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Accurately estimating performance accuracy of machine learning classifiers is of fundamental impor-
tance in biomedical research with potentially societal consequences upon the deployment of best-
performing tools in everyday life. Although classification has been extensively studied over the past
decades, there remain understudied problems when the training data violate the main statistical
assumptions relied upon for accurate learning and model characterization. This particularly holds
true in the open world setting where observations of a phenomenon generally guarantee its presence
but the absence of such evidence cannot be interpreted as the evidence of its absence. Learning from
such data is often referred to as positive-unlabeled learning, a form of semi-supervised learning where
all labeled data belong to one (say, positive) class. To improve the best practices in the field, we here
study the quality of estimated performance in positive-unlabeled learning in the biomedical domain.
We provide evidence that such estimates can be wildly inaccurate, depending on the fraction of pos-
itive examples in the unlabeled data and the fraction of negative examples mislabeled as positives in
the labeled data. We then present correction methods for four such measures and demonstrate that
the knowledge or accurate estimates of class priors in the unlabeled data and noise in the labeled
data are sufficient for the recovery of true classification performance. We provide theoretical support
as well as empirical evidence for the efficacy of the new performance estimation methods.

Keywords: Positive-unlabeled learning, AlphaMax, Matthews correlation, accuracy estimation.

1. Introduction

Machine learning-based prediction has become the cornerstone of modern computational bi-
ology and biomedical data science. Numerous approaches have been developed and applied in
these fields, including those related to the function of biological macromolecules,1,2 the effect of
genomic variation,3 precision medicine,4,5 or computer-aided clinical decision making.6 A sig-
nificant part of this research considers binary classification where the learning algorithms have
been extensively studied and characterized, both theoretically and empirically.7 The objective
in binary classification is to train (learn) a model (function) that can distinguish one type
of objects from another; e.g., predicting the effect of single nucleotide variants as pathogenic
or benign.3 However, these algorithms have a broader value because multi-class, multi-label
and even structured-output learning are often framed as extensions of binary classification,
sometimes in a straightforward manner.8

In addition to learning, binary classification has also been extensively studied with re-
spect to the performance evaluation of predictive models.7 Typically, the prediction algorithm
outputs a real-valued score for a given input example, after which a thresholding function
is applied to map the prediction score into one of the elements of the output space (e.g.,
pathogenic vs. benign). In some cases, one first chooses the decision threshold and then com-
putes the performance measures for the model on the binarized predictions. In others, calcu-
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lating the performance measures entails some form of aggregating over all decision thresholds.
The first category of evaluation metrics includes classification accuracy, or the probability
that a randomly selected, previously unseen, example from the population will be correctly
classified. Other, more specialized measures, include the true positive rate (sensitivity, recall),
true negative rate (specificity, 1 − false positive rate) or precision (positive predictive value, 1
− false discovery rate).7 These measures may also be combined to compute derived quantities
such as the balanced sample accuracy, F-measure7 or Matthews correlation coefficient.9 The
second group of metrics include two-dimensional plots such as the Receiver Operating Char-
acteristic (ROC) curve and the precision-recall curve that visualize the trade-offs between
various quantities as a function of the decision threshold. These curves can be further sum-
marized into a single quantity by computing the area under the curve. Alternatively, metrics
such as F-measure can be computed for each decision threshold to report the maximum value
over all thresholds; e.g., Fmax.10 This allows each algorithm to select its own decision threshold
and also comparisons between algorithms that binarize their outputs with those that do not.
It is worth mentioning that cost-sensitive learning and evaluation,11,12 as well as information-
theoretic approaches13,14 can also be considered in certain classification scenarios; however,
these evaluation strategies are beyond the scope of this work.

