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INTRODUCTION

With the completion of the human genome and the accumulation of vast

amounts of experimental data, computational models aimed at elucidating

molecular events leading to human disease are nearing reality. Among the

early tools that have been developed are gene prioritization algorithms; that

is, methods that rank a set of genes based on their likelihood of being

involved in a specific disease.1–9 The set of candidate genes gleaned from

these methods can be derived from several sources, including candidate chro-

mosomal regions, genes containing significantly associated single nucleotide

polymorphisms (SNPs), differentially expressed genes, or the entire genome.

Traditionally, gene–disease associations are identified by statistical geneti-

cists, where linkage analysis and association studies can provide both candi-

date genes and associated SNPs.10,11 However, genetic heterogeneity, complex

non-Mendelian inheritance patterns, and small population samples pose limi-

tations to these approaches. For example, linkage analysis may associate a dis-

ease with a large chromosomal region, while association studies are thought

to result in high false discovery rates.12 Therefore, it is important to use other

experimental evidence, such as high-throughput proteomics/transcriptomics

data as well as sequence, structure, and functional information to successfully

identify candidate genes.

There is a growing body of literature dedicated to computational studies

that aim to understand properties of disease-associated genes. Around the

time of the completion of the human genome, several groups provided the

first insights that disease-associated genes could be predicted from the protein

sequence and a gene’s functional classification at a molecular level.13–15 Sub-

sequently, other studies have addressed the signature of disease-associated

genes, concluding that they are on average longer, have more homologs

with distant species, fewer paralogs within the human genome than nondi-

sease associated genes, and are frequently coexpressed.16–18 Computa-

tional approaches to predicting disease-associated genes have also been

developed.19,20

More specificity in predicting individual disease associations has been

added by another group of techniques predominantly based on statistical

principles. Freudenberg and Propping2 clustered a number of diseases from
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ABSTRACT

One of the most important tasks of

modern bioinformatics is the develop-

ment of computational tools that can

be used to understand and treat human

disease. To date, a variety of methods

have been explored and algorithms for

candidate gene prioritization are gain-

ing in their usefulness. Here, we pro-

pose an algorithm for detecting gene–

disease associations based on the

human protein–protein interaction net-

work, known gene–disease associations,

protein sequence, and protein func-

tional information at the molecular

level. Our method, PhenoPred, is super-

vised: first, we mapped each gene/pro-

tein onto the spaces of disease and

functional terms based on distance to

all annotated proteins in the protein

interaction network. We also encoded

sequence, function, physicochemical,

and predicted structural properties,

such as secondary structure and flexi-

bility. We then trained support vector

machines to detect gene–disease associ-

ations for a number of terms in Disease

Ontology and provided evidence that,

despite the noise/incompleteness of ex-

perimental data and unfinished ontol-

ogy of diseases, identification of candi-

date genes can be successful even when

a large number of candidate disease

terms are predicted on simultaneously.

Availability: www.phenopred.org
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Online Mendelian Inheritance in Man (OMIM)21 based

on phenotypic data such as age at onset, tissue, inheri-

tance, and then scored each gene–disease relationship (g,

d) proportional to the shared Gene Ontology (GO)

annotation22 between a query gene and disease clusters

associated with d. Another approach, Prioritization Of

Candidate genes Using Statistics (POCUS), calculates the

probability that different loci share the observed func-

tional annotation by chance.3 This method, however,

cannot detect candidate genes that do not share func-

tional annotation with any of the training disease genes.

Transcriptomics of OMIM (TOM) uses gene coexpres-

sion and GO annotation to find genes at particular loci

that are likely to coexpress or share functional annotation

with the seed genes.6 Several other groups have analyzed

protein–protein interaction (PPI) networks and proposed

Bayesian approaches9 or various heuristics23–25 to gene

prioritization.

Prediction of disease associations has also been carried

out in a broader context, where various data sources are

integrated together. In one of the earliest approaches,

Perez-Iratxeta et al. calculated gene–disease associations

by linking phenotype to protein function.1 RefSeq genes

were first connected to GO terms and protein function

was then connected to pathological condition through a

Medline article search. Franke et al.4 developed Priori-

tizer, a Bayesian method, which utilizes functional anno-

tation, microarray data, and predicted experimental PPIs.

