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Abstract

Motivation: Experimental biologists, biocurators, and computational biologists all play a role in characterizing a pro-
tein’s function. The discovery of protein function in the laboratory by experimental scientists is the foundation of our
knowledge about proteins. Experimental findings are compiled in knowledgebases by biocurators to provide stand-
ardized, readily accessible, and computationally amenable information. Computational biologists train their meth-
ods using these data to predict protein function and guide subsequent experiments. To understand the state of
affairs in this ecosystem, centered here around protein function prediction, we surveyed scientists from these three
constituent communities.

Results: We show that the three communities have common but also idiosyncratic perspectives on the field. Most
strikingly, experimentalists rarely use state-of-the-art prediction software, but when presented with predictions, re-
port many to be surprising and useful. Ontologies appear to be highly valued by biocurators, less so by experimen-
talists and computational biologists, yet controlled vocabularies bridge the communities and simplify the prediction
task. Additionally, many software tools are not readily accessible and the predictions presented to the users can be
broad and uninformative. We conclude that to meet both the social and technical challenges in the field, a more pro-
ductive and meaningful interaction between members of the core communities is necessary.

Availability and implementation: Data cannot be shared for ethical/privacy reasons.

Contact: idoerg@iastate.edu; predrag@northeastern.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

A major objective of the field of computational biology is to develop
theory, methodology, and software that support and drive biological
discovery. The field has reported notable successes, including the de-
velopment of tools for genome assembly (Nagarajan and Pop,
2013), methods for deriving the tree of life (Hinchliff et al., 2015) or
deep-learning pipelines for accurately inferring a protein’s three-
dimensional structure (Jumper et al., 2021). Although still expand-
ing, one of the long-standing directions, yet still at the forefront of
the field, is the development of techniques toward understanding the
full repertoire of a protein’s activity under different molecular and
environmental conditions (Shehu et al., 2016). Prominent examples
of proteins with well-understood function include hemoglobin, an
oxygen transporter (Antonini and Brunori, 1970), the tumor sup-
pressor protein p53 that is altered in many cancers (Miyashita et al.,
1994) or SARS-CoV-2 spike protein that enables the entry of the
virus into host cells (Hoffmann et al., 2020).

Protein function research is heavily invested in the study of model
organisms. These organisms (e.g. yeast, mouse) are used for in-depth

understanding of biological systems, with the expectation that discov-
eries made in a model organism will offer insights into the workings
of other organisms. Although this strategy is reasonable, functional
annotations accumulate slowly and remain far from complete even in
model species. Filling this knowledge gap not only requires accurate
prediction, but also systematization of knowledge (International
Society for Biocuration, 2018), computational resource prioritization
(Kacsoh et al., 2019) and statistical analysis (Subramanian et al.,
2005). Computational researchers are therefore in a prominent pos-
ition to build upon all experimental and curated data and develop in-
ference systems for the understanding of protein function.

Historically, protein function has been described in the literature
using natural language, but to unify terminology across all domains
of life and to standardize computational pipelines, major knowl-
edgebases, such as UniProtKB (The UniProt Consortium, 2019),
often report function using ontological representations (Robinson
and Bauer, 2011). An ontology is typically formalized as a general-
to-specific concept hierarchy represented by a directed acyclic graph,
where nodes are associated with textual descriptors (concepts,
terms) that are mutually connected by relational ties of different
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types (e.g. is-a, part-of). The computational biology community has
adopted the Gene Ontology (GO; Ashburner et al., 2000) to de-
scribe function of biological macromolecules and the computational
protein function prediction can therefore be seen as the problem of
annotating a protein sequence with a subset of GO terms (Fig. 1).

There are three core domain-expertise communities that are asso-
ciated with protein function prediction. The first community is ex-
perimental biologists, who determine the function of proteins using
experimental assays (Weber, 2004). The second is biocurators, who
develop ontologies to describe protein function and generate data
repositories of annotated proteins based on experimental and compu-
tational evidence (International Society for Biocuration, 2018). The
third is computational biologists, who develop algorithms and soft-
ware to predict a protein’s function from its amino acid sequence,
structure, gene expression, genomic context, scientific literature and
more (Radivojac et al., 2013). In some cases, members of these com-
munities overlap, such as a lab that has an experimental component
and also develops algorithms, or biocurators who are involved in soft-
ware development. But in most cases, members of each community
specialize in one of these three domains.