Although binary classification has been extensively studied and is well understood,7 there
remain problems related to the open world setting that require attention. Open world refers to
the framework in knowledge representation and artificial intelligence in which the observation
of a phenomenon generally establishes its presence; however, the lack of the observation cannot
be interpreted as the evidence of absence of the phenomenon. One such example is protein
function assignment,15 where an experimental assay can definitively establish, say, that a
particular protein is an enzyme. High-throughput experiments can similarly establish the
presence of the phenomenon, albeit with some error as in generating protein-protein interaction
networks using yeast two-hybrid systems.16 However, no protein has ever been experimentally
assayed for all functions and, additionally, an unsuccessful experiment does not necessarily
establish the lack of particular activity. This is because an absence of required molecular
partners, an inadequate set of experimental conditions (e.g., pH, temperature17), or a human
error can combine to result in a failed experiment.b When presented with such data, one is
de facto given a set of positive examples (e.g., enzymes) and a set of unlabeled examples
(e.g., a sample of all proteins) and the learning setting is referred to as positive-unlabeled
learning.18 Although the unlabeled set contains an unknown fraction of positive examples,
the standard practice ignores this fact and considers all unlabeled examples to be negative.
One then trains a prediction model (interestingly, this approach is optimal for a wide range
of loss functions referred to as composite loss functions19) and estimates its performance,
after which the predictor is deployed with a particular estimated quality. In other words,
machine learning models in the positive-unlabeled setting are trained/evaluated on positive
vs. unlabeled data, whereas the ideal predictor, certainly one expected by the downstream
user, would be trained/evaluated on positive vs. negative data. Following Elkan and Noto,20

bEven with exhaustive experimentation and no human error, the “negative” findings are rarely published.
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we will refer to the predictors trained on positive vs. negative data as traditional classifiers
and models trained on positive vs. unlabeled data as non-traditional classifiers. Similarly, we
will refer to the two different types of evaluation as traditional and non-traditional evaluation.

The primary objective of this work is to study non-traditional classifiers and the adverse
effects of non-traditional performance evaluation when the intent is to carry out a traditional
evaluation. We show that the traditional performance of these classifiers can be recovered with
the knowledge or an accurate estimate of class priors (i.e., the fractions of the positive and
negative examples in a representative unlabeled set) and the labeling noise (i.e., the fraction of
negative examples in the labeled data set that have been mistakenly labeled as positive). We
conduct extensive and systematic experiments to evaluate the proposed methods and draw
conclusions pertaining to the best practices of performance evaluation in the field.

2. Methods

2.1. Performance measures: definitions and estimation

In this section, we give definitions of several widely used performance measures and their
standard estimation formulas. To this end, we first describe the probabilistic framework used
in the definitions. Consider a binary classification problem of mapping an input x ∈ X to its
class label y ∈ Y = {0, 1}. Assume that x and y come from an underlying, fixed but unknown
joint distribution h(x, y) over X × Y.c Let h(x) denote its marginal density over x. It follows
that h(x) can be expressed as a two-component mixture:

h(x) = πh1(x) + (1− π)h0(x), (1)

for all x ∈ X , where h1 and h0 represent the distributions of the positive and negative examples
(inputs), respectively, and π ∈ (0, 1) is the proportion of positive examples in h, also referred
to as the class prior for the positive class.

Next, we give definitions of the three most fundamental performance measures: (1) true
positive rate (γ), the probability that a positive example is correctly classified, (2) false positive
rate (η), the probability that a negative example is incorrectly classified as positive, and (3)
precision (ρ), the probability that a positive prediction is correct. Mathematically, given a
binary classifier ŷ : X → Y, they are defined as

γ = Eh1
[ŷ(x)], η = Eh0

[ŷ(x)], ρ =
πEh1

[ŷ(x)]

