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INTRODUCTION

The reversible modification of proteins by the covalent attach-

ment of ubiquitin is implicated in the regulation of a variety of

cellular processes. During the past decade, the functions of ubiq-

uitin have been extended far beyond its role in just directing pro-

tein degradation.1,2 It is now established that ubiquitination is a

more important and widespread protein post-translational modi-

fication than previously anticipated. Regulation of transcription

factor activity,3 budding of retroviral virions,4 receptor endocy-

tosis and lysosomal trafficking,5 control of insulin,6 and TGF-b
signaling pathways7 are examples of just a few processes that rely

on ubiquitination.

Ubiquitination of target proteins is a highly collaborative

process between the ubiquitin-activating enzyme (E1), ubiquitin-

conjugating enzymes (E2), and ubiquitin ligases (E3).8 Ubiqui-

tin-protein ligases catalyze the process of transfer and covalent

attachment (via an isopeptide bond) of the C-terminus of acti-

vated ubiquitin to lysine side chains of the acceptor substrate.

The substrate could be mono- or polyubiquitinated, and it was

previously believed that canonical K48-linked polyubiquitin

chains were the main signal for targeting the substrates for degra-

dation by the 26S proteasome. However, it has recently been

shown that unconventional polyubiquitin linkages may also

target proteins for degradation.9

There are at least two functionally different families of E3

ubiquitin ligases, HECT-type E3s and RING-type E3s. HECT-

type E3s initially form an E3-ubiquitin thioester conjugate, and

then transfer ubiquitin to the substrate. RING-type E3s do not

form such conjugates, but rather form E2/E3 complexes that
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ABSTRACT

Ubiquitination plays an important role in many cel-

lular processes and is implicated in many diseases.

Experimental identification of ubiquitination sites is

challenging due to rapid turnover of ubiquitinated

proteins and the large size of the ubiquitin modifier.

We identified 141 new ubiquitination sites using a

combination of liquid chromatography, mass spec-

trometry, and mutant yeast strains. Investigation of

the sequence biases and structural preferences

around known ubiquitination sites indicated that

their properties were similar to those of intrinsically

disordered protein regions. Using a combined set of

new and previously known ubiquitination sites, we

developed a random forest predictor of ubiquitina-

tion sites, UbPred. The class-balanced accuracy of

UbPred reached 72%, with the area under the ROC

curve at 80%. The application of UbPred showed

that high confidence Rsp5 ubiquitin ligase substrates

and proteins with very short half-lives were

significantly enriched in the number of predicted

ubiquitination sites. Proteome-wide prediction of

ubiquitination sites in Saccharomyces cerevisiae indi-

cated that highly ubiquitinated substrates were prev-

alent among transcription/enzyme regulators and

proteins involved in cell cycle control. In the human

proteome, cytoskeletal, cell cycle, regulatory, and

cancer-associated proteins display higher extent of

ubiquitination than proteins from other functional

categories. We show that gain and loss of predicted

ubiquitination sites may likely represent a molecular

mechanism behind a number of disease-

associated mutations. UbPred is available at http://

www.ubpred.org.
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directly ubiquitinate the target substrate. Another

recently recognized class of ligases, E4, mediate ubiquitin

chain elongation on pre-existing ubiquitinated

substrates.10,11 Interestingly, monoubiquitination of

some substrates can even occur in an E3-independent

manner.12

Despite the availability of the structures for several

ubiquitin-protein ligase complexes,13–18 the mechanism

of the ubiquitin conjugation reaction to the target sub-

strate is still incompletely understood. The big cavities in

the structures of ligases, their highly elongated and rela-

tively rigid shape, as well as the large distance between

the E3 catalytic domain and the E2 active site complicate

our understanding of the mechanism of ubiquitin

transfer. One possibility is that structural disorder of the

substrate could facilitate this process.

Intrinsically disordered proteins (IDPs) exist and func-

tion as ensembles of interconverting conformations under

physiological conditions.19–24 They are prevalent among

regulatory and signaling proteins25 and are involved in

various human diseases.25,26 IDPs perform numerous

important functions in the cell, and their intrinsically

disordered regions (IDRs) frequently serve as sites of

post-translational modifications.20,27–29

Several lines of evidence have previously implicated

the disordered structure in the protein degradation pro-

cess. For example, an unstructured initiation site within

the ubiquitinated substrate was shown to be required for

efficient proteasome-mediated degradation of the ubiqui-

tinated proteins.30 Structural disorder has been observed

within PEST motifs,31 and was also correlated with pro-

tein half-life32,33 even more strongly than with other

bona fide degradation signals such as the destruction-box,

KEN-box, PEST regions, and N-end residues.32 Finally, it

was shown that IDPs are more susceptible to 20S protea-

somal degradation in vitro than are folded proteins.34

Although the involvement of disorder in protein

degradation has been examined on many levels, the ques-

tion about the relationships between ubiquitination and

disorder is far less explored. This might be due to the

inherently difficult experimental identification of protein

ubiquitination (Ub) sites. Only a limited number of Ub

sites from high-throughput experiments are available in

the literature, and these sites are known to be biased

against short-lived proteins.35,36

Here, we first identify novel Ub sites using mutant

yeast strains to better target short-lived proteins. We then

examine sequence and structural preferences of all avail-

able ubiquitination sites and show that they have high

propensity for intrinsic disorder and flexibility. Based on

this and several other distinct properties, we constructed

a predictor of ubiquitination sites, UbPred. We show that

UbPred predicts ubiquitination sites in many important

cell cycle regulators and other short-lived proteins. We

also apply UbPred to various protein functional catego-

ries, proteins with known half lives, Rsp5 ligase

substrates, and proteins involved in various human dis-

eases, including cancer. This allowed us to gain better

insight into processes and functions that depend on

ubiquitination.

MATERIALS AND METHODS

Sample preparation

To analyze the CDC34 mutant, termed CDC34tm, Sac-

charomyces cerevisiae strains KS418 (MAT a, CDC34tm

ura3 leu2 trp1 lys2 ade2 ade3) and KS422 (MAT a, ura3

leu2 trp1 lys2 ade2 ade3) were grown to mid-log-phase in

1 L of SD complete media. The SD media used to grow

KS422 lacked L-lysine but was supplemented with deute-

rium labeled d4 L-lysine to allow for relative quantitation.

Cells were then pelleted and resuspended in 8M urea

125 mM ammonium bicarbonate. Glass beads were

added to the resuspension, and cells were broken by

repeated rounds of vortex mixing. Protein quantitation

was accomplished by the Bradford method. The superna-

tant was collected and the urea concentration was

reduced to 2M by the addition of 10 mM ammonium bi-

carbonate. Samples were then reduced with DTT and

alkylated with iodoacetamide. After reduction and alkyla-

tion, the urea concentration was reduced to 1M by addi-

tion of 10 mM ammonium bicarbonate and 1.6 mg of

each extract were combined and digested with 100 lg of

lyophilized Glu-C. Digestion proceeded for 72 h at room

temperature. The analysis of cells deleted for GRR1 was

as described above except that the strains used were

DBY2059 (MAT a, leu2-3,112) and JH001 (Mat a,
grr1D::NAT) and the amino acid label was 13C6-leucine.