George et al.5 developed Gentrepid, a method based on

PPI data and domain sharing, while Aerts et al. devel-

oped Endeavour,7 also based on statistical principles (this

tool has recently been improved by De Bie et al.26)

Finally, Lussier et al.27 connect genomic and clinical

data, whereas Butte and Kohane8 extend the concept of

identifying disease-associated genes from microarray data

by considering a number of environmental and pheno-

typic factors. They use statistical principles to associate

genes with Unified Medical Language System (UMLS)

concepts, in effect creating a phenome–genome network.

In this study, we present a novel approach to the pre-

diction of gene–disease associations based on an experi-

mental PPI network, protein–disease associations, as well

as protein sequence and functional annotation. We pro-

pose a method to associate genes to various levels of dis-

ease classification by considering Disease Ontology (DO)

information (http://diseaseontology.sourceforge.net) that

organizes disease terms into a hierarchical structure

expanding from the ‘‘disease’’ term to the most specific

disease names in a top–down manner. Similarly to GO,

DO is represented as a directed acyclic graph and is

based on UMLS and International Classification of Dis-

eases (ICD-9). The hierarchical organization of DO is

beneficial for gene–disease prioritization algorithms in

that it aggregates various levels of disease annotation into

more general nodes, thus enabling statistical inference

with higher confidence. Our approach considers the

entire available PPI network for humans and encodes

each gene based on the distribution of distances of short-

est paths to all genes associated with disease or having

known functional annotation. In addition, we take

advantage of the sequence properties associated with cer-

tain classes of disease-associated proteins and incorporate

them through a supervised framework using two layers

of support vector machines (SVMs). The results of our

study provide evidence for the usefulness of the

approach, both through overall performance evaluation

and case studies.

MATERIALS AND METHODS

Problem formulation

Let GPPI, GDO, GGO, GP-GO and GP-DO be graphs repre-

senting PPIs, DO, GO, protein-GO and protein-DO asso-

ciations, respectively. We define (i) GPPI 5 (P, EP) as an

undirected graph of PPIs, where P 5 {p1, p2, . . . , pjPj} is

a set of proteins and EP ( P 3 P; (ii) GDO 5 (D, ED) as

a directed acyclic graph representing an ontology of dis-

eases, where D 5 {d1, d2, . . . , djDj} is a set of disease

terms and ED � D 3 D; (iii) GGO 5 (F, EF) as a directed

acyclic graph representing GO, where F 5 {f1, f2, . . . , fjFj}
is a set of functional terms and EF � F 3 F; (iv) GP-DO

5 (P, D, EP-DO) as a bipartite graph of protein-DO asso-

ciations, where EP-DO ( P 3 D, and (v) GP-GO 5 (P, F,

EP-GO) as a bipartite graph of protein-GO associations,

where EP-GO ( P 3 F. The goal of our study is to build

a system which, given incomplete graphs GPPI, GDO, GGO,

GP-GO, and GP-DO, can correctly predict new protein–dis-

ease associations. Each protein–disease association (p, d)

contains one protein p [ P and one disease term d [ D.

Note that the terms ‘‘protein’’ and ‘‘gene’’ are used some-

what interchangeably given that only protein-coding

genes are considered here.

Datasets

Diseases and genes of known genetic involvement were

extracted from OMIM, Swiss-Prot28 and Human Protein

Reference Database (HPRD).29 Collected disease names

and associated genes were manually integrated into DO.

Weak gene–disease associations were excluded, for exam-

ple, genes that are part of large translocated segments

typically associated with many cancers—providing us

with a high-quality data. The PPI network was assembled

by combining the physical interaction data from HPRD,

The Online Predicted Human Interaction Database

(OPHID),30 and studies by Rual et al.31 and Stelzl

et al.32 In total, the number of proteins, diseases, PPIs,

protein–function associations and protein–disease associ-

ations were jPj 5 9590; jDj 5 14,647; jEPj 5 41,456; jEP-
GOj 5 235,925; jEP-DOj 5 55,127; respectively. The overall

number of proteins associated with at least one disease
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was 2000, while the number of disease terms associated

with at least one protein was 2200. These data are freely

available from our web site or upon request.