Eh[ŷ(x)]
=
πγ

θ
(2)

where Eh denotes expectations w.r.t. h and θ = Eh[ŷ(x)] is the probability of a positive predic-
tion. A classifier with a high γ and ρ, but low η is desirable. However, these measures are at
odds with each other; i.e., typically, increasing a classifier’s γ leads to a smaller ρ and a larger
η. A classifier that always predicts either 0 or 1 can optimize them individually at the expense
of others. Consequently, they are often used together to gauge a classifier’s performance; for
example, in an ROC curve analysis. Moreover, other performance measures combine them
explicitly or implicitly in their formulation. Though θ itself is not widely used as a measure

cFor convenience, we use terms density and distribution interchangeably.
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Predicted
positive

Predicted
negative

Positive tp fn
Negative fp tn

(a)

γ̂ = tp
tp+fn π̂ = tp+fn

tp+fn+tn+fp

η̂ = fp
tn+fp θ̂ = tp+fp

tp+fn+tn+fp

(b)

Table 1: (a) Confusion matrix of ŷ(x) on a labeled data set. (b) Standard estimation of γ, η, π and θ.

of classifier performance, it also appears in the expression of several important measures (a
classifier for which θ > π is sometimes said to “overpredict”). A particularly useful expression
of θ in terms of γ, η and π is derived as follows.

θ = Eh[ŷ(x)] = πEh1
[ŷ(x)] + (1− π)Eh0

[ŷ(x)] = πγ + (1− π)η (3)

In this paper, we focus on four performance measures that are widely used in biomedical
research: (1) Accuracy (acc), the probability that a random example is correctly classified
(2) Balanced accuracy (bacc), the average accuracy on the positive and negative examples,
weighed equally, (3) F-measure (F ), the harmonic mean of γ and ρ,d and (4) Matthews corre-
lation coefficient (mcc), the correlation between the true and predicted class. Mathematically,
they are defined as follows:

acc = πγ + (1− π)(1− η) (4) bacc =
1 + γ − η

2
(5)

F =
1

1
2 ·

1
γ + 1

2 ·
1
ρ

=
2πγ

π + θ
(6) mcc =

Eh[y · ŷ(x)]− Eh[y] · Eh[ŷ(x)]√
Vh[y] · Vh[ŷ(x)]

(7)

where Vh in Eq. (7) denotes the variance operator w.r.t. distribution h(x). Notice that, since
y ∼ Bernoulli(π) under h, Eh[y] = π and Vh[y] = π(1−π); similarly, Vh[ŷ(x)] = θ(1− θ). Further,
using the law of iterated expectations, Eh[y · ŷ(x)] = πEh1

[ŷ(x)] = πγ. Thus,

mcc =

√
π

(1− π)

γ − θ√
θ(1− θ)

=

√
π(1− π)

θ(1− θ)
· (γ − η) (8)

Using the estimates of γ, η, π and θ from Table 1, we give the standard formulas for acc,
bacc, F and mcc estimation, in terms of the classifier’s confusion matrix entries. For example,
simple algebraic operations on Eq. (8) give

m̂cc =
π̂(1− π̂)(γ̂ · (1− η̂)− η̂ · (1− γ̂))√

θ̂π̂(1− π̂)(1− θ̂)
=

tp · tn− fp · fn√
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

Similarly, the standard estimation formulas for acc, bacc and F can be easily derived as:

âcc =
tp + tn

tp + fn + tn + fp
, b̂acc =

1

2

tp

tp + fn
+

1

2

tn

tn + fp
, F̂ =

2tp

2tp + fn + fp
.

dWe only consider the F1 score in the family of F-measures.
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2.2. Positive-unlabeled setting

Let D represent a set of examples drawn from h(x); at this stage, the class of an x in D is
unknown. Consider a labeling procedure that selects some examples from D for labeling. As is
the case in many domains, the procedure tests only for the class of interest, the positive class.
The procedure is successful when it deems the example as positive with high confidence. The
successfully labeled examples are collected in a labeled set L, whereas the rejected examples
along with the examples not selected for labeling, in the first place, are collected in an unlabeled
set U. In spite of being labeled as positive, some examples in L might, in fact, be negative,
due to the errors in the labeling procedure.

