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Here we analyze sequence alignments for intrinsically disordered proteins. For 55 disordered 
protein families we measure the performance of different scoring matrices and propose one ad-
justed to disordered regions. An iterat ive algorithm of realigning sequences and recalculating 
matrices is designed and tested. For each matrix we also test a wide range of gap penalties. Re-
sults show an improvement in the ability to detect and discriminate related disordered proteins 
whose average sequence identity with the other family members is below 50%. 

1 Introduction 

Amino acid sequence alignment is the cornerstone of bioinformatics. Alignment 
algorithms include optimal pairwise comparisons, either global1 or local2, as well as 
heuristic algorithms such as FastA3 and BLAST4. Optimal multiple sequence align-
ments5 suffer from exponential complexity with increasing numbers of sequences. 
Indeed, the multiple alignment problem is NP-complete; furthermore, a scoring sys-
tem is difficult to define6. These facts gave rise to different suboptimal algorithms 
based on progressive alignments7, 8. Finally, there are sequence profiles9 and hidden 
Markov models 10, which exploit position-specific dependencies within protein fami-
lies. All alignment methods require a scoring system, which is typically adjusted to 
optimize sensitivity and specificity. 

In a given twenty-by-twenty scoring matrix, each entry, sij, is the score when 
amino acids i and j are aligned opposite one another. Typically, sij is a function of 
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where p(i, j) is the joint probabilityf-1 of the aligned pair of residues i and j, and p(i) 
the probability of occurrence of residue i. This expression is called the log-odds ra-
tio (mutual information) and when the logarithm is to base two it is measured in bits. 
The total score of two aligned sequences is finally calculated as the sum of scores of 
each aligned amino acid pair, along with empirically determined gap-opening and 
gap-extension penalties that provide the means to accommodate length variability. 

                                                 
f-1The scoring function is defined in terms of probabilities that are approximated by observed relative 
frequencies. We also use terms relative frequency and probability interchangeably. 



 

Two important sets of scoring matrices are the PAM (accepted point mutation) 
series11, 12 and the BLOSUM (block substitution) series13. The initial PAM matrix 
was based on just 1,572 substitutions. Evolutionary modeling was then used to boost 
the data and develop a series of matrices, but this modeling was imprecise14. The 
BLOSUM series was based on 2,106 aligned multiple-sequence segments with more 
than 15 million amino acid pairs and used only segments in highly conserved re-
gions between gaps (e.g. blocks) to calculate substitution probabilities. Grouping the 
aligned sequences by sequence identity gave the BLOSUM series. After extensive 
testing, the BLOSUM62 matrix was identified as the best general scoring matrix13.  

Many additional scoring matrices have been developed15, 16. These are based on 
various criteria such as amino acid properties, structural superposition, minimum 
number of base changes per codon, evolutionary properties, etc. These matrices 
have idiotypic advantages, but PAM and BLOSUM remain the most widely used.  

The development of scoring matrices has focused on ordered proteins that fold 
into 3-D structures. In contrast, many proteins have functional regions that exist as a 
structural ensemble at either the secondary or the tertiary level, that is, these regions 
are intrinsically disordered17.  The realization that such disorder is not uncommon 
and is important for the function of essential proteins has led to a call for the reas-
sessment of the view that function always follows from a protein’s 3-D structure18.  

Amino acid compositions for ordered and intrinsically disordered protein are 
clearly different19. Also, insertions and deletions are more common in disordered as 
compared to ordered regions20. Thus, the scoring matrices and gap penalties devel-
oped from ordered proteins are likely to be inappropriate for disordered protein. 
Here we report the first attempts to develop disorder-specific scoring matrices with 
appropriately weighted gap-opening and gap-extension penalties. 