Data representation

For each protein p [ P, we constructed three sets of

features for predicting disease associations: (i) PPI-DO
features were constructed based on the distribution of
shortest distances from p to other proteins in the PPI
network known to be associated with specific disease

terms; (ii) PPI-GO features were constructed in a similar
way, but based on the shortest distances to other proteins
known to be associated with specific GO terms; (iii)
SPP-GO features encode various sequence, physicochemi-

cal, and other predicted properties of the protein as well
as its GO terms.

To construct PPI-DO (and equivalently PPI-GO) fea-

tures, we first computed the shortest distances between all

pairs of proteins in the PPI network. For each combination

of p [ P, d [ D, and t [ {1, 2, . . . , tmax}, where tmax 5 14

(the maximal observed shortest distance in GPPI), we

counted: (i) Nt
pd—the number of proteins with shortest

distance t to p that are associated with disease d, (ii) Npd—

the number of all proteins reachable from protein p that

are associated with disease d, and (iii) Nt
p—the number of

all proteins with shortest distance t to protein p. Note that

Npd ¼
P

t N
t
pd and Nt

pd � Nt
p , but N

t
p ¼

P
d N

t
pd does not

necessarily hold since associations of different diseases

with the same protein are not mutually exclusive. The

PPI-DO features are calculated as Nt
pd=Npd and Nt

pd=N
t
p

for every d [ D and t [ {1, 2, . . . , tmax}.

It is evident that Nt
pd=Npd represents the distribution

of shortest distances from protein p to all proteins

known to be associated with disease d, or simply the dis-

tribution of distances to disease d. On the other hand,

features Nt
pd=N

t
p indicate the fractions of proteins associ-

ated with disease d amongst p’s level-t neighbors. Our

assumption is that a protein p associated with disease d

is more likely to share the distribution of distances to the

DO terms with the proteins associated with d than the

remaining proteins. In practice, not all of the 2�tmax�jDj
features may be necessary since proteins far away in GPPI

are less likely to share DO annotations. Thus, in a

dimensionality reduction step, we aggregated all features

Nt
pd=Npd and Nt

pd=N
t
p for t � 4 as

P
t�4ðNt

pd=NpdÞ and
P

t�4 N
t
pd=

P
t�4 N

t
pÞ, respectively. Furthermore, we

excluded DO terms with less than 10 positive proteins

from feature construction since the resulting features are

less likely to be statistically meaningful.

The sequence-based and functional features (SPP-GO)

were constructed based on (i) the real-valued vector data

that is obtained for each physicochemical or predicted

property and (ii) binary encoding of the known GO

annotation and PROSITE33 matches. The real-valued

data representation of a protein can be easily obtained by

predicting its properties, for example, secondary structure

or intrinsic disorder, which effectively map an amino

acid sequence into a signal of the same length. If we

consider s to be such a property signal corresponding to

protein p, then a set of features was generated based on

the following: (i) the length of s; (ii) the mean and

standard deviation of s; (iii) percentage of s that is above

25th, 50th, and 75th percentile of the range of s; and (iv)

the number of times each signal crosses the three thresh-

olds. We used the following properties: predictions of he-

lix, sheet, coil, accessible surface area (ASA), and relative

ASA as predicted by PHD,34 hydrophobic moment,35

flexibility predictors,36,37 and predictors of intrinsically

disordered protein regions.38–40 In addition, we calcu-

lated amino acid composition of each protein, as well as

the number, orientation, and separation between pre-

dicted transmembrane helices by TMHMM.41 Physico-

chemical properties included aromatic content and

charge. Finally, the GO and PROSITE information was

encoded using a binary representation, where presence of

a GO term or PROSITE pattern was encoded as 1, while

the absence was encoded as 0. The rationale for the use

of property signals is that certain classes of disease-asso-

ciated proteins have strong biases in their physicochemi-

cal properties. For example, it has been shown that

cancer-related proteins and proteins involved in cardio-

vascular disease are significantly enriched in intrinsic

disorder.42,43

Dimensionality reduction and model training

Because of the possibility of overfitting and computa-

tional costs of building classifiers, a dimensionality

reduction was employed. Initially, we ranked the features

based on information gain and then retained those

between the top feature and the K-th sufficiently dissimi-

lar feature, where K is a prespecified number. A feature

Xi was considered sufficiently dissimilar to the previously

selected features, if the maximum pairwise correlation

coefficient between Xi and each selected feature (out of

X1, X2, . . . , Xi21) was below a threshold q. The similarity

between features was measured by the Pearson correla-

tion coefficient. Finally, correlated features were further

reduced by applying principal component analysis with

retained variance rPCA.