The typical, positive-unlabeled assumption made about the labeler is that the examples
from D are selected independently of x, given y and further, that the same assumptions apply
to the success of labeling.20,21 The assumptions ensure that the distributions of positives and
negatives remain unchanged in L and U and only the class proportions are affected. Let f(x, y)

and g(x, y) denote the underlying joint distribution of U and L, respectively. Note that y still
denotes the true unobserved class and not class assigned by the labeler. For f(x) and g(x)

denoting the marginals over x,

f(x) = αh1(x) + (1− α)h0(x), g(x) = βh1(x) + (1− β)h0(x), (9)

for all x ∈ X , where α and β denote the proportion of positives in the unlabeled and labeled
set, respectively. By design, L has a higher concentration of positives than D; i.e., β ∈ (π, 1].
Similarly, U has a lower concentration of positives than D; i.e., α ∈ [0, π). When β = 1 we say
that the labeled data is clean. When β < 1, the labeled data contains a fraction (1 − β) of
negatives that are mislabeled. We will refer to the latter scenario as the noisy positive setting
and 1− β as the noise proportion.

The relationship between h, f and g is further constrained, since D is partitioned by L

and U. Precisely,

h(x) = cg(x) + (1− c)f(x) =
(
cβ + (1− c)α

)
h1(x) +

(
1− cβ − (1− c)α

)
h0(x), (10)

for all x ∈ X , where c = |L|
|L|+|U| . Thus,

π = cβ + (1− c)α. (11)

To distinguish h from f and g, we refer to h as the true or the target distribution. We are
primarily interested in a classifier’s performance on the true distribution, which is reflected in
our goal to obtain unbiased estimates of the performance measures w.r.t. the true distribution.

2.3. Performance measure correction

The absence of negative examples in positive-unlabeled learning is tackled by treating the
unlabeled set as a surrogate for negatives. This is referred to as the non-traditional approach.20

A non-traditional classifier trained on such data learns to discriminate the labeled-as-positive
set from the unlabeled set. Surprisingly, an optimal non-traditional classifier has been shown
to perform optimally in the traditional sense; i.e., as a discriminator between the positive and
negative examples.21 However, measuring a classifier’s performance non-traditionally does not
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reflect its performance in the traditional sense. Ref. 22 demonstrated the bias in the non-
traditionally estimated γ, η and ρ and its implications towards the ROC and precision-recall
analysis. They also provided techniques for bias correction using estimates of the class prior
and the noise proportion.22 We take a similar approach in this work and show that the standard
estimators of acc,bacc, F and mcc, when used in a non-traditional framework, are biased. Then
we give formulas to correct the bias by estimating the class prior and the noise proportion. To
formalize the notion of a non-traditional labeled set, we introduce the pseudo class ỹ, which
is 1 for every example in L and 0 for those in U. The non-traditional labeled set Lpu contains
all examples from L and U along with their pseudo class labels. The standard approach (see
Table 1) for estimating γ, η, π and θ presupposes that the examples in the labeled set are drawn
randomly from h(x, y) and more importantly, that tp, fn, tn and fp are counted w.r.t. the true
class. However, when working with Lpu, the counts are based on the pseudo class, which affects
the quality of the standard estimates.

In particular, γ̂ and η̂ give biased estimates of γ and η, respectively. Instead, they give
unbiased estimates of γpu = Eg[ŷ(x)] and ηpu = Ef [ŷ(x)]; this is because g and f correspond
to the distributions of the pseudo positives and the pseudo negatives, respectively. More-
over, π̂ represents the proportion of the pseudo positives c, instead of π; that is, π̂ = c.
However, θ̂ is still an unbiased estimator of θ, since θ only depends on the marginal dis-
tribution of x in Lpu, which is the same as h(x) as per Eq. (10). To summarize, we have

γ̂
estimates−−−−−−→ γpu 6= γ, η̂

estimates−−−−−−→ ηpu 6= η, π̂ = c 6= π, θ̂
estimates−−−−−−→ θ.