2 Materials and Methods  

2.1 Databases, hardware and software 

A set of proteins with structurally characterized regions of disorder of length ≥ 40 
consecutive residues was identified by database and literature searches. Homologous 
proteins were compiled using the BLAST algorithm4. For proteins with both ordered 
and disordered regions, it was assumed that segments aligning to the disorder were 
also disordered. The result was the following databasef-2: 1d1r (10, 23, 32), 4E bind-
ing protein (7, 115, 58), ssDNA binding protein (15, 50, 49), α_tubulin (54, 48, 84), 
DNA-lyase (7, 40, 80), Bcl-xL (7, 50, 81), calcineurin (22, 164, 34), cyclin-
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 The database is presented in the format: family name (number of sequences, average sequence length, 
average sequence identity with all family proteins). The latter two numbers were rounded to the nearest 
integer. For proteins containing both ordered and disordered regions, only disordered regions were used. 



 

dependent kinase inhibitor (4, 162, 80), chloroperoxidase (2, 41, 44), ubiquinol cy-
tochrome C reductase (5, 45, 73), eukaryotic translation initiation factor 4γ (4, 98, 
68), carrot embryonic protein 1 (37, 96, 69), epidermal growth factor (8, 38, 78), 
Phe-tRNA synthetase (14, 88, 34), flagellin (34, 102, 48), negative regulator of flag-
ellin synthesis (8, 98, 45), fibronectin binding protein C (2, 129, 96), oncogene fos 
(21, 145, 44), Gly-tRNA synthetase (23, 52, 27), glycine methyltransferase (8, 40, 
86), gonadotropin (7, 34, 51), transcription factor VP16 (3, 93, 83), histone 5 (9, 
114, 67), HMG14 (6, 101, 64), HMG17 (14, 87, 75), HMGI(Y) (10, 153, 39), 
HMGT (43, 209, 71), I-tRNA synthetase (23, 39, 33), inosine monophosphate dehy-
drogenase (52, 174, 40), lactose operon repressor (37, 61, 45), metaminopeptidase 
(3, 123, 86), HIV1 negative factor (3, 119, 25), osteocalcin (20, 47, 61), transcrip-
tion factor p65 (4, 127, 41), prion (55, 98, 75), prothymosin α (4, 111, 96), Pvu II 
methyltransferase (12, 24, 22), anti-termination protein N (3, 120, 47), regulator of 
G-protein signalling 4 (17, 80, 38), acidic ribosomal protein P2β (56, 117, 41), rep-
lication protein A (7, 61, 21), southern bean mosaic virus capsid (6, 64, 71), translo-
case sec61 (9, 44, 47), sindbis virus capsid (6, 101, 45), small heat shock protein (6, 
40, 42), sulfotransferase (12, 69, 32), α synuclein (22, 134, 62), tomato bushy stunt 
virus capsid (7, 58, 64), T-cell receptor α (10, 112, 38), telomere bindin gprotein (5, 
39, 61), transcription initiation factor IID (3, 59, 53), thyroid transcription factor 
(10, 187, 47), Topoisomerase II (26, 99, 29), T-tRNA synthetase (24, 95, 28), yeast 
heat shock protein (2, 195, 23). Overall, this database contains 55 families with 828 
segments of disorder containing 81,491 residues in total. Minimum and maximum 
observed sequence identities between any two aligned sequences were 10% and 
99.53%, respectively. 

A set of unrelated proteins was taken from reference 21. This set contains 131 
proteins and 26,692 residues.  

The various experiments were performed on a Windows based 800 MHz Pen-
tium computer using C++ and MATLAB software packages. 

2.2 Scoring Matrices 

To build scoring matrices we applied a simple iterative algorithm consisting es-
sentially of two steps: 

1) for a given scoring matrix, align every protein in every family to all the 
other proteins belonging to the same family 

2) for a given set of alignments calculate a new scoring matrix 
 

Using BLOSUM62 as the initial matrix, these two steps were repeated until the 
scoring matrices in two successive iterations remained essentially unchanged. 



 

2.3 Aligning sequences 

We use both multiple alignment7 and a series of global pairwise alignments1 in Step 
1. Both methods result in aligning every residue of every sequence in a family oppo-
site only one residue or gap of every other sequence in the same family. Pairs of 
aligned sequences are used for calculating the final entries in the scoring matrices. 

2.4 Assigning weights to sequences 

In a scheme that differs from previous approaches, we assign a weight to every se-
quence as an inverse of its average sequence identity with all proteins of the same 
family (including itself). We take a soft approach (without thresholds) as compared 
to reference 13. Note that this method reduces the influence of large families of 
highly similar sequences, and all families contribute according to their size. 