In this work, we set out to understand how members of each of
the three communities work on understanding protein function,
how they perceive computational function prediction, how well they
understand and use the work produced by members of the other
communities, and how much they interact with each other. To do so
we surveyed members of each of these communities using general as
well as individualized questionnaires. Here we summarize major
findings from these surveys that we believe describe the state of
affairs in the field. We argue that a deeper understanding of how
this scientific field operates, and where the bottlenecks may be, will
lead to an improved quality of interaction between three constituent
communities and ultimately advance the technical component of the
field itself.

2 Methodology

The assessment of the field of protein function prediction was car-
ried out using five online questionnaires—three for experimental sci-
entists and one each for biocurators and computational biologists.
The consent forms and the surveys were presented to the partici-
pants using Qualtrics (Supplementary Materials), and each person
was offered a $10 gift card for participation. The study protocol
was approved by the Institutional Review Board of Northeastern
University (IRB# 19-10-08).

2.1 Participants
We reasoned that only protein function experts have deep insight
into the field and therefore targeted active doctorate-level partici-
pants. We required interest and published work in the protein func-
tion domain, measured by the reputation of the publishing venue.
Participants were recruited via emails that briefly described the

purpose of the study and provided the expectations for the online
questionnaires. The initial email was personalized and included a
link to the consent form and subsequent survey materials. We also
assured potential participants that their privacy would be protected.

We approached 169 scientists from 94 institutions using our
understanding of the field as well as recommendations from col-
leagues with knowledge in the field (Table 1). Of the 169 individu-
als, 86 consented to take the survey and 82 completed the survey
(22 experimentalists, 19 biocurators and 41 computational biolo-
gists). Multiple additional participants engaged in email exchanges
with us, but indicated lack of time to complete the survey. The seem-
ingly moderate number of overall responses is due to several rea-
sons: (i) the survey was designed for specialists in the field; (ii) the
individualized nature of parts of the questionnaires was designed to
apply to the specialty of the respondents, which could not be done
en masse; (iii) completing the questionnaires in full required a com-
mitment not many respondents could provide.

2.2 Surveys for experimental scientists
The three questionnaires for the experimental scientists are referred
to here as the ‘general’, ‘specific’ and ‘comparative’ questionnaires.
The general questionnaire inquired about the background informa-
tion and overall attitude toward protein function annotation and
prediction (Section). The specific questionnaire was designed to as-
sess the quality of the state-of-the-art function predictions on the
proteins that are experimentally studied by consented domain
experts; therefore, it was tailored to each surveyed participant
(Section). We examined each person’s publications for proteins they
investigated and asked each scientist to provide two proteins in
which they believe they have the most expertise; and these proteins
were subsequently used in the questionnaire. Finally, the compara-
tive questionnaire was designed to assess the quality of the predic-
tions of state-of-the-art methods relative to the predictions from
baseline methods in the field (Section). The comparative question-
naire was also individualized.

2.2.1 General questionnaire

The general questionnaire was designed to understand the research
background of the subjects, the level of their familiarity with bio-
informatics software and databases, their understanding of GO
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Fig. 1. Stylized representation of the protein function prediction problem. (Left) Protein sequence of the human cellular tumor suppressor protein p53 consisting of 393 amino

acids. The protein is shown in a FASTA format. (Right) Protein function defined as a set of blue nodes in the ontology graph consisting of 10 nodes. Each node is associated

with a textual descriptor (term) from a controlled vocabulary; e.g. ‘biological process’ as the root, ‘apoptosis’ as an internal node, and ‘DNA replication’ as a leaf node. The

terms in the ontology are connected by relational ties such as is-a, which are read in the direction opposite the arrow. The task for a function prediction algorithm is to take an

input sequence and output the nodes (terms) colored in blue. Note that the prediction of ontological terms is a somewhat simplified view of function prediction as it, for the

most part, ignores the contextual, spatio-temporal and causal relations

Table 1. Basic statistics on the number of participants in the study

Scientists Contacted Participated

Experimental biologists 55 (25) 22 (12)

Biocurators 31 (13) 19 (10)

Computational biologists 83 (56) 41 (38)

Note: The number of institutions with which the participants are affiliated

is parenthesized.
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annotations, and their need for protein function prediction. Overall,
the questionnaire contained 28 multiple choice questions and 10
free-text questions. Each participant was asked to answer the same
set of questions. The median time of completion was 10 min.

