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Abstract
Regular, systematic, and independent assessments of computational tools that are used to predict the pathogenicity of mis-
sense variants are necessary to evaluate their clinical and research utility and guide future improvements. The Critical Assess-
ment of Genome Interpretation (CAGI) conducts the ongoing Annotate-All-Missense (Missense Marathon) challenge, in 
which missense variant effect predictors (also called variant impact predictors) are evaluated on missense variants added to 
disease-relevant databases following the prediction submission deadline. Here we assess predictors submitted to the CAGI 
6 Annotate-All-Missense challenge, predictors commonly used in clinical genetics, and recently developed deep learning 
methods. We examine performance across a range of settings relevant for clinical and research applications, focusing on dif-
ferent subsets of the evaluation data as well as high-specificity and high-sensitivity regimes. Our evaluations reveal notable 
advances in current methods relative to older, well-cited tools in the field. While meta-predictors tend to outperform their 
constituent individual predictors, several newer individual predictors perform comparably to commonly used meta-predictors. 
Predictor performance varies between high-specificity and high-sensitivity regimes, highlighting that different methods 
may be optimal for different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele 
frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare 
benign variants, and predictors trained on pathogenicity labels from curated variant databases often inherit gene-level label 
imbalances. Our findings help illuminate the clinical and research utility of modern missense variant effect predictors and 
identify potential areas for future development.

Introduction

Predicting the significance of genetic variation is an ongo-
ing challenge that is essential for determining genetic sus-
ceptibility to disease and identifying causal variants in rare 
disease diagnosis (Critical Assessment of Genome Inter-
pretation Consortium 2024). Clinical sequencing laborato-
ries often struggle with the interpretation of low-frequency, 
rare, and de novo variants seen in patients, classifying them 
as variants of uncertain significance (VUS) due to a lack 
of available evidence about their pathogenicity. Interpreta-
tion of missense variants is of particular interest due to their 

frequent occurrence and wide range of potential effects on 
protein function and clinical phenotypes, ranging from no 
effect to either an adaptive effect or a highly penetrant patho-
genic loss or gain of function (Rost et al. 2016).

To address this challenge, many computational tools—
collectively termed missense variant effect predictors or 
variant impact predictors—have been developed over the 
past three decades to predict the consequences of mis-
sense variants. The American College of Medical Genetics 
and Genomics (ACMG) and the Association for Molecu-
lar Pathology (AMP) have developed guidelines for clas-
sification of clinical variants as pathogenic or benign, 
which provide rules for integrating numerous lines of evi-
dence, including predictions from computational tools as 
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supporting evidence (Richards et al. 2015). More recently, 
ClinGen provided updated recommendations, advising that 
some independently calibrated computational tools provide 
stronger levels of evidence for high-scoring variants (Pejaver 
et al. 2022; Stenton et al. 2024; Bergquist et al. 2024).

These computational tools leverage variant- and gene-
level annotations, such as evolutionary conservation and 
protein structural properties, as predictive features (Hu et al. 
2019; Katsonis et al. 2022). Variant effect predictors have 
varied goals: for example, some are trained to predict a vari-
ant’s potential to disrupt protein molecular function, others 
attempt to infer effects on organismal fitness, while many, 
especially those trained on clinical databases, aim to predict 
variant effects on disease (pathogenicity). In this study, we 
evaluate all types of computational methods on their perfor-
mance in pathogenicity prediction. Predictions from individ-
ual tools often disagree, which motivated the development of 
ensemble methods, or meta-predictors, trained to aggregate 
predictions from multiple tools. Meta-predictors tend to have 
improved performance over their component predictors, but 
rely on the continued development of individual predictors 
that incorporate information from new or complementary 
predictive features. Therefore, it is important to assess the 
performance of both meta-predictors and individual predic-
tors on the task of missense variant pathogenicity prediction.

The goal of the CAGI Annotate-All-Missense challenge, 
also termed the Missense Marathon, is to conduct an ongo-
ing assessment of missense pathogenicity predictors (both 
existing tools and those newly submitted to the CAGI chal-
lenge) using variants that have been classified as patho-
genic or benign in clinical variant databases or identified as 
disease-causing variants since the close of the most recent 
challenge. Teams submitting to the challenge were asked to 
provide prediction scores for all possible missense single 
nucleotide variants (SNVs) in the human reference genome, 
based on dbNSFP v4 (Liu et al. 2020), similar to existing 
missense variant effect predictors with precomputed scores 
(Lin et al. 2024). A preliminary, limited assessment of mis-
sense predictors was previously performed as part of CAGI 5 
(Critical Assessment of Genome Interpretation Consortium 
2024). Here we perform a more extensive analysis of mis-
sense variant effect predictors for the challenge in CAGI 6, 
using variants with pathogenicity information made avail-
able between November 2021 and April 2023 in our evalu-
ation set.

Results

Evaluation dataset

We curated a dataset of low-frequency (allele frequency 
< 0.05 ) missense variants classified in ClinVar (Landrum 

et al. 2018) as either Pathogenic or Benign with at least one 
star (excluding those with conflicting assertions) or listed as 
disease-causing (DM) entries in the Human Gene Mutation 
Database (HGMD) (Stenson et al. 2020). Our dataset was 
restricted to variants that were newly added to these data-
bases after the close of the CAGI 6 Annotate-All-Missense 
challenge in October 2021. We consider the ClinVar and 
HGMD data both together and separately in the analyses 
below, to explore differences between the databases. Vari-
ants with pathogenicity information available in ClinVar, 
HGMD, or UniProt (McGarvey et al. 2019) prior to the 
close of the challenge were explicitly excluded. Common 
variants were removed, as they should be considered benign 
per the updated standalone BA1 rule in the ACMG/AMP 
guidelines (Ghosh et al. 2018). Additional details of dataset 
construction are provided in Methods. The resulting dataset 
contained 6,103 pathogenic and 4,353 benign variants from 
2,115 genes, with an allele frequency distribution shown in 
Fig. S1.

Missense variant effect predictors

We evaluated the performance of 60 missense variant effect 
predictors, of which 12 were submitted by 6 teams to the 
CAGI 6 Annotate-All-Missense challenge. The additional 
tested methods include predictors commonly used by the 
clinical genetics community and recently developed deep 
learning methods for missense variant interpretation (listed 
in Table S1 and Methods). All assessed predictors were 
either released before the close of the challenge or did not 
train on variant pathogenicity data released after the chal-
lenge ended, to ensure no overlap with the evaluation set. 
Nonetheless, other more subtle forms of circularity may 
exist (e.g. Grimm et al. (2015)) and are discussed in more 
detail below. We also note that some predictors were trained 
or fine-tuned on variants from population databases such 
as gnomAD (Karczewski et al. 2020), which contain allele 
frequency information but not clinical classifications; there-
fore, we did not specifically exclude such variants from the 
evaluation set.