2.5 Counting mutations 

No matter which strategy of alignment is used, substitutions are counted as shown in 
Fig. 1. Note that no counting is done when a residue is aligned to a gap. 

This algorithm is applied to all families of disordered proteins and the overall 
substitution count matrix M is calculated as the sum of all family count matrices. 

 
Input: family f of n aligned proteins s1, s2,… sn  
            with corresponding weights w1, w2, …wn 
Output: family count matrix Mf 

Mf ← 20 × 20 zero matrix  

for every pair of sequences si, sj 
  for every two superimposed amino acids x, y 
    Mf (x, y) ← Mf (x, y) + wi ⋅ wj 

Figure 1. Calculating family count matrix 

2.6 Constructing the scoring matrix 

The elements of the scoring matrix S are calculated for each count matrix M, in the 
following way. The joint probability matrix Q that residue i will be aligned opposite 
residue j (for every i and j) is computed as  
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where mij is an element of matrix M. Adding a transpose matrix MT and dividing by 
two annuls any effects from the counting order. The double sum in the denominator 
normalizes entries of Q to sum to one. From the elements of Q the conditional prob-
abilities of substitutions p(i | j) are calculated, yielding the elements of a substitution 
probability matrix P. In order to adjust the ensuing scoring matrix for longer evolu-
tionary times we can transform matrix P before evaluating expression (1). Modeling 
the evolution by a discrete time-invariant Markov process with the unknown transi-
tion matrix, P can be modified as  

P = P 
α,                                                          (3) 

where α ∈ (1, ∞). This generalizes the idea of Dayhoff et al.11, 12 that models longer 
evolutionary times by extrapolating from proteins with shorter distances. However, 
the matrix P is already developed using the available spectrum of divergence from 
the available data, thus reflecting moderate evolutionary distances. Naturally, since 
the assumptions about underlying Markov processes do not hold strictly, the model 
becomes less accurate as α increases. 

Even with all amino acid exchanges observed in the database, there is no guar-
antee that P is positive definite. As a result, in order for expression (3) to be well-
defined, a test for all positive eigenvalues is performed before raising P to a non-
integer power. Failing the test, although such never occurred, would cancel the pow-
ering step. Finally, all entries sij of a scoring matrix are calculated as 
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where we multiply by C = 2 before rounding to the nearest integer in order to have 
sij entries in half bit units. Multiplying by two increases the resolution of the matrix 
elements before rounding, which is performed for the convenience of using integer 
arithmetic during the course of alignment. We use the same gap penalty system as 
for BLOSUM62. Once chosen at the start, the gap penalties are not changed during the 
refinement of matrix S, making the construction process far less expensive.   
 
2.7 Evaluating the matrices 
 
Scoring matrices were evaluated by building family-specific hidden Markov models 
(HMMs) from a set of aligned training proteins as described in Fig. 2. Test family 
proteins as well as a number of unrelated proteins were aligned to the HMM and the 
resulting discriminatory capabilities were measured as indicated. 

Briefly, this testing procedure consists of two steps. In the first step all proteins 
from the test families and non-family set are assigned a score for each scoring ma-
trix. Reliable performance assessment is achieved by applying a cross-validation 
procedure that also emulates real situations where only a small number of known 
homologues are available. Random division (line two in Fig. 2) was the same for 



 

each matrix. In order to build a model we used ClustalW  7 for multiple sequence 
alignment and the HMMER10 software for profile HMMs. Aligning a protein to a 
HMM results in a score and an E-value. While the score reflects the log-likelihood 
that the query sequence is generated by a HMM the E-value is an estimate of statis-
tical significance of the match. Overall, the best model is the one that provides the 
smallest overlap between two distributions of scores (family and non-family pro-
teins). However, in a situation when rigid statistical tests are not conclusive, we 
compared the Z-scores generated by different mo dels. The greater the value of a Z-
score the lesser the probability that a query protein is one of the unrelated sequences. 
The model that best discriminates family from non-family sequences is the one with 
highest Z-scores. Consequently, in the second step, all length-normalized scores 
from step one are converted into Z-scores, and the maximum score for each protein 
is found over all matrices. Then, a cumulative score is calculated for each matrix as 
indicated in Fig. 2. Note that this score depends on the set of matrices being com-
pared; however it preserves numeric differences and hence the relative order be-
tween any two models. Note also that our testing procedure is not optimal for dis-
crimination purposes. As probabilistic models and local optimizers, hidden Markov 
models can only approximate dependencies in protein sequences. Still, successful 
application of HMMs to protein representation justifies their use. 