2.2.2 Specific questionnaire

The specific questionnaire was developed to understand the per-
formance of function prediction algorithms, as seen by experimen-
talists. This questionnaire was individualized with the rationale that
only an expert can judge the quality, usefulness and surprise of com-
putational predictions of functions of proteins in their field. Each
participant was first asked to self-assess their knowledge and then to
assess the performance of one of the state-of-the-art algorithms on
four proteins. Two of the proteins, a-hemoglobin and p53, for
which we expected every participant to have rudimentary know-
ledge of their function, were identical for all participants. The other
two proteins were unique to each participant and were selected from
their own publications. We expected the researchers to have in-
depth knowledge of the function of proteins they actively studied.

The state-of-the-art algorithm was selected randomly for each re-
searcher from four tools that have been found to perform well (Jiang
et al., 2016; Radivojac et al., 2013; Zhou et al., 2019), that repre-
sent methodological diversity in the field and are regularly used.
These included PFP (Hawkins et al., 2006), FFPred (Cozzetto et al.,
2016), NetGO (You et al., 2019) and DeepGOPlus (Kulmanov and
Hoehndorf, 2020). These methods leverage machine learning to
learn protein function from a protein’s amino acid sequence, its 3D
structure, or its network of interactions with other molecules. Due
to their own strengths and limitations, we randomly picked one tool
for each participant.

Researchers were presented with up to 25 highest-scoring terms
for each of the proteins on each domain of GO (molecular function,
biological process, cellular component). They were then asked to
click on one or more of the following characterizations for each pre-
dicted term: (i) ‘known’, (ii) ‘useful’, (iii) ‘surprising, possible’, (iv)
‘surprising, doubtful’ and (v) ‘wrong’. We subsequently asked them
to tell us if a predictor did a good job and then to use a text field to
offer any additional information about the protein that was absent
from the set of terms outputted by the predictor. We next asked
them to describe the steps they typically take when they study func-
tion of a protein.

Overall, the specific questionnaire presented 23 questions to the
researchers. Thirteen questions were answered by clicking among
pre-specified options and 10 were textual fields with free-form
answers. However, as described above, the multiple choice questions
contained a number of predicted terms (four proteins presented to
the researcher, three GO domains), thus requiring significant time to
complete. The median time to completion was 50 min.

2.2.3 Comparative questionnaire

The comparative questionnaire was developed to contrast the pre-
dictions from the state-of-the-art algorithm researchers saw in the
specific questionnaire against the predictions from one of the base-
line algorithms. We considered three different methods as baselines
and randomly picked one for each researcher: (i) Naı̈ve (Clark and
Radivojac, 2011), (ii) TOPBLAST (Martin et al., 2004) and (iii)
GOtcha (Martin et al., 2004). The predictions from the state-of-the-
art tool and a baseline tool were presented side-by-side. The partici-
pants were then asked to evaluate the performance of the two tools
relative to each other. Previous work has shown that, numerically,
the advanced methods outperform baselines (Jiang et al., 2016;
Radivojac et al., 2013; Zhou et al., 2019). Our objective here was to
understand whether these numerical differences translate to mean-
ingful information for domain experts.

Overall, the comparative questionnaire presented seven ques-
tions to the researchers. Six questions were answered by clicking
among pre-specified options and one was a textual field with free-
form answers. The median time to completion of this survey was
6 min.

2.3 Surveys for biocurators and computational

biologists
The questionnaires for biocurators and computational biologists
were developed to understand the background of the participants,
their familiarity with databases and software used in bioinformatics,
their opinion of the GO terms and evidence codes, their level of
interaction with other communities, the feedback that they have
received about their research products, and their thoughts about the
Critical Assessment of Functional Annotation (CAFA). In contrast
to experimentalists, biocurators and computational biologists were
not required to enter their name in the survey and therefore could
stay anonymous.

We asked both groups whether they think protein function pre-
diction is an important problem and what they think are the bottle-
necks in the field. Since both communities are related to CAFA
(Friedberg and Radivojac, 2017), we also asked them about their fa-
miliarity with CAFA and their opinion of the evaluation metrics
used in CAFA. We asked the computational biologists whether their
lab developed tools for function prediction, and if they did, then
what were the distinctive features of their algorithm, how they think
the results of the protein function prediction pipeline should be pre-
sented and what steps they think experimentalists should follow
when investigating a protein. Some of the questions asked of the bio-
curators were how they envision scientists using GO, whether they
think experimental scientists use ontologies and databases the way
they envision, and what they think are the typical misuses of GO.