The bias in γ̂, η̂ and π̂ is also reflected in the standard estimates of acc, bacc, F and mcc.
They give unbiased estimates of the following quantities instead.

accpu = cγpu + (1− c)(1− ηpu) baccpu =
1 + γpu − ηpu

2

F pu =
2cγpu

c+ θ mccpu =

√
c(1− c)
θ(1− θ)

· (γpu − ηpu)

Next, we give the relationship between γ, η, γpu and ηpu which are then used for bias correction.

γ =
(1− α)γpu − (1− β)ηpu

β − α

η =
βηpu − αγpu

β − α

obtained by solving

γpu = Eg[ŷ(x)] = βγ + (1− β)η

ηpu = Ef [ŷ(x)] = αγ + (1− α)η

We derive the bias-corrected estimates of acc,bacc, F and mcc by correcting for γ, η and π:

âcccr = π̂crγ̂cr + (1− π̂cr)(1− η̂cr) (12) b̂acccr =
1 + γ̂cr − η̂cr

2
(13)

F̂cr =
2π̂crγ̂cr

π̂cr + θ̂
(14)

m̂cccr =

√√√√ π̂cr(1− π̂cr)

θ̂
(

1− θ̂
) (γ̂cr − η̂cr), (15)

where γ̂cr, η̂cr and π̂cr are estimated using estimates of α and β as follows:
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γ̂cr = (β̂ − α̂)−1((1− α̂)γ̂ − (1− β̂)η̂), η̂cr = (β̂ − α̂)−1(β̂η̂ − α̂γ̂), π̂cr = cβ̂ + (1− c)α̂.

Theorem 2.1 shows that unbiased bacc and mcc estimates can also be directly recovered
from baccpu and mccpu estimates, requiring only estimation of classifier-independent quan-
tities π, α and β (the class proportions in D, U and L); i.e., γ and η do not need to be
corrected as an intermediate step. Furthermore, the relationship between bacc (mcc) and
its positive-unlabeled counterpart is monotonic, which is a desirable property when con-
structing a classifier by thresholding a score function. It ensures that the threshold obtained
with the positive-unlabeled data by optimizing the non-traditional measure also maximizes
the traditional measure. The inequalities derived in the theorem demonstrate that the non-
traditionally evaluated bacc and mcc underestimate the traditional performance, provided the
non-traditional classifier performs better than random.

Theorem 2.1. The following equations hold true.

bacc =
2baccpu − 1

2(β − α)
+

1

2
, and mcc =

1

β − α

√
π(1− π)

c(1− c)
·mccpu

Moreover,

sign(mcc)(mcc−mccpu) ≥ 0, and bacc− baccpu ≥ 0, when baccpu ≥ 1/2.

Proof. The proof of the two equalities follow by observing γpu−ηpu = (β−α)(γ−η) and using
it in the expressions of baccpu and mccpu, thereby obtaining a conversion to bacc and mcc

(Eqs. (5) and (8)). Now, mcc−mccpu = mccpu
(

1
β−α

√
π(1−π)
c(1−c) − 1

)
. The mcc inequality follows

since
√

π
c(β−α) ·

√
1−π

(1−c)(β−α) ≥ 1 because π−c(β−α) = α ≥ 0 and 1−π−(1−c)(β−α) = 1−β ≥ 0.

The bacc inequality follows since β − α ≥ 0 and consequently, 2bacc − 2baccpu = 2baccpu−1
β−α −

(2baccpu − 1) ≥ 0, provided baccpu ≥ 1/2.