The digested sample was desalted using a SepPak (The

Waters Corporation, England) and resuspended in

120 lL of HPLC buffer A (5% Acetonitrile, 0.1% Formic

Acid). 10 lL which is approximately 260 lg of total

protein was bomb loaded onto a biphasic MudPIT37

column.

LC/LC-MS/MS

The MudPIT column is a 100 lM inner diameter fused

silica column packed with 10 cM of C18 resin followed

by 4 cm of strong cation exchange (SCX) resin. After

loading the samples onto the SCX portion of the column

using a pressure bomb, the peptides were subjected to a

step gradient of increasing salt concentration (ammo-

nium acetate), moving peptides into the reverse phase

resin. Before the next increase in salt concentration, the

peptides moved to the reverse resin were subjected to a

continuous gradient of increasing acetonitrile. The

released peptides were continuously ionized and sprayed

into the LTQ (ThermoFinnigan) mass spectrometer at a

flow rate of 200 nL/min.
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Data processing

Peptide-to-spectrum matches were generated using

SEQUEST38 and were postprocessed by Peptide-

Prophet.39 The yeast protein database was downloaded

from the Saccharomyces Genome Database (SGD;

www.yeastgenome.org). Differential modification of 116

daltons for methionine oxidation, 157 daltons for cyste-

ine carboxyamidomethylation, and 1114.1 for lysine

ubiquitination were allowed in the search. Interestingly,

performing searches with the very large adduct remaining

attached to lysine after Glu-C cleavage uncovered no stat-

istically significant ubiquitin-linked peptides. This is

likely due to the inability of the search algorithm to han-

dle the complexity of these large branched peptides. On

the other hand, searching with a lysine ubiquitination

remnant typical of tryptic peptides uncovered numerous

ubiquitin-linked peptides. We hypothesize that grr1

mutants have a hyperactive Rsp5, which leads to elevated

levels of endocytosed proteins that become partially

proteolyzed during vacuolar trafficking.

Datasets

Positive examples of ubiquitination sites were extracted

from two large-scale proteomics studies,35,36 our own

experiments and an ad-hoc literature search. These lysine

ubiquitination sites were present in 201 proteins from S.

cerevisiae. From these proteins, we extracted 272 ubiquiti-

nated (positive) fragments, each containing up to 12

upstream and downstream residues around the central ly-

sine residue. The set of 4651 nonubiquitinated (negative)

fragments were extracted from 124 mitochondrial matrix

proteins. We reasoned that mitochondrial matrix proteins

would serve as a good negative control dataset because

inner membrane of mitochondria is the only cellular mem-

brane that is not exposed to the cytosolic compartment

and therefore not accessible for the ubiquitin/proteasome

system.40 Therefore, we expect that this dataset would be a

clean negative dataset, that is, it would be less likely conta-

minated with nonannotated Ub sites. Proteins annotated

with gene ontology (GO) term41 ‘‘mitochondrial matrix’’

and its children terms were extracted from the SGD data-

base. Non-Ub sites dataset was formed by extracting frag-

ments around each lysine within this dataset. In total, each

fragment contained 25 residues (or less for the near-termi-

nal lysines). Both sets were then filtered for similarity to

prevent over-representation of any particular fragment and

overestimated performance accuracy during predictor con-

struction and evaluation.

To obtain a nonredundant dataset, no two fragments

within the positive or negative datasets, as well as across the

two datasets, were allowed to share >40% sequence identity.

When a similar pair between a positive and negative example

occurred, the negative site was always removed as less reliably

labeled. The sequence identity cutoff of 40% lies well below

those that provide accurate functional inference by homology

transfer,42 thus allowing us to consider our dataset to be

nonredundant. The resulting datasets contained 265 positive

and 4431 negative fragments.

Several other datasets for UbPred application were col-

lected from the literature. The confident and relaxed

Rsp5 ligase substrates datasets were extracted from Gupta

et al.43 The datasets with protein half lives were

extracted from Belle et al.44 Protein functional categories

were extracted from the Swiss-Prot database (release

56.6) using the organism ‘‘human’’ and a list of key-

words: ‘‘biosynthesis’’ (436 proteins), ‘‘cell cycle’’ (479),

‘‘cytoskeleton’’ (388), ‘‘G-protein coupled receptor’’

(828), ‘‘inhibitor’’ (190), ‘‘kinase’’ (639), ‘‘metabolism’’

(270), ‘‘regulation’’ (2055), ‘‘ribosomal’’ (205),

‘‘transport’’ (1638). The ‘‘cancer’’ (388) dataset was

extracted by using a combination of keywords ‘‘anti-

oncogene OR oncogene OR proto-oncogene OR tumor’’

and organism ‘‘human.’’ The redundancy within (but not

between) functional datasets was removed based on 40%

sequence identity. Disease mutations were downloaded

from the Swiss-Prot database (as of September 2006) and

combined with the missense disease mutations from the

Human Gene Mutation Database (HGMD;

www.hgmd.cf.ac.uk) as of September 2006.

Data representation and predictor
construction

We calculated 586 sequence attributes for each lysine

of the positive and negative datasets. The first group con-

tained a set of 20 amino acid compositions constructed

over symmetric windows of length win [ {3, 7, 11, 21}

centered at each lysine. In addition to compositional

attributes, we also calculated various physicochemical

and other properties within win: net charge, total charge,

aromatic content, charge/hydrophobicity ratio,22 and

sequence complexity using Shannon and generalized b-
entropy.45 Another set of attributes was derived from

several sequence-based predictors of protein properties.

We used predictors of flexibility,46 high B-factor,47

amphipathic moment,48 phosphorylation,27 and four

predictors of intrinsic disorder.49–52 These prediction

values were averaged within win [ {1, 7, 11, 21}. Evolu-

tionary information was exploited through position-spe-

cific scoring matrices (PSSMs), obtained via a PSI-BLAST

search53 against the nonredundant GenBank database

(parameters: 2h 0.0001 2j 3). The 42 outputs in each

PSSM row were averaged over win [ {1, 7, 11, 21} for

each lysine, thus generating 168 evolutionary attributes.

Finally, position specific amino acid content was encoded

for positions 23 to 13 as binary attributes.