An additional set of questions were asked of the biocurators
about their reaction to the output of a protein function prediction al-
gorithm (a list of GO terms and scores) to hemoglobin. This was to
assess how they, as the developers of ontologies, would react to such
usage of GO terms. The goal was to identify the differences in the
intended usage and actual usage of ontologies as perceived by the
biocurators. Biocurators were asked how useful they think these pre-
dictions are when used to convey protein function in that manner,
how important it is for the bioinformatics community to build such
algorithms, what should computational biologists keep in mind
about ontologies when developing tools, how useful these predic-
tions are for experimental biologists, and what experimental biolo-
gists should keep in mind when using such predictions.

The median time for the completion of the surveys was 46 min
(38 questions) for the biocurators and 45 min (36 questions) for the
computational biologists.

2.4 Statistical significance and confidence intervals
Asymmetric 68% confidence intervals in all evaluations were esti-
mated using bootstrapping with 1000 iterations of the entire cohort
(Efron and Tibshirani, 1986). Statistical significance was determined
using the v2-test or t-test, as appropriate.

3 Results

3.1 Participants’ expertise and training
To learn about the participants we were working with, we asked
about their years of research experience and the field(s) of expertise.
As shown in Figure 2, the majority were highly experienced, and
with expertise in several fields, but predominantly Biology and
Computer Science.

To establish the type of expertise, we asked about the familiarity
with common protein annotation databases and software. The par-
ticipants were first offered a list of databases and asked to specify
the level of familiarity with them, then they were asked to list add-
itional databases they work with. Overall, biocurators appear to be
more familiar with all databases, and especially with model-
organism-specific databases (Fig. 3). A more equal and high level of
familiarity was shown for the general databases such as UniProtKB,
Swiss-Prot, GO and PDB (Berman et al., 2000). The more special-
ized model organism, enzyme and metagenomic databases were less
familiar to experimentalists. This is likely because model organism
databases are only familiar to the experimentalists working with
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those model organisms, whereas biocurators are more familiar with
all of them, as this knowledge is inherent to the biocuration commu-
nity. The same applies to the more specific domain-oriented
databases.

In terms of bioinformatics software, we found that the partici-
pants from all three communities use numerous software packages.
Of the tools related to function prediction, all were equally versed
with BLAST (Altschul et al., 1997), with an average score of
3.6 6 0.3, 3.4 6 0.4 and 3.5 6 0.3, by experimentalists, biocurators
and computational biologists, respectively. As with BLAST, no sig-
nificant difference in familiarity with ClustalW (Thompson et al.,
1994) and similar packages was found. The textual answers list
tools used by the researchers, though the use of software was un-
equal. Asked to discuss what bioinformatics software is used by the
researcher, one experimentalist responded with ‘Too many to list—
mostly for NGS analysis [. . .]’, while another with ‘None– I ask a
colleague or get someone in my lab to ask them.’

3.2 Experimentalists rarely use new prediction software
To gauge familiarity of experimental scientists with the use of pro-
tein function prediction software, we asked ‘Do you use any soft-
ware packages for the purpose of understanding protein function?’
Only 8/22 (36%) participants responded with a ‘yes’, whereas 14/22
(64%) responded with a ‘no’ (Fig. 4). This is a surprising outcome
given the existence of over a hundred available methods developed
by the bioinformatics and machine learning communities, of which
dozens are readily available using web interfaces and others as
downloadable software. In contrast, a deeper investigation revealed
that all 22/22 (100%) researchers were familiar with BLAST, a tool
featured in two of the baseline algorithms for function prediction
(Section).

The researchers who answered with a ‘yes’ for the use of func-
tion prediction tools were further asked to list the tools that they use
for this purpose. The answers included PSI-BLAST (Altschul et al.,
1997), InterPro (Blum et al., 2021), HHpred (Zimmermann et al.,
2018), STRING (Szklarczyk et al., 2021), Swiss-Prot (The UniProt
Consortium, 2019) and I-TASSER (Roy et al., 2010). Of these, PSI-

BLAST, InterPro via InterProScan, HHpred and I-TASSER can be
considered tools that help understanding of protein function, where-
as STRING and Swiss-Prot are databases that provide computation-
al predictions derived from experimental annotations.

Overall, we find that a small fraction of experimental researchers
actually use advanced machine learning tools to understand protein
function. Along the same lines, we identified some misunderstanding
among experimental researchers as to what protein function predic-
tion tools are.

3.3 Many predictions found useful by experimentalists
Here we summarize the reactions of experimental researchers to the
predictions of state-of-the-art tools. Each participant was given up
to 25 of the highest-scoring predictions by one of the computational
tools (Section). That is, for each of the four proteins (hemoglobin,
p53 and two they study experimentally in their own lab) they were
shown up to 25 predictions for each of the three GO domains (mo-
lecular function, biological process, cellular component). For each
such predicted term we provided the numerical score given by the al-
gorithm and offered the following checkboxes: ‘known’, ‘useful’,
‘surprising, possible’, ‘surprising, doubtful’ and ‘wrong’, where a se-
lection of multiple boxes or no boxes at all was allowed.