 

for each scoring matrix S ∈ S, corresponding gap penalties, and family f ∈ f 
  randomly divide f into 4 equal sized test groups 
  for each test group 
    multiply align the other 3 groups using S and gap penalties 
    construct a HMM based on the multip le alignment 
    align proteins in test group to the HMM and record scores* 
    align non-family proteins to the HMM and record scores* 
  end 
end 

for each scoring matrix S and family  f 
  calculate mean (m) and standard deviation (σ) for non-family protein scores 
  for each family protein p (whose score is s), calculate ZS, p = (s − m) / σ 
end 

for each protein sequence p ∈ f 
  }{max ,pS

S
p Zmax

S∈
=  

end 

for each scoring matrix S 
  cumulative score ∑ ∈

−=
fp pSp Zmax )( ,  

end 

Figure 2. Testing procedure. *All scores are length normalized. 



 

3 Results  

In the development of our testing procedures, we compared the performance of sev-
eral previously published matrices and corresponding gap penalties optimized in 
reference 15 as applied to the 21 largest families of disorder (Table 1). The matrices 
were ranked by their cumulative scores (see 2.7) over all of the test proteins up to a 
threshold sequence identity that was calculated as the average of pairwise sequence 
identities between a query protein and the set of training proteins used in model con-
struction. A sequence identity threshold of 50% was set to include a reasonable 
number of proteins while emphasizing the more divergent ones. Furthermore, al-
though both multiple sequence alignments7 and a series of optimal pairwise align-
ments1 were tried in step one of our iterative procedure (section 2.2), the latter gave 
slightly better results so that only these results are presented.  

 
Table 1. Comparative performance of different matrices with given gap penalties for all test proteins 

whose average sequence identity to the training sequences is less than 50% 

Matrix  Gap-opening penalty Gap-extension penalty Cumulative score 

GONNET 6 0.8 55.54 
BLOSUM30 9 1 65.34 
PAM250 12.5 0.1 68.76 
BLOSUM62 7.5 0.9 74.55 
BLOSUM62 10 0.6 76.03 
BENNER74 7 0.8 77.83 
BLOSUM30 10 1.5 79.13 
BENNER74 9.5 0.8 83.19 
IDENT 12 0.5 83.82 
BLOSUM80 7 1.5 87.48 
PAM300 12.5 0.4 90.78 
IDENT 7 1.4 95.40 
PAM250 11 0.5 96.45 
PAM120 6 1.4 100.29 
GONNET 14 0.2 103.47 
PAM300 9 2 119.52 
BLOSUM80 14.5 0.04 126.44 
PAM120 12.5 1 159.28 
OPTIMA * 120 20 276.57 

*The scale difference in gap penalties for OPTIMA  arises from the ten times greater values used to increase 
alignment sensitivity 

 
In addition to representatives from the BLOSUM and PAM series, we also 

evaluated two updates of PAM250, Gonnet et al.22 and Benner et al.23. The matrix 
IDENT  assigns +6 for a match and −1 for a mismatch, and the OPTIMA matrix was 
taken from reference 24. For each matrix we used gap penalties from reference 15 



 

and both original and modified all-positive scoring matrices. We also tried gap pen-
alties 12/2 exploited in reference 24 but they exhibited poor performance and are 
excluded from Table 1, except for the OPTIMA matrix for which they are optimal. 

Overall, the results of Table 1 suggest that, of the previously published scoring 
matrices, the matrix of Gonnet et al.22 performed the best on our disordered protein 
families with less than 50% sequence identity. 