3. Experiments and Results

3.1. A case study

We first demonstrate the problem with non-traditional evaluation in a situation where the
positive and negative conditional distributions, h1 and h0, are univariate Gaussians with
Eh1

[x] > Eh0
[x] and Vh1

[x] = Vh0
[x]. Knowing the underlying distributions allows us to make ex-

act computations of performance measures, instead of estimating them from data. As per Sec-
tion 2, let h(x) = πh1(x)+(1−π)h0(x), f(x) = αh1(x)+(1−α)h0(x) and g(x) = βh1(x)+(1−β)h0(x)

be the true, labeled and unlabeled data distributions, respectively. Values of α, β and c will be
fixed, from which π = cβ+(1−c)α will be computed. We will consider a simple linear classifier
ŷ(x) = 1(x ≥ τ), where 1(·) is the indicator function and τ ∈ R is the decision threshold. This
thresholding function predicts a 0 for inputs below τ ; otherwise, it predicts a 1.

In the traditional setting, the true positive rate (γ) and false positive rate (η) can be
straightforwardly computed as γ = 1−cdfh1

(τ) and η = 1−cdfh0
(τ), where cdff is the cumulative

distribution function corresponding to the density f . On the other hand, when evaluated
in the non-traditional setting, these quantities can be expressed as γpu = 1 − cdfg(τ) and
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Fig. 1: Traditional vs. non-traditional performance accuracy as a function of decision threshold τ . The circles
and vertical lines in all four panels indicate the threshold values and the corresponding best performances in
both traditional and non-traditional setting. (Upper left) Classification accuracy: top traditional performance
accmax = 0.86 is reached at the threshold value τ = 0.42, whereas the top non-traditional performance accpumax =
0.90 is reached at τ = 5; (Upper right) Balanced accuracy: top traditional performance baccmax = 0.84 and
non-traditional performance baccpumax = 0.67 are both reached at τ = 0; (Lower left) F-measure: top traditional
performance Fmax = 0.77 is reached at τ = 0.19, whereas the top non-traditional performance F pu

max = 0.30 is
reached at τ = 0.50; (Lower right) Matthews Correlation Coefficient: top traditional performance mccmax =
0.66 and non-traditional performance mccpumax = 0.22 are both reached at τ = 0.29.

ηpu = 1 − cdff (τ). The probability of positive prediction θ is computed using Eq. (3). Of
course, g = h1 when β = 1 and f = h0 when α = 0, but this case corresponds to the standard
supervised learning problem and is not of interest.

Let us now be concrete and consider that h0 = N (−1, 1), h1 = N (1, 1), α = 1/4, β = 3/4 and
c = 1/10; thus, π = 3/10. In Figure 1, we plot the values of the accuracy, balanced accuracy,
F-measure and Matthews correlation coefficient in the traditional and non-traditional setting
for each value of τ ∈ (−5, 5), where acc, accpu, bacc, baccpu, F , F pu, mcc and mccpu are
calculated from γ, η, θ, h, f , g, and c, as shown in Section 2. As a reminder, c represents
the proportion of labeled examples in the training set consisting of all labeled and unlabeled
examples; however, a data set is not generated here. It is important to point out the large
differences between all traditional and non-traditional estimates, which provide evidence that
the non-traditional estimates can be far from accurate, as in this example. As proved in
Section 2, the maximum values for baccmax vs. baccpumax and mccmax vs. mccpumax are observed
at the same score thresholds τ , respectively. This is desirable as one can establish the best
decision threshold using positive-unlabeled data and secure the best predictor performance
even without the precise knowledge of what that performance is. On the other hand, accmax vs.
accpumax as well as Fmax vs. F pu

max do not occur at the same decision thresholds, which presents a
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problem for method benchmarking. The F-measure is further interesting as a simple predictor
(τ = −5) that gives positive predictions on (almost) all inputs can achieve a high-scoring F ,
which may be misinterpreted in practice as good performance. Similarly, in terms of accuracy,
an inability to “beat” a trivial classifier (the one always predicting the majority class) might
be incorrectly interpreted as inability to develop a good classifier.