Before model optimization, we applied a t-test attribute

selection filter and retained only statistically significant

attributes. A predictor was then built using a random for-

est approach.54 In each member of the ensemble, the set
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of negative examples was equal in size to the set of positive

examples to achieve the highest accuracy on a class-bal-

anced test set. Even though such training is indicative of

class separability, it can cause significant over-prediction

on the majority (here negative) class. This problem, how-

ever, can be addressed by changing decision thresholds or

adjusting the outputs of the predictor.55

Model evaluation and performance measures

To evaluate UbPred, 100-fold cross-validation strategy

was chosen. This process was further repeated 10 times

to obtain stable estimates. We measured accuracy on a

per-residue level by estimating sensitivity (sn) and speci-

ficity (sp). Sensitivity represents the percentage of true

positives predicted to be positive (ubiquitinated), while

specificity represents the percentage of true negatives pre-

dicted to be negative (nonubiquitinated). In addition to

sn and sp, we also report accuracy on a balanced sample

(acc), defined as an average of sn and sp, and area under

the ROC curve (AUC). The ROC curve represents a map-

ping of (1 2 sp) to sn and in our case was estimated by

varying the decision thresholds.

GO annotations

To functionally annotate proteins regulated by ubiqui-

tination, we downloaded a set of 5884 verified ORFs

(5817 sequences of length �50) from the SGD website

and applied UbPred. A major challenge in finding

proteins that are most likely to be ubiquitinated is a pos-

sibility that a direct application of UbPred to any pro-

teome would favor longer proteins, as a consequence of

<100% prediction accuracy. Thus, to extract a set of pro-

teins with strongest predictions, we proceeded as follows.

First, a threshold t was determined such that only

100�p% of all prediction scores over all proteins were

greater than t. For a sufficiently high t, or similarly, suffi-

ciently low p, such scores can be considered as strong

predictions of ubiquitination, which is supported by the

low false positive rate in the bottom left-hand corner of

the estimated ROC curve. Then, with a reasonable

assumption, we introduced a null model in which a ran-

domly selected lysine from any protein had 100�p%
chance of being predicted as strong. Under this model,

the number of strong predictions (with scores above

threshold t) in each protein would be proportional to the

number of lysines it contains. Therefore, using the null

model assumption, the probability that, in a protein con-

taining K lysines, the number of strong predictions that

occurred by chance is k or greater, can be expressed as

P ¼
XK
i¼k

K

i

� �
� pi � ð1� pÞK�i

where p is the probability that a randomly selected lysine

has a strong prediction of being ubiquitinated. Thus,

proteins with the lowest P-value P are the most likely to

contain a disproportionately larger number of strong pre-

dictions than expected by chance. We considered these

proteins to be the most strongly ubiquitinated proteins

(i.e., over-ubiquitinated). The potential length depend-

ence was thus eliminated since the P-values implicitly

equalize the length factor. We selected the threshold of

p 5 0.1 and extracted all proteins with P < 0.05, Bonfer-

roni corrected. In addition, because consecutive lysines

may not be considered to be motionally independent

(possibly invalidating null model assumptions), we note

that a selection of the smaller samples of lysines from

each protein did not significantly influence the results

reported herein.

RESULTS

Identification of novel Ub sites using
combination of MudPIT and mass
spectrometry

Two high-throughput datasets of Ub sites are currently

available in the literature.35,36 These datasets have two

major shortcomings: (1) only a small number of Ub sites

was identified (127 sites from the two studies combined);

(2) these sites are known to be biased against proteins

with short half-lives.36 To address both of these limita-

tions, we identified additional Ub sites using combina-

tion of MudPIT, mass spectrometry, and mutant yeast

strains. We: (1) used grr1D mutant strains that are defi-

cient in Grr1 F-box protein, a crucial component of the

SCF ubiquitin ligase (SCFGrr1); (2) used yeast strains

expressing a mutant of the ubiquitin conjugating enzyme

Cdc34, which conjugates polyubiquitin chains more

slowly and of shorter length than the wild type enzyme.

In these two independent experiments, we identified 141

high-confidence Ub sites from 108 proteins (PeptidePro-

phet score of >0.95). The unique identified peptides con-

taining novel Ub sites are shown in Table SI (Supporting

Information).

As mentioned above, the problem of the short half-life

of ubiquitinated proteins was addressed using two mu-

tant yeast strains, grr1D and CDC34tm. It has recently

been shown that some targets of SCFGrr1 could be mark-

edly stabilized in the grr1D cells.56 We have used grr1D
mutant strains to potentially improve the detection of

ubiquitinated substrates with extended half-lives.

Cdc34 is the ubiquitin conjugating enzyme of the SCF

complex. A universally conserved motif in close physical

proximity to the catalytic cysteine defines the Cdc34-like

class of ubiquitin conjugating enzymes.57 It has recently

been shown that this motif is critical for extension of the

polyubiquitin chain but not necessary for addition of the

first ubiquitin to substrate.58 Mutation of this motif,

namely serine residues 73 and 97 along with the acidic

stretch of amino acid residues 103–114, to mimic the
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Rad6 class of ubiquitin conjugating enzymes, decreases

the rate of substrate ubiquitination and ultimately

extends the half life of some SCF/Cdc34 substrates

(Goebl, submitted). Because the substrate still bears the

ubiquitin tag but the degradation kinetics are notably

slower, an increased steady state of the ubiquitinated sub-

strate is available for analysis.

Functional characterization of
known Ub sites

We first created a joint positive dataset of experimen-

tally verified Ub sites from S. cerevisiae (Materials and

Methods). This dataset included: (1) 127 nonredundant

Ub sites from 92 proteins extracted from two previous

high-throughput studies,35,36 in addition to four sites

found in the literature, referred to as DA; (2) 141 newly

identified nonredundant Ub sites from 108 proteins

extracted from two independent MudPIT experiments,

referred to as DB. The analysis of these datasets showed

that they were nonoverlapping. This is likely a result of

the small sample sizes derived from a large pool of exist-

ing ubiquitination sites in yeast, as well as differences in

the methodological approaches used to identify Ub sites

in the current and previous studies. Using GO annota-

tions, we next examined whether we succeeded in captur-

ing greater number of proteins with short half lives.

It was previously shown that yeast proteins with short

half-lives were abundant among GO annotations including

‘‘transcription regulation,’’ ‘‘transcription factor activity,’’

‘‘cell cycle,’’ ‘‘DNA metabolism,’’ and ‘‘DNA binding.’’44

We GO-annotated both datasets and observed that pro-

teins with the above GO annotations comprised �20% of

DB as opposed to only 6% of DA (Table SII, Supporting In-

formation). We detected Ub sites within several important

short-lived cell cycle regulators, including Tel1, as well as

within numerous short-lived transcription factors and

DNA-binding proteins, including Hms1, Spt16, Tfa1,

Gal11, and Rad26. This suggests that we in fact were able

to capture short-lived proteins using mutant yeast strains.

