as co-factors). A disease pathway is then

one where the endpoint is a disease phenotype that is

expressed, perhaps, on the molecular level, as opposed

to symptomatic manifestations. Thus, Type I diabetes

could be more accurately described as a pathway lead-

ing to the autoimmune destruction of insulin-produ-

cing cells of islets of Langerhans, rather than a

pathway leading to increased blood sugar levels [112].

One major challenge in systems biology is to infer

pathways from currently available high-throughput

and accumulating low-throughput data for further

mapping to disease states. Many methods exist to

determine the complete map of cellular interactions

[113,114]. Similarly, a number of methods exist for

establishing disease-associated sets of genes/proteins

[115,116]. There are at least two ways of combining

these pieces of information into a solid framework of

disease-pathway elucidation [117]. First, one can check

for enrichment of variation in known pathways

extracted from available databases, e.g., KEGG [118],

DIP [119], and TRANSPATH [120]. A slight variation

on this theme is to only consider variants that are

known or predicted to be in some way perturbing of

the affected pathway component’s molecular function-

ality (e.g., loss-of-function variants or variants that

affect expression). Note that genes that participate in

the same pathways are often involved in the same dis-

eases [121,122]. Thus, from the perspective of predict-

ing variant-induced pathogenicity, most (or all)

functionally affected members of a disease-related

pathway can be construed as disease genes [123,124].

A second approach is to start from the other direction

and to first identify disease-associated variants (via

GWAS and/or pathogenicity predictions) and then to

look for enrichment of interactions between the

affected pathway components using databases of inter-

actions, e.g., STRING [125] and ConsensusPathDB

[126]. Curiously, both of these approaches can benefit
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from the results of multiple unrelated studies directly,

without consideration for eliminating batch effects,

i.e., as unrelated studies often pick up different dis-

ease-associated genes, collapsing the findings by path-

way may alleviate population-specific considerations

and contribute to the statistical enrichment and mech-

anistic understanding of disease [127]. However, it is

also important to note that sets of pathways differ

between tissues. Thus, disease-associated variation

should somehow be representative of pathways that

are active in tissues relevant to this disease [128]. Much

of the logic described here for mapping pathways to

disease has been encoded in a number of pathway

analysis tools [116,117,129], both commercially and

publicly available, using both expression [130,131] and

GWAS [132,133] data.

Unfortunately, identification of disease pathways is

plagued by many of the same issues as other biological

big-data initiatives, including limited data sources, lack

of standardization in protocols of data extraction and

reporting, and bias in available data. Unless specifi-

cally tuned, machine learning approaches to finding

disease pathways may be swayed by these biases, lead-

ing to an expensive and time-consuming phantom hunt

for disease causes and potential drug targets. The

future of mechanistic understanding of complex dis-

eases is thus dependent on alleviation of these issues

either via experimental means (which is unlikely) or

via computational approaches that encompass proper

dataset selection, correct class prior estimation, and

fine-tuning of the algorithm parameters.

Conclusions

While we are not yet in the era of precision medicine,

it seems that evidence-based and biomarker-led strati-

fied medicine is already solidly in practice and moving

forward [134]. Stratified medicine implies different

treatments for different groups of people – an

approach that is more effective than the earlier version

of empirical medicine, which focused more on disease

specifics than on the patient specifics. Arguably, how-

ever, the correlative stratified medicine cannot be made

more precise without explicit understanding of disease

mechanisms.

In the absence of experimental data that elucidates

disease mechanisms, our best opportunity for under-

standing them is a proper and formal application of

decades of research in statistics and machine learning.

We have argued earlier that the key to these

approaches in protein science and related tasks in pre-

cision medicine is to develop models that approximate

posterior distributions. While this is an ideal outcome,

we realize that such estimates are not always neces-

sary. In many biological problems, as well as in many

commercial applications, it often suffices to rank data

points. An example of this is Google’s presentation of

the search engine results or, closer to computational

biology, disease gene prioritization [135–138]. While

useful, the results of such predictor outputs are less

interpretable and do not naturally permit probabilistic

reasoning about the general phenomena. Furthermore,

our discussion of machine learning in previous sections

focused on supervised and semisupervised learning as

these frameworks are most thoroughly studied and

widely applicable. We should, however, keep in mind

the importance of unsupervised learning as well as the

resurgence of reinforcement learning, particularly in

time-dependant patient-centered applications.

Returning to the car parts and diagnostic protocols

analogy, a major need in precision medicine is a com-

prehensive list that associates observable manifesta-

tions with particular mechanistic causes of failure. In

biology, these might include sets of sequence variants

in coding and noncoding regions, groups of pheno-

type-relevant proteins and tissue-specific pathways,

cell/tissue specific genome structure alterations, as well

as some annotations of the impacts of ‘external’ influ-

ences of the microbiome and the environment overall.

An immense undertaking that, like every journey, will

begin with the first steps – a catalog of phenotypes

and their causes.
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