3.2. Data sets

The empirical evaluation was carried out on 14 data sets from the UCI Machine Learn-
ing repository. The selected data sets span various biomedical problems, such as recognizing
splice-junction boundaries from the DNA sequence,23 predicting the physical activity of an
individual based on their smartphone24 or sensor25 data, and predicting hospital re-admissions
by using a patient’s demographics, medical diagnoses and lab test results.26 Where necessary,
the data sets were converted to binary classification problems by considering one of the classes
as positive and the other(s) as negative or by converting regression problems to classification
by introducing appropriate thresholds on the target variable. The following data sets were
used: Covertype, Activity recognition with healthy older people using a batteryless wearable
sensor (two experiments), Epileptic Seizure Recognition, Smartphone-Based Recognition of
Human Activities and Postural Transitions, Mushroom, Thyroid Disease, Anuran Calls, Wilt,
Abalone, HIV-1 protease cleavage, Splice-junction Gene Sequences, Parkinsons Telemonitor-
ing, and Physicochemical Properties of Protein Tertiary Structure.

3.3. Experimental protocols

The experiments were designed to simulate the construction of non-traditional classifiers in
the positive-unlabeled setting and assess the quality of performance estimation both in the
non-traditional and traditional mode. Labeled and unlabeled data sets, with nl and nu exam-
ples, respectively, were first created by sampling an appropriate number of positive/negative
examples as follows. After fixing the value of β from {1, 0.9, 0.8, 0.7}, β ·nl points were sampled
from the positive set and (1− β) · nl from the negative set to make the labeled data set. This
process determined the true value of α as the ratio of the remaining positive points and the
remaining negative points from the original data set. Unlabeled data set was then formed
by selecting α · nu points from the remaining positive points and (1 − α) · nu points from the
remaining negative points. The number of unlabeled examples nu was set to 10,000 in all data
sets with sufficient size. Otherwise, it was set to 5000, 2000 or 1000. The size of the labeled
data set nl was picked so as to fix the ratio of labeled vs. unlabeled data to 1:10. That is,
if nu = 1000, nl would be set to 100. This ratio mimics a typical situation in which one is
presented with larger unlabeled data compared to the labeled data. A non-linear classification
model was trained on each non-traditional data set. Its performance was evaluated in both
non-traditional and traditional setting. This experiment was repeated 50 times for different
random selections of labeled and unlabeled data sets, each of which was considered for four
different values of β.

One-hundred bagged two-layer neural networks, each with 7 hidden neurons, were used as
a non-traditional classifier in all experiments. The networks were trained using the RPROP
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algorithm27 with a validation (25% of the training set) stop or at most 5,000 epochs. Out-
of-bag performance evaluation was carried out in all experiments. At the end of each run,
we calculated four performance measures: the maximum classification accuracy (accmax), the
maximum balanced accuracy (baccmax), the maximum F-measure (Fmax) and the maximum
MCC (mccmax), in four different scenarios: (1) the non-traditional (PU) estimates, where the
labeled data was considered to be positive and unlabeled data negative; (2) the traditional
(true) performance estimates, where the actual class labels instead of the PU labels were
used; (3) the recovery setting proposed in Section 2 with actual (α, β) values; and (4) the
recovery setting proposed in Section 2 with estimated (α, β) values, referred to as (α̂, β̂).
The non-traditional estimates provide the performance that a practitioner would report by
ignoring noise and assuming that the unlabeled set was negative. The traditional performance
estimates represent the estimated true performance of these models that a practitioner would
not be aware of. The third and fourth scenario represent the traditional estimates after the
correction. They were designed to explore the effects of incorrectly estimating (α, β), instead
of knowing their true values. The AlphaMax algorithm21,28 was used to obtain (α̂, β̂).