Including Ub sites from short-lived proteins into the train-

ing set is essential for better generalizability of the predic-

tor. Thus, we considered our joint positive dataset to be

reasonably diverse and suitable for predictor construction.

Structural characterization of known
Ub sites

To gain better insight into structural preferences of Ub

sites, we searched the available structural information for

proteins from our positive dataset (combined DA and DB,

Supporting Information Table SIII) using BLAST against

the Protein Data Bank (PDB)59 with �70% sequence

identity as a cutoff value. Our search resulted in a total

of 32 homologous protein chains (with 15 of them being

100% identical with query proteins) containing 28 Ub

sites (Table I).

A more detailed analysis of the available structures

showed that only eight structures (1ac5, 2p4q, 2dy7,

1kt1,1zx6, 7hsc, 3hsc, and 1plr) consisted of a single

chain representing protein monomers, whereas the

remaining proteins were homo-oligomers, hetero-

oligomers, or complexes with other proteins or ligands,

including DNA. Conclusions about the structural prefer-

ences of Ub sites when they are found in complexes

should be made carefully because of structural rear-

rangements upon binding. Moreover, crystal con-

tacts60,61 could further obscure the true structural pref-

erences of Ub sites. Our analysis showed that 10 out of

28 Ub sites (or their neighbors five residues upstream

or downstream) were in crystal or interchain/intrachain

contacts, and therefore the assignment of these sites to

a specific structural element should be made with cau-

tion. Of the 18 sites that could be confidently assigned

to ordered regions, 11 were located within coils (two of

which were close to the observed disordered regions),

four within helices, and three within strands. The ma-

jority of the sites within coils and helices were surface

exposed and had high B-factor values indicating high

flexibility.

In summary, despite the presence of more than 50,000

structures in PDB, reliable structural assignments can be

made for only �7% of the available Ub sites (18 out of

265 nonredundant sites). This indicates that very limited

structural information is currently available for proteins

that comprise known ubiquitination substrates.

Examples of ubiquitination sites located in
disordered protein regions

Along with the lack of structural information for the

majority of experimentally detected Ub sites, there are

several examples of Ub sites located in the experimentally

confirmed disordered regions (Table II). Site-directed

mutagenesis of six lysine residues to arginine near the C-

terminus of p53 generates a molecule with potent tran-

scriptional activity that is extremely resistant to Mdm2-

and E6-AP-mediated ubiquitination and degradation.62

This suggests that ubiquitination sites of p53 are located

in its C-terminal regulatory domain. At the same time,

p53 contains large unstructured regions in its N- and C-

terminal parts.63 The ubiquitin-mediated proteolysis of

the c-Myc protein is governed by its transcriptional acti-

vation domain,64 which is shown to be unstructured in

the absence of its binding partner TBP.65 Ubiquitination

sites of histones H2A66 and H2B67 are contained within

C-terminal regions that are susceptible to proteolysis80

and are unstructured.68 Multiple ubiquitination sites of

a-synuclein, a completely unfolded protein,69,81 were

found to be located within its N-terminus.70 Similarly,

the regions of disorder and ubiquitination coincide for

three cyclin-dependent kinase inhibitors, p21Cip1, p27Kip1,

and p57Kip2, as well as for IjBa and the component of
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the yeast SNARE complex, Snc1. Finally, the Ub sites of

cyclin B and securin are also located in their disordered

N-termini.75 These examples demonstrate that Ub sites

could be mapped to the experimentally confirmed

unstructured regions in several proteins.

Sequence analysis of the position-specific
and nonposition-specific attributes

To determine whether Ub and non-Ub sites have

distinct sequence properties, we calculated statistically

significant differences in the distribution of amino acid

Table I
Structural Analysis of Known Ub Sites

SGD ID
Protein
name

PDB
chain
(total
chains)

Residues
from
protein

sequence

Residues
from PDB
chain

BLAST
identity (%) Ub site(s)

Site on aligned
PDB chain
(e-extended

strand,
c-coil, h-helix)

Additional
information
(if available)

YDR155C Cpr1 1vdn:A(2) 1–160 3–162 100.0 K157 K158(e) Residue 158 is in crystal contact
with residues 5–7, 17, 47, 156,
157, and 159

YHR042W Ncp1 2bn4:B(2) 32–690 24–682 99.9 K218 K210(c) Residue 210 participates in crystal
contact formation

YLR080W Emp46 2a6w:B(2) 52–275 3–226 100.0 K183 K134(c)
YPL084W Bro1 1zb1:B(2) 1–387 6–392 99.7 K289 K294(c)
YAL038W Cdc19 1a3x:B(2) 1–499 2–500 100.0 K85 K86(c)
YDL229W Ssb1 2qwm:B(2) 8–389 6–387 70.2 K313 R311 Residue is not K in the PDB chain
YER012W Pre1 3bdm:X(28) 1–198 1–198 100.0 K19, K29 K19 (c),

K29 (e)
YGL203C Kex1 1ac5:A(1) 23–503 1–481 100.0 K152 K130 (c)
YHR183W Gnd1 2p4q:A(1) 1–487 11–497 100.0 K74 K83 (e) Intra-chain crystal contacts by

residue 75
YLR044C Pdc1 1qpb:B(2) 1–561 3–563 99.3 K248 K249 (c)
YNL209W Ssb2 2qwm:B(2) 8–389 6–387 70.2 K313 R311 Residue is not K in the PDB chain
YDL126C Cdc48 3cf1:C(3) 11–796 2–773 70.2 K673, K594 K663 (c),

K584 (h)
Intra-chain crystal contacts by
residues 568 and 586

YER164W Chd1 2dy7:A(1) 172–252 1–81 100.0 K1144 N/A Site is not covered by structure
YOL145C Ctr9 1kt1:A(1) 735–752 321–338 72.2 K196 N/A Site is not covered by structure
YER143W Ddi1 2i1a:D(4) 178–325 1–148 98.7 K171 N/A Site is not covered by structure
YBR102C Exo84 2d2s:A(2) 523–753 5–235 100.0 K219 N/A Site is not covered by structure
YBL002W Htb2 1id3:H(10) 28–131 27–130 100.0 K124 K123(c) Residues 122, 126, and 128

participate in crystal contacts
YGR136W Lsb1 1zx6:A(1) 56–111 3–58 73.2 K41, K79 K26(e) Residues 22–26, 29–31 participate

in crystal contacts
YHR042W Ncp1 2bn4:B(2) 33–691 24–682 99.9 K666 K657(c)
YBR035C Pdx3 1ci0:B(2) 1–228 1–228 100.0 K29 K29(c) Residues 1–23 are disordered; no

contribution to crystal contact
formation; K29 is on the
surface; large B-factor

YPR154W Pin3 1zx6:A(1) 56–112 2–58 98.3 K80 K26(e) Residues 22–26, 29–31 participate
in crystal contacts