The matrix DISORDER was obtained as described in Section 2 with α = 1.75 (α 
values were tested in steps of 0.25 in the interval from 1 to 2). This new, disorder-
specific scoring matrix (Fig. 3) differs significantly from all of the other scoring 
matrices in Table 1. For example, DISORDER differs in 100 out of 210 positions 
(47.6%) from BLOSUM62, which was used as the initial matrix in the development 
cycle (section 2.2). Differences in values were between −3 and 3, and exhibited an 
almost normal distribution (not shown). 

 
C 10                    
S 0 3                   
T 1 1 4                  
P −2 0 −1 6                 
A −1 1 0 −1 3                
G −3 0 −2 −1 0 5               
N −1 1 0 −1 −1 0 4              
D −3 0 −1 −2 −1 −1 1 4             
E −4 −1 −1 −1 −1 −2 0 2 4            
Q  −3 0 0 −1 −1 −2 1 0 0 5           
H −1 −1 0 −2 −2 −1 2 −1 −1 1 8          
R −1 −1 −1 −2 −2 −2 0 −2 −1 1 0 5         
K −3 −1 0 −1 −1 −2 0 −1 0 0 −1 2 4        
M 0 −2 −1 −2 −1 −4 −2 −4 −3 −1 −2 −1 −2 7       
I 0 −2 −1 −2 −1 −5 −3 −4 −3 −2 −2 −2 −2 1 4      
L −1 −2 −2 −1 −1 −4 −3 −4 −3 −2 −2 −2 −2 2 2 4     
V 1 −2 0 −1 0 −4 −3 −4 −2 −2 −2 −2 −2 1 3 1 4    
F −1 −2 −2 −3 −2 −4 −2 −4 −4 −2 0 −3 −3 1 1 1 0 7   
Y 0 −2 −1 −3 −2 −3 −1 −4 −3 0 2 −2 −2 −1 0 0 −1 4 8  
W −5 −3 −5 −1 −5 −4 −3 −4 −4 −1 −2 0 −3 −1 −2 −2 −4 −1 3 13 
 C S T P A G N D E Q  H R K M I L V F Y W 

 
Figure 3. DISORDER matrix 

 
To compare DISORDER with the other scoring matrices, we measured the per-

formance of each with varying gap penalties and saved the best performing example 
in each case. The gap-opening penalty was varied over the range from 1 through 14 
(in steps of 0.5), and the gap-extension penalty was varied from 0.5 through 2 (in 
steps of 0.5). The resulting matrices are ranked in Table 2. From the definition given 
in section 2.7, it is evident that the cumulative score depends on the set of matrices 
being evaluated. Thus, the cumulative score values in Tables 1 and 2 cannot be 



 

compared directly: only the rankings are important. The DISORDER matrix outper-
forms the others, but changes in the gap penalties alter the ranking of the other ma-
trices so that BLOSUM62 now becomes better than the others. DISORDER only mar-
ginally outperforms BLOSUM62 by the cumulative score measure.   
 
Table 2. Comparative performance of matrices with optimized gap penalties for all test proteins with 

average sequence identity with the training sequences less than 50% 
 

 
The distribution of scores for different HMMs were compared (Fig. 4). Shaded 

bars represent the number of test proteins for which the DISORDER matrix obtained 
higher scores when aligned to the appropriate HMM, while white bars represent the 
same number for the BLOSUM62 matrix. These comparisons are plotted as a function 
of average sequence identity (quantized into 10 bins) as defined above, in the de-
scription of Table 1, but without any threshold.  

 

10 20 30 40 50 60 70 80 90 100 0 

20 

40 

60 

80 

100 

120 

N
um

be
r o

f t
es

t s
eq

ue
nc

es
 w

ith
 h

ig
he

r s
co

re
s 

Sequence identity (%)  
Figure 4. Comparing DISORDER (shaded) and BLOSUM62 (open) 

Since the DISORDER matrix exhibited the best performance, we further refined 
its gap penalties. Values of 3.2/0.1 provided the best alignments. 