The summary of respondents’ assessments of individual predic-
tions is shown in Figure 5A. It is not surprising that ‘known’ was the
predominant answer (2049 terms; 24%) because some of the pro-
teins were well-researched and the predictors may have been predict-
ing on their own training data as well. More interestingly, 705 (8%)
terms were found to be useful and 645 (7%) to be surprising and
possible. This is an important finding that suggests the ability of the
advanced methods to offer actionable information to a biomedical
researcher, of which some predictions would be unexpected.
Another 653 (7%) and 765 (9%) terms were found to be doubtful
or incorrect, suggesting that there is considerable room to improve
the methods and that the predictions that would be useful for do-
main experts are often mixed with a similar number of incorrect
predictions.

The experimental scientists were then asked to assess if the soft-
ware has done a good job. A plurality (40%) of researchers
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responded that the algorithm has in fact done a good job with an
additional 10% answering that the algorithm has done a somewhat
good job. About 20% responded ‘no’, whereas about 30% of partic-
ipants decided to either not answer this question or answer it with
uncertainty (Fig. 5B).

The participants were also asked to write free-text answers to de-
scribe what they think about the predictions. A representative set of
criticisms includes ‘Extremely superficial annotation—some is
super-obvious and likely only useful in superficial classifications’, ‘I
don’t think any of this is really all that useful–most of what comes
out is things like the protein binds a metal ion, well most proteins
do that, its kinda like saying that they’re made of amino acids’, ‘I
found these descriptions redundant and unhelpful (but also promis-
ing) in many ways’, and ‘This is an enzymatic domain (metallopepti-
dase) that has lost key catalytic residues is likely to be inactive. It
regulates other enzymes instead.’ These answers highlight the diffi-
culty of the protein function prediction task, the difficulty of pre-
senting the results to a downstream user as well as fairly high
expectations from experimental scientists. The high expectations are
exemplified by the last of the quotes above where a protein that
looks like an enzyme has in fact evolved to lose the catalytic ability
by mutations of a few key amino acids. To our knowledge, such
fine-grained prediction by the machine learning and other computa-
tional tools has not yet been achieved.

3.4 Experimentalists do not distinguish between state-

of-the-art and baseline algorithms
Extensive evaluation of protein function prediction revealed small
but a consistently better performance of the state-of-the-art algo-
rithms compared to the baseline methods (Jiang et al., 2016;
Radivojac et al., 2013; Zhou et al., 2019). While the metrics used
for evaluation of algorithms are broadly considered reasonable, it is
unclear to what extent an improved numerical performance trans-
lates into the same characterization by experimental scientists. In
this part of the survey, each experimental scientist was shown side-
by-side predictions from the same state-of-the-art algorithm they
had previously seen and one of the baseline tools for the same pro-
tein. Then, they were asked to assess the performance of the two
algorithms based on the quality of predictions. These results are
summarized in Figure 6.

These results suggest that, at this time, a numerical assessment of
function prediction does not fully mirror an expert’s assessment.
Although these results could be confounded (e.g. we showed only a
list of top 25 predictions in each ontology of GO to reduce the bur-
den of participation), this is a surprising finding that suggests some
examination is needed of the metrics used for quality assessment of
protein function prediction, the ontologies used to describe function,
as well as the ways predictions are presented to experimental
scientists.

3.5 Opinion of ontologies
The biocuration community has developed ontologies to unify pro-
tein function studies across species and to facilitate computation
(Robinson and Bauer, 2011). At the same time, experimental scien-
tists predominantly use natural language to learn about other

proteins and to describe their findings. Since controlled vocabularies
are an essential part of the prediction process, we investigated the fa-
miliarity of all core groups of scientists with GO.

We first asked ‘How useful do you think is a GO annotation for
an experimental scientist?’. While most participants classified GO as
at least ‘somewhat useful’, the answers varied between the core com-
munities, with experimental scientists showing a preference for lit-
erature search in the process of knowledge acquisition and having a
different trend than biocurators and computational biologists
(Fig. 7A). We next asked ‘How well do you think GO terms describe
protein function?’. Most experimental and computational research-
ers answered ‘well enough’, and slightly differed between ‘not well
at all’ and ‘very well’ (Fig. 7B). Biocurators significantly differed in
their opinion, most of whom considered that GO terms describe the
function ‘very well’.