YGL008C Pma1 1mhs:B(2) 51–916 53–918 78.1 K555,
K566, K644

K555(e),
R566, K644(h)

K555 is in contact with residues
376 and 377; 566K>R in the
structure; residue 644
participates in crystal contacts

YGR135W Pre9 3bdm:P(28) 1–258 1–258 100.0 K199 K199(h)
YDL140C Rpo21 2yu9:A(13) 1–1537 1–1537 100.0 K695 K695(h)
YHL015W Rps20 1s1h:J(17) 23–120 3–100 96.9 K8 N/A Site is not covered by structure
YLR167W Rps3 1s1h:C(17) 2–193 1–192 100.0 K212 N/A Site is not covered by structure
YAL030W Snc1 3b5n:I(12) 27–86 2–61 100.0 K63 K38(h)
YOR327C Snc2 3b5n:I(12) 26–85 2–61 88.3 K62 K38(h)
YAL005C Ssa1 7hsc:A(1) 382–540 1–159 79.3 K536, K521 K155(c),

K140(h)
YLL024C Ssa2 3hsc:A(1) 1–382 1–385 81.7 K556 N/A Site is not covered by structure
YEL021W Ura3 1dqx:D(4) 1–267 1–267 98.9 K209,

K253, K93
K209(c), K253(h),
K93(c)

Residue 257 contributes to crystal
contact formation; K253
participates in crystal contact
formation

YBR088C Pol30 1plr:A(1) 1–258 1–258 100.0 K164 K164(c) Residues 161, 163 and 164
contribute to crystal contact
formation
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residues surrounding ubiquitinated (265 examples) and

nonubiquitinated (4431 examples) lysines (see Materials

and Methods for description of datasets).

This analysis showed 38 compositional differences

between Ub and non-Ub sites (see Fig. 1). The most pro-

nounced feature of Ub sites is the abundance of charged

and polar amino acids, especially negatively charged D

and E, and the depletion of hydrophobic residues, such

as L, I, F, and P around Ub sites. Interestingly, disordered

proteins/regions are also characterized by similar proper-

ties, such as a high absolute value of the net charge and

low hydrophobicity.83

Another interesting feature is the absence of additional

lysines at positions that are immediately adjacent to the

Ub site. For example, lysines are depleted at positions

(24), (23), (11), (12), (13), (14), and (17) (see Fig.

1). This suggests that Ub sites do not have a tendency to

cluster, perhaps due to the structural constrains that

would prevent simultaneous attachment of two or more

bulky ubiquitin molecules in close proximity to each

other on the same substrate. This is in contrast to phos-

phorylation sites that often cluster, as indicated by both

experiments84,85 and predictions.27 However, we note

that depletion of lysines may also exist as an artifact of

mass spectrometry-based identification.

Besides position-specific frequencies, we have also

compared the overall amino acid compositions of

intrinsically disordered regions, Ub and non-Ub sites (see

Fig. 2). This graph shows the composition of these three

datasets relative to the composition of completely or-

dered proteins from PDB-Select-25.86 Ub sites and IDRs

are enriched overall in flexible residues (positive bars)

and depleted in rigid residues (negative bars). For exam-

ple, unlike non-Ub sites, both Ub sites and IDRs are

depleted in aromatic residues, I and L, and they are

enriched in D and E. At the same time, Ub sites have

some common features with non-Ub sites, such as deple-

tion of R, G, A, and M and enrichment of N. In addi-

tion, Ub sites are considerably more depleted in C than

both non-Ub sites and IDRs.

Predictor of ubiquitination sites UbPred

Using 586 sequence-based attributes, we constructed a

predictor of ubiquitination sites from protein sequence,

UbPred. The analysis of the properties of Ub and non-

Ub sites has shown that several attributes were positively

and negatively correlated with Ub sites (Table III). The

predictions of disorder,49–52 high B-factors,47 conserva-

tion of D, E, N, S, and flexibility by Vihinen et al.46

were positively correlated with Ub sites, whereas net

charge, frequency of K, hydrophobic moment, conserva-

tion of I, V, and F and several other attributes were nega-

tively correlated with Ub sites (Table III). These data

Figure 1
A Two Sample Logo82 of the compositional biases around Ub sites compared to the non-Ub sites. Only amino acid residues significantly enriched

and depleted (P < 0.05; t-test) around Ub sites are shown.

Table II
Examples of Ub Sites Located in the Experimentally Confirmed

Disordered Regions

Protein name DR location
Ub site(s)
location References

p53 1–70, 363–393 C-terminus 62, 63

c-myc 1–143 Unknown,
between
residues 1

and 128

64, 65

Histones
H2A 1–22, 92–128 119 66, 67, 68

H2B 1–32, 100–122 120
a-synuclein 1–140 21, 23, 32,

34, 6, 10, 12

69, 70

Cell cycle inhibitors
p21 1–164 Unknown 71–74

p27 23–106 Unknown 71–74

p57 1–316 Unknown 71–74

Cyclin B 1–100 N-terminus 75, 76

Securin Pds1 1–100 N-terminus 75

IjBa 1–70 21, 22 77, 78

Synaptobrevin
homolog Snc1

1–93 63 36, 79
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clearly suggest that Ub sites have higher propensity for

disorder and flexibility than non-Ub sites.

To construct UbPred, we used random forest-based

approach that showed better performance than other

tested models (logistic regression, support vector

machine, and neural network). The overall performance

of the predictor was estimated on a per residue basis and

reached a class-balanced test accuracy of 72.0%, area

under the ROC curve (AUC) was estimated at 79.6%

(see Fig. 3).

Because the set of negative data points has been

extracted from the mitochondrial matrix proteins, we

decided to train another model in which we kept the

same positive examples, but the set of negatives was cho-

sen from all yeast proteins, giving in total 34,844 sites, of

which 30,847 were nonredundant (<40% sequence iden-

tity). This predictor had accuracy of 70.7% and area

under the ROC curve of 77.5% (not shown). The output

score of this predictor had correlation of 0.81 with the

predictor developed using the mitochondrial matrix pro-

teins as a negative dataset. In addition, the two predictors

output different class in 7.6% of cases for the default

threshold of 0.5 and 1.9% of cases for the highly confi-

dent predictions (�0.75) that provide a false positive rate

of 5%. Thus, we concluded that the particular selection

of the negative dataset did not significantly influence pre-

dictor output.

Prediction of precise Ub sites in Rsp5
ubiquitin ligase substrates

Global identification of the substrates for E3 ligases,

and especially their precise Ub sites, on a proteome scale

remains a challenging problem. Protein microarrays were

recently used to identify numerous ubiquitinated sub-

strates of yeast Rsp5 ligase.43 In total, 150 substrates

were identified (e.g., ‘‘relaxed’’ set), among which 40

were defined as a ‘‘high-confidence’’ set based on either

previous studies, or complementary confirmation of

ubiquitination/binding to Rsp5. Although global identifi-

cation of the Rsp5 substrates is valuable, the precise Ub

sites within these substrates remain unknown.