For presentation clarity, in most analyses, we show 
results for a select subset of 26 predictors: the top-per-
forming model from each team from the CAGI 6 chal-
lenge, predictors widely used by the clinical genetics 
community, and recently developed methods that have 
garnered interest. We note that 5 of the 6 top-performing 
CAGI 6 team submissions are (nearly) identical to pre-
viously published methods—3Cnet (Won et al. 2021), 
MetaRNN (Li et al. 2022), MISTIC (Chennen et al. 2020), 
SNPs&GO (Calabrese et al. 2009), and VESPAl (Marquet 
et al. 2022). In figures, we label them with both their 
familiar method name and the submitting team identifier 
(e.g. 3Cnet/3billion). The sixth team submission, labeled 
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as DEOGEN2/(IB)2, uses DEOGEN2 (Raimondi et al. 
2017) scores when available and rescaled PROVEAN 
(Choi et al. 2012) scores when not. Of the remaining 20 
highlighted predictors, 15 are commonly used in clinical 
genetics and research applications: BayesDel (with and 
without allele frequency) (Feng 2017), CADD (Rentzsch 
et al. 2019), ClinPred (Alirezaie et al. 2018), Eigen (Ion-
ita-Laza et al. 2016), FATHMM-XF (Rogers et al. 2018), 
MutationAssessor (Reva et al. 2011), MutPred2 (Pejaver 
et al. 2020), M-CAP (Jagadeesh et al. 2016), PolyPhen2 
(Adzhubei et  al. 2010), phyloP (Pollard et  al. 2010), 
PROVEAN (Choi et al. 2012), REVEL (Ioannidis et al. 
2016), SIFT4G (Vaser et al. 2016), and VEST4 (Carter 
et al. 2013). Among the 5 recently developed methods 
(AlphaMissense (Cheng et  al. 2023), ESM-1b (Rives 
et  al. 2021), EVE (Frazer et  al. 2021), PrimateAI-3D 
(Gao et al. 2023), and VARITY (Wu et al. 2021)), all but 
VARITY are deep learning methods that are not super-
vised on known variant pathogenicity labels. Correlations 
between the predictions from these tools, as measured on 
our evaluation dataset, are shown in Fig. S2.

In addition to these 26 predictors shown in the figures, 
summary metrics for the full set of 60 tested predictors 
are provided in Table S1.

Full ROC curve performance

For each predictor, we first constructed its Receiver Operat-
ing Characteristic (ROC) curve based on the full evaluation 
dataset and computed the Area Under the ROC (AUROC) 
(Fig. 1 and Table S1). We show performance for meta-pre-
dictors and individual predictors separately in all figures, 
since we find that meta-predictors tend to achieve higher 
AUROCs by combining scores from individual predictors, 
consistent with previous observations. We also demarcate 
predictors that incorporate allele frequency as an explicit 
predictive feature with diamonds, due to limitations in their 
compatibility with other ACMG/AMP lines of evidence.

On the full evaluation dataset, meta-predictors that 
explicitly incorporate allele frequency as a predictive fea-
ture reach an AUROC of 0.92 (ClinPred, MetaRNN), while 
meta-predictors that do not explicitly incorporate allele 
frequency reach an AUROC of 0.88 (VARITY_R) (Fig. 1). 
Although we limited the evaluation dataset to low-frequency 
variants, the methods that explicitly use allele frequency 
likely benefit from the remaining allele frequency imbalance 
in the evaluation dataset, in which pathogenic variants have 
lower allele frequencies than benign variants (Fig. S1). We 
further explore the effect of allele frequency below. The indi-
vidual predictor with the highest AUROC on the full evalu-
ation dataset (AlphaMissense) also reaches an AUROC of 

Fig. 1  Full ROC curve performance. We show the ROC curves and 
AUROCs for meta-predictors (left) and individual predictors (right) 
on the full evaluation dataset. Predictors marked by diamonds use 

allele frequency as a feature. The black dashed lines at 5% FPR and 
95% TPR demarcate the boundaries of the high-specificity and high-
sensitivity regions, respectively, which are enlarged in Fig. 2
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0.88. In general, there are multiple predictors with AUROCs 
within a few percentage points of one another—including 
AlphaMissense, MutPred2, 3Cnet, PrimateAI-3D, and 
VEST4—indicating that a number of approaches all have 
strong performance. Among the deep learning methods that 
do not supervise on labeled pathogenic or disease-causing 
variants, those that model both protein structure and protein 
language (AlphaMissense and PrimateAI-3D) slightly out-
perform those that model only protein language (ESM-1b 
and EVE).

The above results were computed for each predictor on 
only the subset of variants from the evaluation dataset that 
were scored by that predictor, ignoring missing predictions. 
However, 8 out of 26 predictors do not report scores for at 
least 5% of the evaluation dataset (Fig. S3). Most notably, 
EVE does not supply predictions for 37% of the dataset. 
Therefore, in Fig. S4, we compare performance on the full 
dataset (n = 10, 456) to performance on the smaller set of 
variants that are scored by all predictors ( n = 4, 769) . 23 out 
of 26 predictors have higher performance on the latter set, 
suggesting that variants that are not scored by some predic-
tors tend to be harder to predict. However, we find that the 
ordering of predictors by AUROC is largely similar for both 
sets of variants.

ClinVar and HGMD data subsets

Pathogenic variants in our evaluation dataset were sourced 
from two databases with very different curation strategies. 
ClinVar is a publicly accessible database with variant classi-
fications primarily submitted by genetic testing laboratories, 
which apply ACMG/AMP guidelines for systematic clas-
sification of likely clinical relevance. HGMD is a licensed 
database that compiles disease-relevant variants from the 
primary literature, including basic research studies. Owing 
to its varied data sources, HGMD variant assertions are not 
subjected to a standardized, weighted evaluation of evidence 
like those in ClinVar.

To distinguish performance on the two databases, we con-
structed two subsets of our evaluation dataset: one contain-
ing pathogenic variants only from ClinVar, and the other 
containing pathogenic variants only from HGMD. In both 
cases, all benign variants were from ClinVar, since HGMD 
does not curate benign variants. Figure S5 shows the dif-
ference in performance on these two data subsets. All pre-
dictors have higher performance on the evaluation subset 
containing pathogenic variants from ClinVar, indicating a 
qualitative difference between pathogenic variants from the 
two databases. This difference is likely due in part to false 
positives among HGMD’s DM assertions (McLaughlin et al. 
2014; Sharo et al. 2023), though it may also reflect differ-
ences in variant predictability or complexity between the two 

databases. Notably, predictor rankings are largely similar in 
the two cases.

To further explore how model performance varies with 
the confidence level of variant classifications, we created a 
subset of our evaluation dataset containing only the Clin-
Var variants with two or more stars ( n = 47 ); i.e., variants 
with multiple submitters and no conflicts. Our original data-
set also included one-star, single-submitter classifications 
(with conflicting entries already excluded). On the higher-
confidence, two-star subset, nearly all models have higher 
performance (Fig. S6), with some even achieving a perfect 
AUROC. This improvement may indicate that our one-star 
assessments underestimate true accuracy, or that two-star 
variants have greater bias or circularity concerns (such as 
those discussed below). However, the size of the two-star 
subset is too small to draw robust conclusions about perfor-
mance or model rankings, or to perform many of our sub-
sequent analyses.