3.4. Results

We measured the difference between non-traditional and corrected performance against the
traditional performance in each run. The traditional performance was considered to be “true”;
it could be estimated because the positive-unlabeled setting was simulated on data sets where
both positives and negatives were available. The corrected performance was presented twice:
first with known (α, β) that were used to construct positive-unlabeled data sets and, second,
with (α, β) themselves estimated from the positive-unlabeled data. The experimental results,
summarized in a single box plot over all 14 data sets and all 50 runs, are shown in Figure 2.
Non-traditionally estimated (without correction) baccmax, Fmax and mccmax significantly un-
derestimate the traditional performance, whereasd accmax significantly overestimates it. The
errors generally deteriorate with the increasing level of noise (1− β).

The corrected estimates attained much smaller error. While using the true values of α
and β provided a near perfect recovery of the traditional performance, the estimated values
generally resulted in a slightly overestimated traditional performance. We note however that
we did not perform any model selection and parameter optimization during class prior and
noise level estimation and, therefore, one could expect to observe an improved recovery after
these steps. Manual inspection of the likelihood curves outputted by AlphaMax would also be
recommended to increase confidence in the recovered performance estimates.

4. Conclusions

Estimating the performance of machine learning models is one of the critical yet understudied
research directions in the biomedical sciences. Incorrect evaluation might have severe negative
effects upon the deployment of machine learning tools and the perception of their usefulness
in the nearby future, including in genetic counseling, precision medicine, clinical decision
support, etc.3–6 This work therefore investigated the quality of performance evaluation in
binary classification when training data best fits the positive-unlabeled setting.18 However,
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Fig. 2: Error in the non-traditionally evaluated performance measures before and after correction for 14
biomedical data sets. PU represents the estimates on the Positive Unlabeled data without bias-correction. CR
and CE represent the bias-Corrected estimates with the Real and Estimated values of α and β. In each run, the
optimal decision threshold was selected first, to maximize the performance, and then the resulting performance
was compared with the true performance at that same threshold. (Upper left) Classification accuracy: Eq. (12)
was used for correction. All estimates were clipped between 0 and 1; (Upper right) Balanced accuracy: Eq. (13)
was used for correction. All estimates were clipped between 1/2 and 1; (Lower left) F-measure: Eq. (14) was used
for correction. All estimates were clipped between 0 and 1; (Lower right) Matthews Correlation Coefficient:
the formula from Theorem 2.1 was used for a direct correction from the mccpu estimate. All estimates were
clipped between −1 and 1. The x-axis is the true value of β, according to which the box plots were grouped.

the generality of our methods is provided by the equivalence between training from noisy
positive vs. unlabeled data and the so-called corrupt binary classification model, where it
is assumed that both positive and negative examples are given, but that each data set is
corrupted by a (potentially) different amount of label noise.

To characterize performance evaluation problems, we built on the previous work in machine
learning22,29 to evaluate the quality of four estimated measures: accuracy, balanced accuracy,
F-measure, and Matthews correlation coefficient. We found that the balanced accuracy and
Matthews correlation coefficient are well-behaved, meaning that they provide certain impor-
tant guarantees to the practitioner even when applied in the positive-unlabeled setting. For
example, the optimal decision threshold for maximizing the performance does not change when
the evaluation is shifted from the non-traditional to the traditional setting; furthermore, the
performance in the traditional setting is always better than non-traditionally estimated. On
the other hand, classification accuracy and F-measure provide fewer guarantees and require
sophisticated understanding when deployed in practice.

To mitigate the problems associated with any of the above-mentioned performance esti-
mation strategies, we first showed that the true (traditional) classification performance can be
recovered with the knowledge of (1) the class priors in the unlabeled data and (2) the propor-
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tion of noise in the labeled data. We then used the AlphaMax algorithm21,28 to estimate both
of these quantities in a nonparametric fashion and showed that the performance estimation
process is significantly improved. As a practical guideline, we suggest that the deployment
of machine learning models should be accompanied with both non-traditional and recovered
traditional performance estimates along with the estimated values of α and β.
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