Here, we asked a question whether Rsp5 substrates

identified by Gupta et al.43 are ubiquitinated to a greater

extent (i.e., are over-ubiquitinated) when compared with

the remaining proteins from the yeast proteome (see

Materials and Methods for definition of over-ubiquiti-

nated proteins). When we applied UbPred to this dataset,

we found that the high-confidence Rsp5 substrates (but

not the relaxed set) were significantly over-ubiquitinated

when compared with other yeast proteins (P 5 5.9 3
1023, Wilcoxon test) (Table IV). This does not necessarily

indicate that the substrates from the relaxed set lack Ub

sites, but rather that the number of such sites is not

unusually high when compared with an average yeast

protein. Such proteins can still be ubiquitinated at a

smaller number of sites.

It has been shown that Rsp5 substrates are significantly

enriched in PPxY and/or LPxY motifs,43 even though

27.5% of the high-confidence substrates and 67.3% of

the relaxed substrates do not carry either of these two

Table III
Ten Top Features Positively and Negatively Correlated with Ub Sites

Positively correlated Negatively correlated

Feature name Correlation coefficient P-value Feature name Correlation coefficient P-value

Disorder VSL2B 0.153 0 Net charge 20.152 0
Conservation of S 0.136 0 Frequency of K 20.098 1.40E-11
B-factor 0.130 0 AA volume 20.095 8.50E-11
Conservation of E 0.126 0 Hydrophobicity 20.090 6.60E-10
Conservation of D 0.123 0 Hydrophobic moment 100 20.089 8.30E-10
Conservation of N 0.120 1.10E-16 Hydrophobic moment 100 20.088 1.40E-09
Disorder VL2 0.118 4.40E-16 Conservation of I 20.079 6.50E-08
Disorder VLXT 0.116 1.50E-15 Conservation of V 20.074 3.90E-07
Vihinen flexibility 0.115 2.00E-15 Conservation of F 20.073 6.50E-07
Disorder VL2 0.115 2.70E-15 Hydrophobic moment 120 20.071 1.30E-06

Figure 2
Relative amino acid compositions of three studied datasets. Amino acid

compositions are shown relative to the composition of ordered proteins

from O_PDB_S25 dataset. Amino acids are arranged from left to right

in order of increasing flexibility as defined by Vihinen et al.46 The error

bars represent 95% confidence intervals.
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motifs. The analysis of UbPred predictions for the sub-

strates with the above motifs showed that the presence of

PY motifs is associated with slightly higher UbPred

scores (not shown). However, examination of sequence

distances between Ub sites and the PY motifs has not

detected any trends, suggesting that spatial rather than

sequence proximity of PY motifs and Ub sites may be

important for Rsp5 binding.

Correlation of predicted Ub sites with
protein half life

A recent study has determined the half lives of more

than 3750 yeast proteins.44 The availability of these data

created an opportunity to ask whether proteins with

shorter half-lives were over-ubiquitinated. The correlation

between protein disorder and half life was previously

investigated in two separate studies that arrived at the

conclusions that disorder and protein half life are

weakly32 and strongly33 correlated. However, the correla-

tion between ubiquitination and protein half life has not

been previously addressed.

Here, we found that short-lived proteins (with half

lives of �4 min) were significantly over-ubiquitinated

when compared with other yeast proteins (P 5 1.9 3
10210, Wilcoxon test) and to other proteins for which

half life was determined (P 5 9.5 3 1025, Wilcoxon test,

not shown) (Table V). This suggests that the majority of

yeast short-lived proteins are likely to be degraded via

the ubiquitin-proteasomal pathway.

It has previously been observed that proteins with very

short half lives have an increased incidence of PEST

motifs.32 When we correlated the presence of PEST

sequences with predicted Ub sites in the short-lived pro-

teins, we observed that 38 out of 88 (43.2%) PEST

sequences within these proteins carried predicted Ub sites

with the UbPred score of �0.75. Given high disorder and

flexibility content of PEST regions,31,87 it is not

surprising that we find PEST sequences to be highly

ubiquitinated, in addition to other previously detected

modifications.87

Predictor application to the entire
yeast proteome

To estimate the extent of ubiquitination and to func-

tionally annotate predicted ubiquitinated proteins, we

applied UbPred to the entire yeast proteome. Only the

sites with high prediction scores have been considered in

this analysis, and only the proteins for which the number

of sites with high prediction scores was unlikely to have

occurred by chance (Materials and Methods) have been

selected for GO annotation.

The analysis of the ‘‘molecular function’’ annotation

shows that proteins with numerous putative Ub sites

span several functional categories [Fig. 4(A)]. These cate-

gories may be combined into three broader classes: (1)

signaling and regulatory proteins (signal transducers,

transcription, and enzyme regulators); (2) proteins

involved in binding (protein, DNA, RNA, and lipid bind-

ing); and (3) proteins involved in catalysis (hydrolases,

transferases, protein kinases, etc.). Among these classes,

we observed significant enrichment of proteins annotated

as transcription and enzyme regulator activities, protein,

and DNA binding, as well as protein kinase activity.

Many well-known yeast global transcriptional regulators

including Swi5, Swi6, Ace2, Fkh2, Sla1, and Clb2 are

present within these GO categories.

Table IV
Ubiquitination Analysis of Rsp5 Substrates

Datasets
Number

of Proteins

Over-
ubiquitinated

(%) P-value

High confidence Rsp5 substrates 40 14 (35.0) 5.88E-03
Relaxed Rsp5 substrates 149 32 (21.5) 3.00E-01
All yeast proteins 5817 1059 (18.2) n/a

The datasets were extracted from Ref. 43.

Table V
Ubiquitination Analysis of Proteins with Various Half Lives

Datasets
Number

of Proteins

Over-
ubiquitinated

(%) P-value

Proteins with short half
life (�4 min)

159 49 (30.8) 1.92E-10

Proteins with longer half
life (>4 min)

3185 585 (18.4) 7.81E-01

All yeast proteins 5817 1059 (18.2) n/a

The datasets were extracted from Ref. 44.

Figure 3
Receiver operating characteristic (ROC) curve for the UbPred predictor

of ubiquitination sites (solid line) vs. the performance of the random

model (dotted line). The area under the curve (AUC) was estimated to

be 79.6%.
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Figure 4
GO annotations for the highly ubiquitinated proteins from S. cerevisiae proteome (colored bars) with occurrence of >5% (Bonferroni corrected) as

compared to the entire yeast proteome (black bars). Top 20 (whenever available) GO Slim terms are shown. (A) Molecular function; (B) Biological

process; (C) Cellular component. The proteins are arranged in order of the decreasing fraction of proteins with a specific GO annotation present in

the predicted highly ubiquitinated dataset. P-values were calculated using the hypergeometric test and corrected for multiple hypothesis testing.