High‑specificity and high‑sensitivity performance

The AUROC metric used above aggregates performance 
across all possible decision rules, or score thresholds, for 
separating predicted benign variants from predicted patho-
genic variants. However, in practice, typically only a single 
decision rule is used for a particular application. While not 
all practitioners may choose the same decision rule, there 
are two general regimes in which computational predictors 
of missense variant pathogenicity are most likely to be used. 
First, for clinical variant interpretation, high confidence 
classifications of pathogenicity are required when report-
ing results to patients. Especially when reporting secondary 
genomic findings, which are putatively pathogenic variants 
of concern unrelated to the original reason for testing (Katz 
et al. 2020), false positives should be minimized to avoid 
overdiagnosis. Accordingly, practitioners will employ a 
decision rule with a low false positive rate (FPR), or equiva-
lently, high specificity. To measure performance in this set-
ting, we examined the high-specificity region ( FPR ≤ 5% ) 
of the ROC curves from Fig. 1 (Fig. 2a). (This particular 
5% FPR threshold is arbitrary but represents a useful deci-
sion rule in this scenario.) Second, for exploratory analysis 
of whole-exome or whole-genome sequencing data, high 
sensitivity is often desired. For example, in a research envi-
ronment, when analyzing data from a patient with an undi-
agnosed genetic disorder, computational predictors can be 
used to narrow down a list of VUS to those variants that 
should be prioritized in follow-up studies, ideally without 
mistaking the true pathogenic variant as benign. Accord-
ingly, practitioners will employ a decision rule with a high 
true positive rate (TPR), or equivalently, high sensitivity 
(Rastogi et al. 2022). To measure performance in this set-
ting, we examine the high-sensitivity region ( TPR ≥ 95% ) 
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(A)

(B)

Fig. 2  Performance in high-specificity and high-sensitivity 
regimes. We show enlarged portions of the ROC curves from Fig. 1 
to focus on (A) the high-specificity region ( FPR ≤ 5% ) and (B) the 
high-sensitivity region ( TPR ≥ 95% ) for meta-predictors (left) and 

individual predictors (right). We also show the normalized area under 
the curve in these regions (normalized such that a perfect classifier 
gets a score of 1 and a random classifier gets a score of 0.5). Predic-
tors marked by diamonds use allele frequency as a feature
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of the ROC curves (Fig. 2b). For both the high-specificity 
( FPR ≤ 5% ) and high-sensitivity ( TPR ≥ 95% ) regions of 
the ROC curves, we compute a normalized area under the 
curve in these regions (McClish 1989). Table S1 lists the 
full-curve AUROC, high-specificity AUROC, and high-
sensitivity AUROC for all 60 predictors included in our 
evaluation.

Notably, the performance of some predictors varies sub-
stantially between the two classification regimes. MetaRNN, 
which uses allele frequency as a predictive feature, excels in 
the high-sensitivity region, particularly for true positive rates 
that approach 100%. On the other hand, MISTIC performs 
well in high-specificity regions but struggles in high-sensi-
tivity regions, indicating its suitability for clinical variant 
classification rather than exploratory research. Among the 
individual predictors, PolyPhen2_HVAR has strong perfor-
mance in the high-sensitivity region, but lower performance 
relative to other predictors in the high-specificity region, 
whereas MutationAssessor and ESM-1b both have lower 
performance in the high-sensitivity region. These findings 
underscore the notion that different methods may be better 
suited for different clinical or research applications.

Effect of allele frequency

As illustrated in Fig. S1, pathogenic variants tend to have 
lower allele frequencies than benign variants in our evalua-
tion dataset. This trend is expected, as deleterious variants 
are more likely to be under negative selection and therefore 
less common in the population. However, for many clinical 
use cases, it is important to be able to distinguish very rare 
benign variants from pathogenic variants, for example in 

data from rare disease patients. Methods that utilize allele 
frequency as a predictive feature might struggle with variant 
classification in this setting. To evaluate the effect of allele 
frequency on performance, we binned the benign variants 
in our dataset by their allele frequencies and compared per-
formance when differentiating benign variants in each bin 
from the full set of pathogenic variants (Fig. 3). Three of 
the four methods that utilize allele frequency as a predictive 
feature—ClinPred, MetaRNN, and BayesDel_addAF, which 
are also top-performing predictors in the above analyses—
show a marked performance decrease on very rare benign 
variants. Despite this decline, MetaRNN and ClinPred still 
outperform most other predictors in distinguishing very 
rare benign variants from pathogenic variants, indicating 
that their predictions are not excessively reliant on allele 
frequency. VARITY_R also has notably high performance 
on very rare benign variants. The effect of including allele 
frequency as a predictive feature can also be illustrated by 
comparing the two versions of BayesDel with and without 
allele frequency. BayesDel_addAF (which performs 4% 
better than BayesDel_noAF on the full-dataset AUROC) 
has much higher performance in most of the benign allele 
frequency bins, but BayesDel_noAF outperforms Bayes-
Del_addAF in the lowest allele frequency bin.

To minimize the effect of allele frequency on our 
performance metrics, we created a subset of the evalu-
ation dataset in which allele frequencies were matched 
between pathogenic and benign variants. We then com-
pared performance on the full dataset to the allele fre-
quency matched dataset (Fig. S7). Methods that use allele 
frequency as a predictive feature have the largest drop in 
performance. Some methods that do not explicitly use 

Fig. 3  Allele frequency bias. 
Top-performing predictors are 
evaluated for distinguishing 
benign variants in different 
allele frequency bins from 
pathogenic variants. All 6103 
pathogenic variants were used 
in each evaluation, and benign 
variants were stratified by their 
allele frequencies obtained 
from the control cohort exomes 
in gnomAD v2.1.1 (Karcze-
wski et al. 2020). Predictors 
marked by diamonds use allele 
frequency as a feature
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allele frequency also have slightly lower performance on 
the allele frequency matched dataset, likely because allele 
frequency correlates with other features used by these 
tools (e.g. conservation scores).

Finally, while we used an upper allele frequency 
threshold of 0.05 to construct our dataset of low-fre-
quency variants (following the BA1 rule), some clini-
cal settings might use more stringent thresholds. To test 
whether our results are robust to the choice of allele fre-
quency threshold, we varied this upper bound from 0.05 
down to 0.001, which is commonly used in clinical set-
tings (Fig. S8). We find that performance remains largely 
unchanged across these thresholds, though methods utiliz-
ing allele frequency as a feature start to show marginal 
performance degradation at the 0.001 threshold. These 
results indicate that the choice of allele frequency thresh-
old does not significantly affect our conclusions.