Matrix  Gap-opening penalty Gap-extension penalty Cumulative score 
DISORDER 3 0.5 56.54 
BLOSUM62 3.5 0.5 57.01 
BLOSUM30 2 0.5 57.15 
PAM250 1.5 0.5 71.32 
GONNET 3.5 0.5 71.59 
BENNER74 3 0.5 76.21 
GONNET 6 0.8 90.61 



 

5 Discussion 

Although development of a scoring matrix from a set of sequence alignments is 
straightforward, evaluation of the resulting matrix is not. In reference 13, matrices 
were tested on an independent dataset of 504 blocks and the matrix that correctly 
classified a query block to its group the most times for a given level of statistical 
significance was declared the winner. In reference 24, a scoring matrix was created 
by maximizing the ability of the system to discriminate between homologous and 
non-homologous proteins. Performance tests were evaluated on 1,542 pairs of dis-
tantly related proteins with less than 40% pairwise sequence identity according to 
the average confidence value and the probabilities that random scores would be 
higher than the score for a query homolog. In reference 15 many different matrices 
were compared using both global and local optimal pairwise alignment algorithms 
on a database of aligned sequences resulting from superposition of three-
dimensional protein structures representing correct alignments. The tests were car-
ried out on 204 structurally aligned proteins from 37 families. 

Since our database is rather small as compared to those from references 13 and 
24 and since disordered segments are conformational ensembles and so cannot be 
structurally aligned as was done in reference 15, we developed an alternative 
method to evaluate the resulting matrices as described herein. The idea behind our 
evaluation protocol was to mimic how the matrix would likely be used, namely in 
connection with position-specific modeling.   

Reports on new matrices usually contain calculations of the average mutual in-
formation (relative entropy, transinformation) and the expected score. The higher 
values of the average mutual information indicate that the matrix is better adjusted 
to shorter evolutionary distances. Longer distances, on the other hand, are character-
ized by smaller differences between diagonal and non-diagonal elements in the tran-
sition matrix P, resulting in a smaller relative entropy. The expected score represents 
an estimate of a per amino acid score of any two aligned proteins with the same dis-
tribution of amino acids.  

The relative entropy of 0.54 in our matrix is different from that of BLOSUM62 
(0.69) and similar to BLOSUM55 (0.56) and PAM180 (0.59). However, these matrices 
have a different scale so that immediate comparisons are not possible. The expected 
score obtained for the DISORDER matrix is –0.43. 

During the course of designing matrices we have noticed that there is  only a 
small dependence on any individual family in the training set (leaving out any indi-
vidual family did not change things much), which basically enabled us to test the 
matrices on the training set. Also, differences in cross-validation steps were small. 
We have repeated the matrix design procedure with IDENT  as the initial matrix and 
the final results were different at several positions and at most for ±1. The maximum 
number of iterations was set to 10, but usually a matrix will converge fast to its local 



 

optimum in 4-7 iterations. In the current paper, the matrix was optimized followed 
by a separate optimization of gap penalties. Future research will explore optimiza-
tion of a matrix and gap penalties at the same time, a procedure that should lead to 
improved alignments. Also, we will continue to enlarge the database of intrinsically 
disordered segments, which at the very least should improve the statistics. 

The quality of multiple alignments is improved by using the DISORDER matrix.  
Even though the new gap penalties are smaller than are typically used for ordered 
protein sequences, the average number of gaps in aligned disordered sequences ac-
tually decreases when the DISORDER matrix is used.  When PAM 001 is used to cal-
culate pairwise genetic distances between sequences aligned by either the GONNET 
or the DISORDER matrices, the average distances of disordered sequences aligned by 
the DISORDER matrix are smaller than for GONNET (data not shown). 

Over the last several years, we have published several predictors of natural dis-
ordered regions (PONDRs)25-28. We envision an approach in which order/disorder 
predictions are first carried out using the most appropriate PONDR. During the sub-
sequent HMM (or profile) construction process, BLOSUM62 (or another suitable ma-
trix) would be used as the initial scoring matrix for those regions predicted to be 
ordered and DISORDER would be used for those regions predicted to be disordered. 
As the PONDRs and DISORDER are improved over time, this approach should yield 
improved alignments for proteins containing regions of intrinsic disorder. 
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