***P < 0.0001; **P < 0.001; *P < 0.05.
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The ‘‘biological process’’ annotation shows that over-

ubiquitinated proteins are enriched within such GO

processes as transcription, cell cycle, cell budding, signal

transduction, cytokinesis, and pseudohyphal growth [Fig.

4(B)]. Indeed, many transcription factors and cell cycle

proteins are unstable, and their degradation is known to

occur via Ub-mediated proteolysis.88

Within the ‘‘cellular component’’ category, over-ubiq-

uitinated proteins are prevalent within GO annotations

such as cellular bud, site of polarized growth, cytoskele-

ton, and cell cortex [Fig. 4(C)].

In summary, the GO annotations of over-ubiquiti-

nated proteins generally agree with known functions

and processes that depend on ubiquitination, thereby

strengthening the biological significance of our predic-

tions. The application of the UbPred to the yeast pro-

teome allowed us to predict new targets of ubiquitina-

tion as well as to predict precise Ub sites in proteins

that were previously known to be degraded by the

ubiquitin-proteasomal pathway. The examples of confi-

dently predicted Ub sites in various yeast proteins are

shown in Table VI.

Prediction of Ub sites in human proteins
from Swiss-Prot functional categories

To determine whether there are differences in the

extent of ubiquitination between human proteins that

carry out various functions in the cell, we performed

comparative analysis of the over-ubiquitinated human

proteins from 11 Swiss-Prot functional categories (see

Materials and Methods) and the entire human proteome

(see Fig. 5). Significant differences in ubiquitination were

observed between proteins from different functional cate-

gories. In comparison to other human proteins, cytos-

keletal, cell cycle, regulatory, and cancer-associated pro-

teins were significantly over-ubiquitinated, whereas ki-

nases, transport, metabolism, biosynthesis, GPCRs, and

ribosomal proteins were significantly under-ubiquiti-

nated. These results correlate with the yeast data because

yeast cell cycle and regulatory proteins were also found

to be over-ubiquitinated (see Fig. 4). In addition, the

ubiquitination predictions also correlate with the disor-

der content of the same functional categories,25 with

proteins from highly disordered categories being over-

ubiquitinated.

Gain and loss of predicted Ub sites in
disease-associated proteins

Proteins involved in various human diseases carry a

wide range of mutations. For example, hundreds of mis-

sense mutations, insertions, and deletions have been

identified in proteins involved in development of various

Table VI
Examples of Yeast Proteins with Highly Confidently

(UbPred Score � 0.95) Predicted Ub Sites

ORF Protein name Predicted Ub site(s)a

Ten high confidence Rsp5 substrates
YKR021W Aly1 168, 203
YJL084C Aly2 144, 704, 871
YNR069C Bsc5 41
YOR042W Cue5 15, 39, 76, 347, 395, 396
YGR136W Lsb1 41
YPL193W Rsa1 10, 191, 271, 276
YMR140W Sip5 7, 324
YJL151C Sna3 125
YHR131C Yhr131c 795
YGL161C Yip5 46, 57
Ten proteins with short half-life (� 4 min)
YDR421W Aro80 85, 87, 826
YDL149W Atg9 113, 138
YLR220W Ccc1 74
YLR228C Ecm22 355, 362, 379, 430
YOR033C Exo1 462, 470, 522, 527
YHR061C Gic1 141, 153, 217
YMR172W Hot1 505, 531, 576
YER104W Rtt105 52
YJR056C Yjr056c 19, 97, 124
YPL158C Ypl158c 205, 399
Ten transcriptional regulators
YKL112W Abf1 133, 156, 712
YNL068C Fkh2 795, 828, 836
YEL009C Gcn4 194
YDL056W Mbp1 248, 743
YOR372C Ndd1 345
YHR206W Skn7 60
YMR016C Sok2 714
YNL309W Stb1 65, 119, 178
YER111C Swi4 752, 842
YLR182W Swi6 140, 186

aOnly the sites with UbPred score of �0.95 are shown.

Figure 5
Frequencies of highly ubiquitinated proteins in eleven functional

categories from Swiss-Prot as compared to the entire human proteome.

P-values were calculated using the Wilcoxon test.
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cancers. Examples of such highly mutated proteins

include p53, BRCA1, APC, RB1, ATM, and others. A

disease mutation can affect the Ub site directly, or it can

be located in close proximity to a Ub site, but in both

cases its effect would likely be aberrant degradation of

the target protein. An example of altered ubiquitination

of b-catenin’s oncogenic mutants clearly demonstrates

such a possibility.89

Here, we investigated changes in the predicted Ub sites

of disease-associated proteins extracted from Swiss-Prot

and HGMD databases. Disease mutations could cause ei-

ther gain or loss of predicted Ub sites. The effect of

annotated disease mutation was assessed based on the

difference between UbPred scores for the wild type and

mutated residue, with a negative delta value signifying

the loss of a Ub site and a positive delta value signifying

the gain of a Ub site (Supporting Information Table

SIV). Only highly confident predictions with UbPred

delta score of �0.75 are shown in Supporting Informa-

tion Table SIV.

Numerous mutations involved in various types of

cancers could cause gain or loss of predicted Ub sites.

The phenotypic effects of such mutations would be ei-

ther destabilization/accelerated degradation of tumor

suppressors due to gain-of-function mutations (i.e., gain

of Ub sites), or stabilization/abnormal accumulation of

oncoproteins and tumor growth factors due to loss-of-

function mutations (i.e., loss of Ub sites). In fact, both

of these mechanisms have been previously observed in

human cancers.90,91 For example, the mutation K347N

in human myosin-XVIIIb is known to be associated

with lung small cell carcinoma,92 and this mutation

also causes loss of a highly confidently predicted Ub

site in this protein (Supporting Information Table SIV).

Two cancer-associated mutations in the p53 tumor

suppressor, K292I and K305M, result in the loss of

predicted Ub sites within p53 (Supporting Information

Table SIV). Interestingly, these two highly confidently

predicted Ub sites in p53 are located at the boundary

of its DNA-binding domain, whereas the majority of

previously known Ub sites of p53 cluster in its C-termi-

nal regulatory domain.62 These Ub sites could be novel,

not yet experimentally identified Ub sites in p53. In

addition, K305 of p53 is also known to be acetylated,93

and competition between acetylation, methylation,

sumoylation, and ubiquitination was previously sug-

gested as regulatory mechanism for transcription factors

activity.94,95 Therefore, lysine 305 in p53 is a good

candidate for experimental verification.