Effect of gene label imbalance

Databases of disease-relevant variants, such as ClinVar 
and HGMD, have large imbalances in the ratio of patho-
genic to benign variants per gene, which may reflect bias 
in which variants have been studied rather than the true 
fitness landscape for those genes (Grimm et al. 2015). 
To gauge the degree of label imbalance in our evaluation 
dataset, we tested a simple baseline model, similar to the 
one outlined in Cheng et al. (2023). The baseline model 
assigns the same score to all variants in a gene, equal to 
the fraction of high-confidence missense variants from 
ClinVar and HGMD that were available before the cut-
off date for our evaluation dataset and were labeled as 
pathogenic or disease-causing in those databases. On our 
evaluation dataset, this simple model achieves an AUROC 
of 0.74 (Fig. S9), rivaling the performance of the best 
conservation score, phyloP100way_vertebrate.

To minimize the effect of gene label imbalance on our 
performance metrics, we created a subset of the evalua-
tion dataset containing an equal number of pathogenic and 
benign variants per gene. We then compared performance 
on the original dataset to the gene label-balanced dataset 
(Fig. 4). Many of the tested predictors, particularly many 
of the meta-predictors, have lower performance on the 
label-balanced dataset. However, predictors that do not 
train on labeled pathogenic or disease-causing variants 
(including but not limited to AlphaMissense, PrimateAI-
3D, CADD, Eigen, EVE, ESM-1b, phyloP, and VESPAl) 
do not show a degradation in performance. The largest 
increase in performance on the gene label-balanced data-
set is observed for SNPs&GO.

Effect of prior pathogenicity probability on evidence 
thresholds

A recently developed calibration method adopts a principled 
probabilistic approach to determine, for any given predictor, 
the thresholds at which its scores meet ACMG/AMP evi-
dence strengths (supporting to very strong) for both patho-
genicity and benignity (Tavtigian et al. 2018; Pejaver et al. 
2022) using an estimated prior probability of pathogenicity 
(Zeiberg et al. 2020). For different applications, particularly 
in research settings, a variety of prior probabilities may be 
relevant. Therefore, we applied this calibration method to all 
tested predictors at five different prior probabilities of patho-
genicity (0.02, 0.04, 0.06, 0.08, and 0.10) using our evalu-
ation dataset. Figures S10 and S11 display the dependence 
of the resulting score thresholds on the prior probability for 
meta-predictors and individual predictors, respectively. In all 
cases, lower prior pathogenicity probabilities lead to reduced 
evidence strengths for both benignity and pathogenicity. We 
note that due to the previously observed effect of allele fre-
quency on the performance of tools that explicitly include 
allele frequency as a predictive feature, in future studies such 
tools should be calibrated separately on variants within each 
allele frequency bin.

Discussion

We present the first full assessment of the ongoing CAGI 
Annotate-All-Missense challenge, evaluating the ability 
of computational variant effect prediction tools to classify 
missense variants as pathogenic or benign under a variety 
of evaluation conditions. In general, we find strong perfor-
mance of many predictors on an evaluation dataset of mis-
sense variants that were classified in ClinVar or added as 
disease-causing in HGMD after the close of the CAGI 6 
Annotate-All-Missense challenge in October 2021.

Rather than using a single overall performance metric, it 
is important to evaluate missense variant effect predictors in 
a variety of settings that are relevant to different clinical or 
research applications. We examined performance in high-
specificity and high-sensitivity settings separately, since 
high specificity is most relevant to clinical variant classi-
fication and high sensitivity is most relevant to exploratory 
analysis of whole-genome or whole-exome sequencing data 
in a research setting. We also examined performance on 
subsets of the evaluation dataset that were either matched 
for pathogenic and benign allele-frequency distributions or 
that included only very rare benign variants. These evalu-
ation settings are important for applications that already 
use allele frequency as a separate criterion for establishing 
benignity (e.g. BA1 (Ghosh et al. 2018)) or that aim to clas-
sify missense variants within a pool of very rare variants 
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from rare disease patients. In general, we find that predictors 
with strong performance tend to perform well across mul-
tiple settings, but that the specific predictor rankings differ 
between settings, suggesting that different predictors may 
be best suited to different clinical or research applications. 
We recommend that practitioners consider the most relevant 
evaluation data subsets or the most relevant portions of ROC 
curves for their application and choose methods based on 
performance in those settings, rather than examining only 
the full AUROC on the full evaluation dataset.

We also evaluated performance on a subset of the evalu-
ation dataset with equal numbers of pathogenic and benign 
variants per gene, due to substantial imbalance in the class 
labels of the available variants for many genes in the full 
dataset. This type of imbalance is present within clinical 
variant databases and leads predictors trained on variants 
from such databases to learn gene-level properties in addi-
tion to variant-level properties for variant classification, 
which tends to result in reduced performance on the gene 
label-balanced subset. However, interpreting performance 

on this subset is complicated by the fact that some gene 
label imbalance is reflective of true biology, such as a dif-
ferent tolerance to mutation for different genes, while some 
is due to current practices in clinical testing or bias in the 
amount of attention and research effort devoted to particular 
genes and diseases. Separating the different factors contrib-
uting to gene label imbalance is an ongoing challenge in the 
evaluation of missense variant effect predictors. As above, 
we note that while the specific predictor rankings differ on 
this evaluation subset, predictors with strong performance 
in other settings also tend to perform well in the gene label-
balanced setting.

For this assessment, we used recently classified or dis-
ease-relevant variants from clinical variant databases due 
to their relevance for evaluating clinical utility; however, 
we note that this source of evaluation data has several limi-
tations in addition to the gene label imbalance discussed 
above. Importantly, there are likely to be some errors in the 
labels provided by these databases, which limit the maxi-
mum achievable performance in our evaluation. Although 

Fig. 4  Gene label balancing. We constructed a gene label-balanced 
subset of our evaluation dataset containing an equal number of patho-
genic and benign variants per gene. This label-balanced dataset con-
sists of 2140 variants from 504 genes. Performance on the label-bal-

anced dataset (y-axis) is compared to performance on the full dataset 
from Fig. 1 (x-axis) for meta-predictors (left) and individual predic-
tors (right). Predictors marked by diamonds use allele frequency as a 
feature
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we attempted to reduce such errors by using high-confi-
dence labels from each database—variants with Benign 
or Pathogenic labels (excluding Likely Benign and Likely 
Pathogenic), non-conflicting interpretations, and either at 
least 1-star ratings from ClinVar or disease-causing (DM) 
label from HGMD—some incorrectly labeled variants 
likely remain. To account for possible systematic differ-
ences between the two databases, we report performance 
on the ClinVar and HGMD subsets of pathogenic variants 
separately, in addition to performance on the full evalua-
tion dataset. The substantially lower performance that we 
observe for all predictors on the HGMD disease-causing 
variants likely reflects differences in annotation practices 
between the two databases. These differences may contrib-
ute to the higher false positive rate previously reported for 
HGMD (McLaughlin et al. 2014; Sharo et al. 2023) but may 
also result in ClinVar containing variants that are inherently 
easier to classify. Nonetheless, predictor rankings are largely 
similar when evaluated on pathogenic variants from the two 
databases separately.