The free-text answers about protein function prediction further
suggest that some experimentalists tied the outputs of a function
prediction program to the perceived utility of GO itself. Some
respondents see that as both a fault of the prediction algorithm and
a fault of the GO term; e.g. experimental scientists noted ‘The reso-
lution/granularity of GO annotation is too low to be useful’ or
‘Terms are very broad. It would be useful to have more specific bio-
logical functions. I was surprised that nothing related to hypoxia
came up for [protein].’ Another experimentalist noted ‘GO has be-
come an insider joke for many in the field, likely however due to
misuse of what the annotation tells us. I.e. use of root terms such as
‘biological process’ has been ridiculed repeatedly, but likely due to
unclear use of GO. Has become too standard to just add to show
some sort of analysis of a used dataset, but needs much more consid-
eration in standard use (a fact that lots of people don’t seem to be
aware of).’

General questions regarding function prediction were also asked
of biocurators and computational biologists in their surveys.
Supporting the views from experimentalists, one of the biocurators
noted about their interaction with experimentalists ‘They are frus-
trated by the vast number of terms returned with a enrichment ana-
lysis—often more than the number of genes in the query list.’ One
computational biologist noted ‘Function is a loose term, therefore
can only be predicted loosely.’ This exemplifies numerous problems
in the field and relates to the bottlenecks (Section).

38%
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25%

Wins of state-of-the-art
Wins of baseline
Ties

Fig. 6. Summary of the comparisons between state-of-the-art and baseline tools. The

pie chart shows a relatively equal number of wins between the state-of-the-art and

the baseline algorithm. State-of-the-art algorithms were found to be better than

Naive, but slightly worse than TOPBLAST and GOtcha
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3.6 Importance of prediction and bottlenecks in the field
Our next question was designed to examine the motivation of func-
tion prediction among biocurators and computational biologists,
who best understand the function prediction field. We asked ‘Do
you think that developing tools for protein function prediction is an
important problem?’ and allowed the respondents to select answers
from ‘not important’ to ‘key to driving biology’. Both groups
answered the question with effectively the same distribution, with
about 60% of them giving the highest importance and 30% saying
‘quite important’.

We next asked ‘What do you think are the chief bottlenecks in
protein function prediction?’, where we allowed each participant to
give multiple answers or no answers at all. We also provided a free-
text field for those who selected ‘other’. We find that more biocura-
tors than computational biologists believe that ‘methodology’ and
‘evaluation’ are the chief bottlenecks. On the other hand, more com-
putational biologists than biocurators believe that ‘available data’
and ‘ontologies’ are the chief bottlenecks (Fig. 8A). The latter dis-
tinction was statistically significant and coincides with the view that
biomedical ontologies may be overly complex for the development
of predictive algorithms (Peng et al., 2018).

Among the researchers who selected ‘other’, the following
answers stood out: ‘I would like to see progress in explainability—
why did an algorithm come to its prediction. With some explainabil-
ity, functional predictions would be better accepted by experimen-
talists’, ‘Awareness of the area, other than in general terms. Use of
the tools already developed in the area. Incorporation of predictions
generated by these tools into standard databases like GO and HPO’,
‘Lack of negative experimental examples [. . .]’ and ‘Protein
Identifier Cross-Referencing’.

Overall, we conclude that all factors have been often enough
identified as the chief bottlenecks, including factors that extend be-
yond technical aspects of the field. Therefore, tangibly advancing
any number of these areas is likely to be significant.

3.7 Level of interaction among core communities
Functional annotation of proteins is highly interdisciplinary, and
making progress requires concerted work of researchers with do-
main knowledge in different disciplines. We, therefore, surveyed the
participants regarding the level of collaborative work they perform
with members of other core communities (Fig. 8B). The most exten-
sive interaction was reported between biocurators and computation-
al biologists and least between experimentalists and computational
biologists.

Among the free-text answers on how they interact with others
and handle feedback from the userbase, some biocurators reported
‘Extensive feedback and interactions. These include suggestions for
enhancement to the tools we maintain, reports of problems, requests
for help which sometimes indicates we are missing a tools that
would be useful to provide to our users’, ‘They need extra terms
added and we do so. We also get feedback on the submission process

and we do our best to include the suggestions depending on resour-
ces and whether there is wider demand in the community for that
new feature’, ‘A lot of the random requests about file formats/URLs
are not addressable as we don’t have the budget to pull someone
away from a central project to work on the request [. . .] or translat-
ing the ontology to another language (especially non-latin alpha-
bets)’, and ‘Our group [. . .] has held roughly 50 onsite workshops
with experts to build our ontology and have had over 7000 requests
on our github tracker, so interaction has been pretty intense.’