We also observe gain of predicted Ub sites as a result

of disease mutations (Supporting Information Table

SIV). For example, gain of Ub sites was predicted in

many cancer proteins such as VHL, BRCA2, p53, as well

as in proteins involved in other diseases such as CFTR,

FANCA, WAS. In summary, mutations influencing ubiq-

uitination status of a protein could serve as promising

candidates for generating and testing hypotheses about

altered degradation of the disease proteins.

DISCUSSION

Although much knowledge about ubiquitination has

been accumulated to date, there are still numerous unan-

swered questions regarding specific aspects of this highly

complex system. So far, no consensus sequence that

determines which specific lysine of the substrate would

become ubiquitinated has been identified when nonho-

mologous proteins are considered. In addition, the broad

range of specificities of the ligases, together with the rela-

tive rigidity of their structures, raises a question about

the mechanisms of substrate selection. It is difficult to

assume that all substrates carry a similar preexisting

structure before they bind to the components of the

ubiquitination machinery.

Disorder has previously been implicated in various

aspects of ubiquitination.30–33 Here, we present several

lines of evidence that a significant fraction of Ub sites

may be located in intrinsically disordered regions. First,

we searched the literature and found a number of experi-

mentally confirmed Ub sites located in disordered

regions. Second, despite the large size of PDB, only 7%

of currently known Ub sites in yeast could be confidently

mapped to protein structures. Third, the use of disorder

predictors as well as the analysis of sequence, physico-

chemical, and evolutionary properties around Ub sites

showed higher propensity of Ub sites to be disordered

than ordered (the average disorder prediction scores for

Ub and non-Ub sites were 0.57 � 0.01 and 0.44 � 0.003,

while the scores calculated on the experimentally verified

disordered and ordered protein regions were 0.66 � 0.02

and 0.39 � 0.01, respectively). Fourth, the functional

classes of proteins predicted to be over-ubiquitinated also

show signatures of structural disorder; however, this evi-

dence may not be independent. One previous study that

also examined structural preferences of Ub sites con-

cluded that these sites were preferentially located within

loops.96 However, because the Catic et al. study was lim-

ited to only 40 Ub sites and was structure-based, it did

not account for the presence of disorder, for which struc-

tural information was not available.

Locating Ub sites in unstructured regions is compelling

when one takes into account the crystal structures of

ubiquitin ligases. The structures of ubiquitin ligases con-

tain large cavities and gaps13,14,17,18,97 that may serve

to accommodate unstructured substrates. The Cul1 subu-

nit of the SCF complex is rigid and elongated, and the

gap between Skp2 and the E2 active site is �50 Å, sup-

posedly to bind to a wide range of substrates of different

sizes.14 Given the rigidity of the SCF complex and the

diversity of proteins to which it binds, it is likely that the

substrates adopt significant flexibility in order to con-
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form to the rigid scaffold of the SCF complex. Indeed,

the structure of b-TrCP1-Skp1 bound to a b-catenin
peptide15 indicates that 15 out of 26 residues of the sub-

strate peptide are disordered. Similarly, 14 out of 24 resi-

dues of the p27 Kip1 substrate in another structure are

also disordered.17 In addition, a large distance between

the E3 and E2 active sites suggests that the transfer of

ubiquitin requires some large-scale movements. It is rea-

sonable to speculate that movement of the substrate is

required for the successful transfer and conjugation of

the ubiquitin molecule. Thus, large cavities in structures

of ubiquitin ligases could serve to accommodate diverse

disordered substrates.

Another important result of this work is development

of the Ub sites predictor. UbPred achieved a balanced ac-

curacy of 72%, and area under the ROC curve was esti-

mated to be �80%. We demonstrated the utility of

UbPred by: (1) predicting precise Ub sites in a dataset of

Rsp5 ubiquitin ligase substrates; (2) establishing the cor-

relation between ubiquitination and protein half life; (3)

identifying functional categories of yeast and human pro-

teins that are likely to be regulated by ubiquitination;

and (4) demonstrating potential loss and gain of Ub sites

as a consequence of disease mutations in humans. Thus,

the initial application of UbPred to various datasets has

expanded our understanding of ubiquitination in several

biological processes and human diseases.

It should be noted that UbPred algorithm does not

account for E3 binding/recognition sites that in some

cases have been shown to be located distantly from Ub

sites. Therefore, UbPred will not predict the ultimate

ubiquitination status of the site because this status would

depend on whether E3 binds to a protein or not. In

essence, it will output the probability that the site is

ubiquitinated if other conditions (such as E3 binding)

are satisfied. Currently, it is not known whether universal

ubiquitination/degradation signals could successfully pre-

dict the ubiquitination status of a substrate. Recent evi-

dence suggests that the presence of bona fide degradation

signals, such as the destruction-box, KEN-box, PEST

regions, and specific N-end residues shows no correlation

with the protein half-life, and that it has hardly any

influence on protein turnover.32 In agreement with this

observation, the computational scan of our positive

examples for the presence of two degradation signals, a

KEN-box (K-E-N) and a destruction box (R-x-x-L, x 5
any amino acid) showed that only eight out of 265 sub-

strates carried KEN-box, and only 18 substrates carried

destruction box motifs in their vicinity. These signals,

therefore, could not serve as global predictors of sub-

strate ubiquitination and/or degradation. The disorder

status of the substrate seems to be a better global ubiqui-

tination signal than the presence of specific motifs.

While we were working on this project, another pre-

dictor of Ub sites was developed.98 It was trained on 157

Ub sites extracted from a database of ubiquitinated pro-

teins.99 The majority of the Ub sites in this database

were extracted from the two large-scale proteomics-based

publications,35,36 also used in our work. However, the

developed predictor achieved poor performance on our

newly identified Ub sites (Sensitivity 5 50.4%; Specificity

5 55.8%, Accuracy 5 53.1%; AUC 5 54.8%).

To summarize, the involvement of flexible and disor-

dered protein regions into various aspects of ubiquitina-

tion process further emphasizes the functional importance

of such regions. Although many functions of disordered

regions have already been discovered, we provide compu-

tational evidence that ubiquitination has signatures similar

to other post-translational modifications that rely on the

unfolded structure.20,27,28,100 Moreover, the develop-

ment of UbPred represents an attempt to identify candi-

date Ub sites based on the local sequence information.

Although the number of experimentally determined Ub

sites will be growing in the future and these sites will be

added to our training set to improve predictor perform-

ance, the current accuracy of UbPred is useful for pre-

dicting novel ubiquitination substrates as well as new sites

in already known substrates. With an established link

between the ubiquitin-proteasome system and a number

of human diseases,90,91,101 such predictions, especially

when confirmed by experiments, would help to target the

degradation of individual proteins more precisely, and

may ultimately lead to development of better drugs.
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