In addition, many missense variant effect predictors were 
trained using data from clinical variant databases, and any 
overlap between these training variants and the variants in 
the evaluation dataset would inflate the performance esti-
mates for such predictors. To avoid overlap, we specifically 
excluded variants from our evaluation dataset that had patho-
genicity information available in ClinVar, HGMD, or Uni-
Prot, which are the most commonly used databases for train-
ing predictors, prior to the close of the CAGI 6 challenge. 
However, it is possible that some evaluation set variants had 
been studied in the literature or included in other specialized 
databases prior to this date, where pathogenicity labels could 
have been available for training. Another limitation of using 
clinical variant databases for evaluation is the potential for 
circularity if predictions from any of the tested tools were 
considered when making pathogenicity classifications for 
the variants in the evaluation dataset. Based on the Richards 
et al. 2015 (Richards et al. 2015) ACMG/AMP guidelines, 
computational predictions had primarily been used only as 
supporting evidence for classification, but recent clinical 
recommendations (Pejaver et al. 2022) identified thresholds 
at which predictions from certain tools provide stronger lev-
els of evidence. Therefore, it is possible that computational 
predictions had some influence on the most recently clas-
sified variants, which would result in inflated performance 
estimates for those and related tools. To enable continued 
unbiased assessments of missense variant effect predictors 
in the future, it will be essential for clinical variant data-
bases to document the lines of evidence used for each variant 
classification.

Overall, our results indicate that currently available tools 
for missense variant effect prediction provide a powerful line 
of evidence for classifying missense variants of uncertain 

significance. While we find that meta-predictors tend to out-
perform their constituent individual predictors, a number of 
individual predictors have performance close to that of com-
monly used meta-predictors, particularly meta-predictors 
that do not explicitly include allele frequency as a predictive 
feature. We note continued progress in the field relative to 
the oldest and most cited tools, as well as recent advance-
ment in developing individual predictors that are not trained 
on variants from clinical variant databases, making them less 
susceptible to biases in the collection and interpretation of 
variant data. Several such predictors achieve strong perfor-
mance in our assessment, including predictors that use only 
unsupervised or self-supervised training schemes. These 
types of predictors are promising candidates to be incorpo-
rated into future meta-predictors and combined with other 
complementary information related to variant pathogenicity. 
This ongoing CAGI challenge will continue to evaluate such 
developments and to assess state-of-the-art methods as the 
field progresses.

Methods

Evaluation dataset construction

We created an evaluation dataset by incorporating variants 
from both the April 4, 2023 version of ClinVar (Landrum 
et al. 2018), which contains both pathogenic and benign 
variants, and the 2023.1 Professional version of the Human 
Gene Mutation Database (HGMD) (Stenson et al. 2020), 
which contains only pathogenic variants.

We assigned molecular effects to all variants using SnpEff 
(Cingolani et al. 2012), which was configured with the 
Ensembl 105 gene set, and retained all single-nucleotide var-
iants that were annotated as missense in at least one affected 
transcript, excluding variants that were assigned a higher 
impact annotation (HIGH impact or splice_region_
variant) in another transcript.

To ensure that all predictors were tested on variants that 
they had not previously seen during training, we removed (1) 
all variants, except those of uncertain significance, present 
in the November 7, 2021 version of ClinVar, (2) all DM vari-
ants present in the 2021.4 version of HGMD, (3) all variants, 
expect those of uncertain significance, present in the 2021.4 
version of the UniProt Humsavar database (McGarvey et al. 
2019), and (4) variants in the AlphaMissense validation set 
(used for early stopping). These cutoff dates were chosen 
based on the CAGI 6 Annotate-All-Missense challenge, 
which closed on October 11, 2021. Motivated by PM5 
(Richards et al. 2015), we also excluded variants affecting 
the same codon as any of the aforementioned removed vari-
ants to minimize data leakage (Fig. S12).
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Among the remaining variants, we only retained those 
with high-confidence pathogenicity classifications in Clin-
Var (either Benign or Pathogenic with 1 star or above, 
except those with conflicting interpretations) and high-con-
fidence disease-causing (DM) HGMD variants. We further 
removed variants that can be inferred to be benign by their 
allele frequency in gnomAD exomes v2.1.1 (Karczewski 
et al. 2020), as per the revised BA1 criterion (Ghosh et al. 
2018). Specifically, we removed variants with a control 
global allele frequency > 0.05 or control continental allele 
frequency > 0.05 with at least 2000 observed alleles in any 
of the five major continental populations: African/African 
American (AFR), Latino/Admixed American (AMR), East 
Asian (EAS), South Asian (SAS), and non-Finnish European 
(NFE). Furthermore, we discarded all variants that were not 
present in a Mendelian disease gene. For the purposes of 
this study, we consider Mendelian disease genes ( n = 3465 ) 
to be those with at least one high-confidence (as described 
above) pathogenic variant of any mutation class in the April 
4, 2023 version of ClinVar. Lastly, we excluded variants that 
predictors submitting to the CAGI 6 Annotate-All-Missense 
challenge were not asked to score. Our final dataset contains 
6,103 pathogenic and 4,353 benign variants.

Procuring predictions

We evaluated 60 missense variant effect predictors, none of 
which were trained on clinical pathogenicity data released 
after the CAGI 6 Annotate-All-Missense challenge deadline.

CAGI 6 Annotate-All-Missense submissions. Six teams 
submitted a total of twelve models to the challenge. Submit-
ters were asked to provide a prediction score for a pre-speci-
fied list of missense variants throughout the genome (based 
on dbNSFP v4 (Liu et al. 2020)), of which our evaluation 
dataset is a subset. All team identities and model details 
were hidden until the conclusion of the analysis.

Predictors available in dbNSFP. We obtained predictions 
for 40 tools from the dbNSFP v4.2a database (released on 
April 6, 2021) (Liu et al. 2020). Version 4.2a of the database 
was chosen as the last release before the CAGI 6 Annotate-
All-Missense challenge deadline. For each predictor, we 
extracted the rank score of all dataset variants using SnpSift 
(Cingolani et al. 2012). The rank score of a variant is its 
percentile, scaled between 0 and 1, among all variants in 
dbNSFP, with higher rank scores corresponding to more 
deleterious predictions. If a variant was assigned multiple 
rank scores (e.g. if the method makes separate predictions 
for each affected transcript), we took the highest rank score.

VARITY. Predictions from the VARITY class of models 
(Wu et al. 2021) (VARITY_R, VARITY_R_LOO, VAR-
ITY_ER, VARITY_ER_LOO), were added to dbNSFP 
v4.4a (released on May 6, 2023 after the challenge deadline). 
However, the VARITY models were trained on ClinVar and 

HGMD data released prior to the challenge deadline (F. Roth 
and J. Wu, personal communication, July 12, 2023). The 
same procedure described above was used to extract VAR-
ITY scores from dbNSFP v4.4a.

MutPred2. Predictions from MutPred2 (Pejaver et al. 
2020) on the evaluation dataset were provided by the origi-
nal authors (V. Pejaver, personal communication, August 25, 
2023). Scores were provided per affected isoform, and the 
most pathogenic score was chosen.

PrimateAI-3D. Predictions from PrimateAI-3D (Sunda-
ram et al. 2018) for most human missense variants were 
provided by Illumina. If a variant mapped to multiple genes, 
the most pathogenic score was chosen.