Computational biologists described their interaction as ‘We re-
ceive continuous feedback from users regarding many facets of our
software (e.g., documentation, user interface, bug reports, etc.) We
do our best to track and address user feedback using standard
GitHub tools such as issues, pull requests and automated tests
enabled by GitHub Actions’ and ‘In one project, the agrobiotech
company would run large-scale data-generating and validation
experiments co-designed with us, and one of their staff meets weekly
with my group throughout the project period discussing both tech-
nical ideas, results and refinements. In another project, it was more
like one week a month kind of interactions as we progressed through
different components of the project.’

3.8 Assessment of critical assessments
Over the past 10 years, we have been organizing the CAFA challenge
(Friedberg and Radivojac, 2017). Briefly, CAFA is an experiment
designed to provide a large-scale assessment of computational meth-
ods dedicated to predicting protein function, using a prospective ap-
proach. CAFA organizers provide a large number of protein
sequences and the predictors then predict the function of these pro-
teins by associating them with ontological terms (Fig. 1). Several
months after the prediction deadline, the number of annotated
sequences increases in the databases, and the predictions can be eval-
uated against the newly accumulated terms that have received ex-
perimental support. CAFA has become a community standard for
assessing the performance of function prediction algorithms, with
about 100 participating laboratories worldwide. As many of the bio-
curator and computational biologists survey respondents may have
been familiar with CAFA, we solicited their opinions of the chal-
lenge. Specifically, we asked them about the usefulness of CAFA to
the field, about evaluation metrics used in the assessments, as well
as general questions.

We first asked ‘To what extent do you think CAFA is useful?’ to
which 60% of biocurators and 80% of computational biologists
answered ‘highly useful’, 35% and 15% answered ‘somewhat use-
ful’, and 5% of computational biologists did not find CAFA useful
at all. About 10% of participating biocurators have never heard of
CAFA (Fig. 9A). These results show that an overwhelming majority
in both groups find this community challenge beneficial for the field.
Following the debate about the measures for the accuracy of func-
tion prediction (Dessimoz et al., 2013; Jiang et al., 2014; Plyusnin
et al., 2019), we also inquired about the quality of the assessment
metrics. We asked ‘How good are evaluation metrics used in CAFA
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for protein function prediction?’ and allowed for the following
answers: ‘They do not capture anything relevant’, ‘They capture
some relevant information’, ‘They capture enough information rele-
vant for decision making’ and ‘They capture most relevant informa-
tion.’ The results show that most participants find assessment
metrics to capture at least some relevant biological information,
with computational biologists seeing the current metrics more favor-
able than the biocurators (Fig. 9B).

Some free-text answers about CAFA include ‘CAFA has been ex-
tremely successful in driving this field—by ensuring methods are
benchmarked properly and evaluated against each other. Also, in
helping predictors test different strategies to see how well they per-
form. It has also raised the profile of this research field and helped
explain the value to the wider biological community through some
very high impact publications. By showing which strategies work
well, it has helped secure funding for those initiatives’ and ‘CAFA is
indispensable to building a community and advancing the science. I
look forward to more types of CAFA challenges toward defining
and solving new problems related to protein function prediction (the
recent addition of more ontologies was a good example). I also look
forward to more CAFA-led community efforts to outreach, such as
community-prediction of SARS-CoV-2 proteins when they were first
sequenced last year or that of proteins found in meta genomes.’

4 Related work

There is scant literature assessing community experience in the field
of bioinformatics. A 2019 investigation of 24 490 omics software
packages revealed that more than a quarter were inaccessible via the
original link provided in the publication (Mangul et al., 2019).
Among a random sample of 99 of these tools, 49% were found ‘dif-
ficult to install’ as they required more than 15 min of effort. The
study reasoned that this is a direct consequence of the current re-
search model in computational biology where publishing new tools
and software is incentivized, whereas maintenance and production
of tools that are easy to install and use is not. There have also been a
few qualitative studies on usability of bioinformatics software and
tools. Some were focused on the usability of a single resource such
as a protein interaction database (Mirel, 2007) or a specific online
resource that provides information on the evolutionary relationships
of protein domains (Bolchini et al., 2009). These studies discussed
specific usability issues for these tools and offered recommendations
for improvements in usability design. The lack and need of user-
centered design in bioinformatics have been pointed out by Pavelin
et al. (2012).

While these previous studies point out usability issues in individ-
ual tools as well as the collective body of tools produced by the bio-
informatics community, we are not aware of any research about the
perception, characterization and use of protein function prediction
by experimentalists. A study closest to ours was a qualitative survey
of 11 life scientists that investigated their needs for bioinformatics
software, but it did not investigate the perception of the quality of
the methods (Morrison-Smith et al., 2015). Our study, at least with
respect to experimentalists, has been tailored to the research ques-
tions asked of each participating scientist, so as to elicit expert opin-
ion on the quality of predictions and potential use of protein
function prediction in future research. We also surveyed all core
communities involved in protein function prediction to understand
the field more broadly.

5 Discussion

We present key findings from a study of three core communities
involved in the research of protein function: experimentalists, who
generate new knowledge in the field by directly testing hypotheses;
biocurators, who codify and standardize functional annotations;
and computational biologists, who develop algorithms to predict
function. To characterize a protein’s function in a way that is in-
formative and useful, members of all three communities need to
work together with an understanding of the type of work and the

importance of their peers in other communities. In this work, we
found that while members of the three core domains have produced
work that has advanced our understanding of protein function, there
are a few areas in which collaboration can be improved.

One interesting finding was that experimentalists rarely use
state-of-the-art machine learning software to predict function.
While we did not survey for the reasons, it is reasonable to assume
that several underlying causes are at play. First, the knowledge that
such tools exist. While they are published in scientific literature,
many of these tools do not gain visibility unless adopted by large go-
to platforms such as those provided by NCBI or EBI. Second, the us-
ability of prediction software. Software developed in research labs
often lingers in the form of prototypes, tends to be cumbersome to
use and is often not maintained regularly. Third, the question of
need. While new machine learning software may have higher preci-
sion and recall than, say, BLAST or HHpred, BLAST and HHpred
are often perceived as sufficient for the task at hand. Fourth, the
trust and understanding. Even if experimentalists have access to new
machine learning software, they still tend to trust highly cited base-
line methods rather than a recently published method. Despite the
reluctance and lack of time to find and apply advanced software,
many predictions from such algorithms were found by experimental-
ists to be surprising and useful.

The survey of engagement between the domain communities
offers some more information. Clearly, there is engagement between
members of all communities. Computational biologists and experi-
mentalists seem to have less interaction than any of these two groups
with biocurators. Again, the reasons for this discrepancy are un-
clear, and may include that the inherent nature of biocuration
requires work with experimentalists to properly capture function an-
notation and at the same time with computational biologists to pro-
vide data formatted in a computationally amenable manner. In
contrast, computational biologists seem not to interact as much with
experimentalists, which may be related to the fact that algorithmic
advances are often more valued than software production in their
home departments. Another reason is the lack of understanding of
the needs of experimental communities and the different definitions
of function used by experimentalists. Finally, the structure of aca-
demia is such that many interactions occur within a departmental
level, and with like-minded peers, as opposed to interdisciplinary
colleagues. These structural disincentives may also contribute to the
lack of more productive and more meaningful interaction.

There are limitations to this work that include a relatively small
selection of participants. Most of the answers provided by the con-
sented participants were opinions and also incorporate their own in-
terpretation of the intent of the question. We have found minor
issues with the surveys in that some questions have in fact been mis-
understood. Finally, despite our intent for otherwise, many partici-
pants took significant time to complete this work. The length of the
survey may have confounded some of the findings; e.g. the compara-
tive questionnaire for the experimentalists has taken much shorter
time than other surveys. As the last of the three components, it is
conceivable that some participants have lost focus by the end of the
process.

That said, through this work we have discovered interesting
trends in the interdisciplinary work within and between the three
communities involved in functional annotation of proteins. While
each community is producing admirable results, in the interest of ac-
curate, reliable and sustained functional annotation, the quality of
mutual interaction can be improved. Specifically, the state-of-the-art
algorithms should be made visible and usable for experimentalists,
which would stimulate more dialogue between experimental and
computational groups. This would require adjustments in the way
many computational groups are operating, and is best incentivized
by funding agencies. Also, educating computational groups on the
typical needs of the experimental communities, and conversely,
experimentalists with basic computational skills would help to re-
move silos between the communities. The over- and misinterpret-
ation of ontologies also seems to be a problem, and the biocuration
community is best positioned to address that.
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To further advance the studies of protein function, and by exten-
sion understand the molecular underpinnings of life, we deem it im-
portant that both technical and social challenges of the field must be
overcome.
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