ESM-1b. ESM-1b (Rives et  al. 2021) variant effect 
scores were computed for all possible amino acid changes 
in most proteins in the human proteome by Brandes et al. 
(2023). SnpSift was used to annotate each dataset variant 
with affected Ensembl transcripts and corresponding amino 
acid changes. Because ESM-1b scores are indexed by Uni-
Prot identifiers, we used the UniProt ID mapping service 
(https:// www. unipr ot. org/ id- mappi ng) to convert Ensembl 
transcripts to UniProt IDs. If a variant mapped to multiple 
proteins, the most pathogenic score was chosen.

EVE. EVE (Frazer et al. 2021) provides variant effect pre-
dictions in the form of VCF files for 2951 human proteins. 
The VCF files were downloaded on May 23, 2023 from 
https:// evemo del. org/ downl oad/ bulk. If a variant mapped to 
multiple proteins, the most pathogenic score was chosen.

AlphaMissense. We downloaded AlphaMissense (Cheng 
et al. 2023) scores for variants in canonical isoforms and 
non-canonical isoforms on September 19, 2023 from https:// 
conso le. cloud. google. com/ stora ge/ brows er/ dm_ alpha misse 
nse. If a variant mapped to multiple isoforms, the most path-
ogenic score was chosen.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00439- 025- 02732-2.

Acknowledgements The CAGI Annotate-All-Missense challenge was 
originally proposed by Sean Mooney.

Author Contributions R.R. and R.Ch. performed the analyses. R.R., 
R.Ch., S.L., P.R., S.E.B., and N.M.I. designed the assessment and 
interpreted results. S.E.B. and G.A. designed and developed the origi-
nal challenge, respectively. P.R. organized the challenge for CAGI 6. 
G.A., A.K., Y.P., and C.B. provided technical support for the challenge. 
C.L. and X.L. provided dbNSFP variants for the challenge. C.L., K.L., 
J.W., D.W.K., C.K., G.B., P.L.M., C.S., R.Ca., K.C., T.W., O.P., F.A., 
G.C., F.P., D.R., W.V., M.R., C.M., T.O., B.R., and X.L. participated 
as predictors in the challenge. M.M. and D.N.C. curated HGMD data 
for the assessment. T.B. and V.P. provided MutPred2 predictions and 
guidance on the evidence threshold calibration analysis. R.R., R.Ch., 
P.R., S.E.B., and N.M.I. wrote the manuscript with feedback from all 
authors.

Funding This work was supported in part by the U.S. National Insti-
tutes of Health (NIH) awards U24HG007346 (S.E.B.), U41HG007346 

https://www.uniprot.org/id-mapping
https://evemodel.org/download/bulk
https://console.cloud.google.com/storage/browser/dm_alphamissense
https://console.cloud.google.com/storage/browser/dm_alphamissense
https://console.cloud.google.com/storage/browser/dm_alphamissense
https://doi.org/10.1007/s00439-025-02732-2


291Human Genetics (2025) 144:281–293 

(S.E.B.), R13HG006650 (S.E.B.), and U01HG012022 (P.R.). N.M.I. 
is a Chan Zuckerberg Biohub Investigator. We also thank the Belgian 
Fund for Scientific Research (F.R.S.-FNRS) and the Research Founda-
tion Flanders (FWO) for financial support.

 Data Availability No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, 
Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server 
for predicting damaging missense mutations. Nature Methods 
7(4):248–249

Alirezaie N, Kernohan KD, Hartley T, Majewski J, Hocking TD (2018) 
ClinPred: prediction tool to identify disease-relevant nonsynony-
mous single-nucleotide variants. The American Journal of Human 
Genetics 103(4):474–483

Ancien F, Pucci F, Godfroid M, Rooman M (2018) Prediction and 
interpretation of deleterious coding variants in terms of protein 
structural stability. Scientific Reports 8(1):4480

Bergquist T, Stenton SL, Nadeau EA, Byrne AB, Greenblatt MS, 
Harrison SM, Tavtigian SV, O’Donnell-Luria A, Biesecker LG, 
Radivojac P, et al. (2025) Calibration of additional computational 
tools expands ClinGen recommendation options for variant clas-
sification with PP3/BP4 criteria. Genetics in Medicine

Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V (2023) Genome-
wide prediction of disease variant effects with a deep protein lan-
guage model. Nature Genetics 55(9):1512–1522

Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R 
(2009) Functional annotations improve the predictive score of 
human disease-related mutations in proteins. Human Mutation 
30(8):1237–1244

Carter H, Douville C, Stenson PD, Cooper DN, Karchin R (2013) Iden-
tifying mendelian disease genes with the variant effect scoring 
tool. BMC Genomics 14(3):1–16

Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, Applebaum T, Prit-
zel A, Wong LH, Zielinski M, Sargeant T et al (2023) Accurate 
proteome-wide missense variant effect prediction with AlphaMis-
sense. Science 381(6664):7492

Chennen K, Weber T, Lornage X, Kress A, Böhm J, Thompson J, 
Laporte J, Poch O (2020) MISTIC: A prediction tool to reveal 
disease-relevant deleterious missense variants. PLoS One 
15(7):0236962

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting 
the functional effect of amino acid substitutions and indels. PLoS 
One 7(10):46688

Chun S, Fay JC (2009) Identification of deleterious mutations within 
three human genomes. Genome Research 19(9):1553–1561

Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X 
(2012) Using Drosophila melanogaster as a model for genotoxic 
chemical mutational studies with a new program, SnpSift. Fron-
tiers in Genetics 3:35

Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land SJ, Lu X, 
Ruden DM (2012) A program for annotating and predicting the 
effects of single nucleotide polymorphisms, SnpEff: SNPs in the 
genome of Drosophila melanogaster strain w1118; iso-2; iso-3. 
Fly 6(2):80–92

Critical Assessment of Genome Interpretation Consortium (2024) 
CAGI, the Critical Assessment of Genome Interpretation, estab-
lishes progress and prospects for computational genetic variant 
interpretation methods. Genome Biology 25(1):53

Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou 
S (2010) Identifying a high fraction of the human genome to be 
under selective constraint using GERP++. PLoS Computational 
Biology 6(12):1001025

Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X (2014) 
Comparison and integration of deleteriousness prediction methods 
for nonsynonymous SNVs in whole exome sequencing studies. 
Human Molecular Genetics 24(8):2125–2137

Feng B-J (2017) PERCH: a unified framework for disease gene prior-
itization. Human Mutation 38(3):243–251

Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, Gal Y, Marks 
DS (2021) Disease variant prediction with deep generative models 
of evolutionary data. Nature 599(7883):91–95

Freedman D, Diaconis P (1981) On the histogram as a density esti-
mator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und 
verwandte Gebiete 57(4):453–476

Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang 
Y, Dietrich AS, Fiziev PP, Kuderna LF et al (2023) The landscape 
of tolerated genetic variation in humans and primates. Science 
380(6648):8153

Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X 
(2009) Identifying novel constrained elements by exploiting 
biased substitution patterns. Bioinformatics 25(12):54–62

Ghosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG (2018) Clin-
Gen Sequence Variant Interpretation Working Group: Updated 
recommendation for the benign stand-alone ACMG/AMP crite-
rion. Human Mutation 39(11):1525–1530

Grimm DG, Azencott C-A, Aicheler F, Gieraths U, MacArthur DG, 
Samocha KE, Cooper DN, Stenson PD, Daly MJ, Smoller JW, 
Duncan LE, Borgwardt KM (2015) The evaluation of tools used 
to predict the impact of missense variants is hindered by two types 
of circularity. Human Mutation 36(5):513–523

Hu Z, Yu C, Furutsuki M, Andreoletti G, Ly M, Hoskins R, Adhikari 
AN, Brenner SE (2019) VIPdb, a genetic Variant Impact Predictor 
Database. Human Mutation 40(9):1202–1214

Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, 
Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D et al (2016) 
REVEL: an ensemble method for predicting the pathogenicity of 
rare missense variants. The American Journal of Human Genetics 
99(4):877–885

Ionita-Laza I, McCallum K, Xu B, Buxbaum JD (2016) A spectral 
approach integrating functional genomic annotations for coding 
and noncoding variants. Nature Genetics 48(2):214–220

Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, 
Cooper DN, Bernstein JA, Bejerano G (2016) M-CAP eliminates 
a majority of variants of uncertain significance in clinical exomes 
at high sensitivity. Nature Genetics 48(12):1581–1586

http://creativecommons.org/licenses/by/4.0/


292 Human Genetics (2025) 144:281–293

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang 
Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP et al (2020) 
The mutational constraint spectrum quantified from variation in 
141,456 humans. Nature 581(7809):434–443

Katsonis P, Wilhelm K, Williams A, Lichtarge O (2022) Genome 
interpretation using in silico predictors of variant impact. Human 
Genetics 141(10):1549–1577

Katz AE, Nussbaum RL, Solomon BD, Rehm HL, Williams MS, 
Biesecker LG (2020) Management of secondary genomic findings. 
The American Journal of Human Genetics 107(1):3–14

Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of cod-
ing non-synonymous variants on protein function using the SIFT 
algorithm. Nature Protocols 4:1073–1081

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, 
Gu B, Hart J, Hoffman D, Jang W et al (2018) ClinVar: improv-
ing access to variant interpretations and supporting evidence. 
Nucleic Acids Research 46(D1):1062–1067

Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, 
Mooney SD, Radivojac P (2009) Automated inference of 
molecular mechanisms of disease from amino acid substitu-
tions. Bioinformatics 25(21):2744–2750

Li C, Zhi D, Wang K, Liu X (2022) MetaRNN: differentiating rare 
pathogenic and rare benign missense SNVs and InDels using 
deep learning. Genome Medicine 14(1):115

Lin YJ, Menon AS, Hu Z, Brenner SE (2024) Variant Impact Pre-
dictor database (VIPdb), version 2: trends from three decades 
of genetic variant impact predictors. Hum Genomics 18(1):90

Liu X, Li C, Mou C, Dong Y, Tu Y (2020) dbNSFP v4: a comprehen-
sive database of transcript-specific functional predictions and 
annotations for human nonsynonymous and splice-site SNVs. 
Genome Medicine 12(1):1–8

Lu Q, Hu Y, Sun J, Cheng Y, Cheung K-H, Zhao H (2015) A statisti-
cal framework to predict functional non-coding regions in the 
human genome through integrated analysis of annotation data. 
Scientific Reports 5:10576

Malhis N, Jacobson M, Jones SJM, Gsponer J (2020) LIST-S2: tax-
onomy based sorting of deleterious missense mutations across 
species. Nucleic Acids Research 48(W1):154–161

Marquet C, Heinzinger M, Olenyi T, Dallago C, Erckert K, Bern-
hofer M, Nechaev D, Rost B (2022) Embeddings from protein 
language models predict conservation and variant effects. 
Human Genetics 141(10):1629–1647

McClish DK (1989) Analyzing a portion of the ROC curve. Medical 
Decision Making 9(3):190–195

McGarvey PB, Nightingale A, Luo J, Huang H, Martin MJ, Wu C 
(2019) UniProt Consortium: UniProt genomic mapping for deci-
phering functional effects of missense variants. Human Muta-
tion 40(6):694–705

McLaughlin HM, Ceyhan-Birsoy O, Christensen KD, Kohane IS, 
Krier J, Lane WJ, Lautenbach D, Lebo MS, Machini K, MacRae 
CA et al (2014) A systematic approach to the reporting of medi-
cally relevant findings from whole genome sequencing. BMC 
Medical Genetics 15:1–12

McVicker G, Gordon D, Davis C, Green P (2009) Widespread 
genomic signatures of natural selection in hominid evolution. 
PLoS Genetics 5(5):1000471

Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, 
Mort M, Cooper DN, Sebat J, Iakoucheva LM et al (2020) Infer-
ring the molecular and phenotypic impact of amino acid vari-
ants with MutPred2. Nature Communications 11(1):5918

Pejaver V, Byrne AB, Feng B-J, Pagel KA, Mooney SD, Karchin 
R, O’Donnell-Luria A, Harrison SM, Tavtigian SV, Greenblatt 
MS et al (2022) Calibration of computational tools for missense 
variant pathogenicity classification and ClinGen recommenda-
tions for PP3/BP4 criteria. The American Journal of Human 
Genetics 109(12):2163–2177

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detec-
tion of nonneutral substitution rates on mammalian phylogenies. 
Genome Research 20(1):110–121

Qi H, Zhang H, Zhao Y, Chen C, Long JJ, Chung WK, Guan Y, Shen 
Y (2021) MVP predicts the pathogenicity of missense variants 
by deep learning. Nature Communications 12(1):510

Quang D, Chen Y, Xie X (2014) DANN: a deep learning approach 
for annotating the pathogenicity of genetic variants. Bioinfor-
matics 31(5):761–763

Raimondi D, Tanyalcin I, Ferté J, Gazzo A, Orlando G, Lenaerts 
T, Rooman M, Vranken W (2017) DEOGEN2: prediction 
and interactive visualization of single amino acid variant 
deleteriousness in human proteins. Nucleic Acids Research 
45(W1):201–206

Rastogi R, Stenson PD, Cooper DN, Bejerano G (2022) X-CAP 
improves pathogenicity prediction of stopgain variants. Genome 
Medicine 14(1):1–11

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) 
CADD: predicting the deleteriousness of variants throughout the 
human genome. Nucleic Acids Research 47(D1):886–894

Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of 
protein mutations: application to cancer genomics. Nucleic Acids 
Research 39(17):118–118

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody 
WW, Hegde M, Lyon E, Spector E et al (2015) Standards and 
guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical 
Genetics and Genomics and the Association for Molecular Pathol-
ogy. Genetics in Medicine 17(5):405–423

Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, 
Zitnick CL, Ma J et al (2021) Biological structure and function 
emerge from scaling unsupervised learning to 250 million pro-
tein sequences. Proceedings of the National Academy of Sciences 
118(15):2016239118

Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell 
C (2018) FATHMM-XF: accurate prediction of pathogenic point 
mutations via extended features. Bioinformatics 34(3):511–513

Rost B, Radivojac P, Bromberg Y (2016) Protein function in precision 
medicine: deep understanding with machine learning. FEBS Let-
ters 590(15):2327–2341

Samocha KE, Kosmicki JA, Karczewski KJ, O’Donnell-Luria AH, 
Pierce-Hoffman E, MacArthur DG, Neale BM, Daly MJ (2017) 
Regional missense constraint improves variant deleteriousness 
prediction. bioRxiv, 148353

Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) Mutation-
Taster evaluates disease-causing potential of sequence alterations. 
Nature Methods 7:575–576

Sharo AG, Zou Y, Adhikari AN, Brenner SE (2023) ClinVar and 
HGMD genomic variant classification accuracy has improved over 
time, as measured by implied disease burden. Genome Medicine 
15(1):51

Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards 
KJ, Day INM, Gaunt TR (2013) Predicting the functional, molec-
ular, and phenotypic consequences of amino acid substitutions 
using hidden Markov models. Human Mutation 34(1):57–65

Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day INM, 
Gaunt TR, Campbell C (2015) An integrative approach to pre-
dicting the functional effects of non-coding and coding sequence 
variation. Bioinformatics 31(10):1536–1543

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom 
K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, 
Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) 
Evolutionarily conserved elements in vertebrate, insect, worm, 
and yeast genomes. Genome Research 15(8):1034–1050

Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, 
Hayden M, Heywood S, Millar DS, Phillips AD et al (2020) 



293Human Genetics (2025) 144:281–293 

The Human Gene Mutation Database (HGMD®): optimizing its 
use in a clinical diagnostic or research setting. Human Genetics 
139:1197–1207

Stenton SL, Pejaver V, Bergquist T, Biesecker LG, Byrne AB, Nadeau 
EA, Greenblatt MS, Harrison SM, Tavtigian SV, Radivojac P 
et al (2024) Assessment of the evidence yield for the calibrated 
PP3/BP4 computational recommendations. Genetics in Medicine 
26(11):101213

Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, 
Fritzilas N, Hakenberg J, Dutta A, Shon J et al (2018) Predicting 
the clinical impact of human mutation with deep neural networks. 
Nature Genetics 50(8):1161–1170

Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, 
Boucher KM, Biesecker LG (2018) ClinGen Sequence Variant 
Interpretation Working Group: Modeling the ACMG/AMP variant 
classification guidelines as a Bayesian classification framework. 
Genetics in Medicine 20(9):1054–1060

Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT mis-
sense predictions for genomes. Nature Protocols 11(1):1–9

Won D-G, Kim D-W, Woo J, Lee K (2021) 3Cnet: pathogenicity pre-
diction of human variants using multitask learning with evolution-
ary constraints. Bioinformatics 37(24):4626–4634

Wu Y, Liu H, Li R, Sun S, Weile J, Roth FP (2021) Improved patho-
genicity prediction for rare human missense variants. The Ameri-
can Journal of Human Genetics 108(10):1891–1906

Zeiberg D, Jain S, Radivojac P (2020) Fast nonparametric estimation 
of class proportions in the positive-unlabeled classification set-
ting. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 34, pp. 6729–6736

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Ruchir Rastogi1  · Ryan Chung2  · Sindy Li3 · Chang Li4 · Kyoungyeul Lee5 · Junwoo Woo5 · Dong‑Wook Kim5 · 
Changwon Keum5 · Giulia Babbi6 · Pier Luigi Martelli6 · Castrense Savojardo6 · Rita Casadio6 · Kirsley Chennen7 · 
Thomas Weber7 · Olivier Poch7 · François Ancien8,9 · Gabriel Cia8,9 · Fabrizio Pucci8,9 · Daniele Raimondi10,19 · 
Wim Vranken9,11 · Marianne Rooman8,9 · Céline Marquet12 · Tobias Olenyi12 · Burkhard Rost12 · Gaia Andreoletti3,18 · 
Akash Kamandula13 · Yisu Peng13 · Constantina Bakolitsa3 · Matthew Mort14 · David N. Cooper14 · 
Timothy Bergquist15 · Vikas Pejaver15,16 · Xiaoming Liu4 · Predrag Radivojac13  · Steven E. Brenner2,3  · 
Nilah M. Ioannidis1,2,17 

 * Ruchir Rastogi 
 ruchir_rastogi@berkeley.edu

 * Steven E. Brenner 
 brenner@compbio.berkeley.edu

 * Nilah M. Ioannidis 
 nilah@berkeley.edu

1 Department of Electrical Engineering and Computer 
Sciences, University of California, Berkeley, CA, USA

2 Center for Computational Biology, University of California, 
Berkeley, CA, USA

3 Department of Plant and Microbial Biology, University 
of California, Berkeley, CA, USA

4 USF Genomics, College of Public Health, University 
of South Florida, Tampa, FL, USA

5 3billion Inc., Seoul, South Korea
6 Bologna Biocomputing Group, Department of Pharmacy 

and Biotechnology, University of Bologna, Bologna, Italy
7 University of Strasbourg, Strasbourg, France
8 Computational Biology and Bioinformatics, Université Libre 

de Bruxelles, Brussels, Belgium

9 Interuniversity Institute of Bioinformatics in Brussels, 
ULB-VUB, Brussels, Belgium

10 ESAT-STADIUS, KU Leuven, Leuven, Belgium
11 Structural Biology Brussels, Vrije Universiteit Brussel, 

Brussels, Belgium
12 Department of Informatics, Bioinformatics 

and Computational Biology, Technical University of Munich, 
Munich, Germany

13 Khoury College of Computer Sciences, Northeastern 
University, Boston, MA, USA

14 Institute of Medical Genetics, School of Medicine, Cardiff 
University, Cardiff, UK

15 Institute for Genomic Health, Icahn School of Medicine 
at Mount Sinai, New York, NY, USA

16 Department of Genetics and Genomic Sciences, Icahn School 
of Medicine at Mount Sinai, New York, NY, USA

17 Chan Zuckerberg Biohub, San Francisco, CA, USA
18 Present Address: Sage Bionetworks, Seattle, WA, USA
19 Institut de Génétique Moléculaire de Montpellier, Université 

de Montpellier, Montpellier, France

http://orcid.org/0000-0001-7288-1714
http://orcid.org/0000-0002-6799-3866
http://orcid.org/0000-0002-6769-0793
http://orcid.org/0000-0001-7559-6185
http://orcid.org/0000-0001-9628-8229

	Critical assessment of missense variant effect predictors on disease-relevant variant data
	Abstract
	Introduction
	Results
	Evaluation dataset
	Missense variant effect predictors
	Full ROC curve performance
	ClinVar and HGMD data subsets
	High-specificity and high-sensitivity performance
	Effect of allele frequency
	Effect of gene label imbalance
	Effect of prior pathogenicity probability on evidence thresholds

	Discussion
	Methods
	Evaluation dataset construction
	Procuring predictions

	Acknowledgements 
	References