Predictors for individual diseases were built as SVMs

using the one-against-all principle. We used the SVMperf

algorithm44 to optimize the area under the ROC curve

(AUC) due to the extreme class imbalance in the training

data. For each predictor, we recorded the mean and the

standard deviation of the prediction scores on the training

data and used them to normalize the prediction score on a

test protein by a z-score transformation. In this way, the

expectation is that the test prediction scores for all diseases

will have means close to 0 and standard deviations close to

P. Radivojac et al.
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1. We constructed a separate predictor for each type of fea-

ture (PPI-DO, PPI-GO, SPP-GO) and combined them

using a second-stage model. This model was trained on the

same training data as the individual models. Note that,

although a large number of individual models may be con-

structed, each represents a one-time off-line cost.

Performance evaluation

We evaluated our approach using a 100-fold cross-vali-

dation. To construct PPI-DO and PPI-GO features, DO

and GO annotations on the test proteins were removed

and feature reduction was performed using the training

proteins only. Because of the available computational

resources, we did not attempt to optimize the values of

K and q for feature reduction and the parameters for

SVM training, but only report the results obtained using

K 5 5 and q 5 0.7 along with the default SVMperf pa-

rameters. In the same way, rPCA was kept at 95%.

To measure the overall prediction performance, we

examined a curve of recall as a function of precision. For

each test protein p, we select the top k (k 5 1 . . . jDj)
predicted disease terms and calculate the recall as jDO \
DPj/jDOj and the precision as jDO \ DPj/jDPj, where DO

is the set of observed diseases associated with the protein

and DP is the set of predicted diseases.45 A point on the

precision-recall plane is plotted as an average over all test

proteins for the given k, where the rightmost point corre-

sponds to k 5 1. Note that each hit represents a

subgraph, and hence a set of terms, in GDO. For each dis-

ease, we also calculate the ROC curve by plotting recall

as a function of false positive rate. The false positive rate

was calculated as 1� DO \ DP

�
�

�
�= DO

�
�

�
�, where D is a

complement of D.

RESULTS

Analysis of the protein–protein
interaction network

It has previously been observed that proteins that

directly interact are more likely to share their functional

annotation,46 and potentially an association to disease.18

In Figure 1, we analyze this problem and visualize the

fraction of protein pairs as a function of the similarity of

disease terms between them. The similarity between two

disease terms was calculated as the fraction of the set

sizes of the set of common ancestor terms and the set of

all ancestor terms associated with both disease terms.

The fractions are shown separately for the directly inter-

acting proteins, for protein pairs at distance 2 and those

at distance greater than 2. We note that only about 16%

of proteins that directly interact share the exact DO

annotation, about 17% of pairs share somewhat similar

annotation (with similarity between 0.4 and 1), while

more than 66% of the directly interacting pairs have very

different disease annotations. Thus, for an algorithm

designed to predict gene–disease associations, it is impor-

tant to incorporate information regarding close, but also

more distant neighbors (this is the rationale behind the

data representation in ‘‘Datasets’’ section). The fraction of

pairs in Figure 1 was obtained by normalizing the number

of proteins at distance 1, 2, and >2 separately by the

totals in each of those categories (2519; 46,306; and

1,101,061, respectively). This means that, for example,

16% of direct neighbors that share identical disease anno-

tation correspond to 405 pairs (405/2519 5 0.16), whereas

3% of protein pairs at distance 2 that share identical

annotation correspond to 1293 pairs (see Fig. 1).

Prediction accuracy

We separately evaluated the performance of classifiers

for individual diseases and also the overall performance

of the integrated model. Since we used the PPI network

to construct feature sets PPI-DO and PPI-GO, it is im-

portant to note that due to the sparseness of GPPI, there

exist a number of small disconnected subgraphs, which

prevented us from training a model using all available

proteins. Instead, the classification model was trained on

the largest-connected subgraph of GPPI, containing 8934

nodes, or 93% of the total number of proteins. Of those,

1517 had disease associations. Although for each disease

the set of positives contained genes associated with the

particular disease term, the set of negatives contained all

other disease-associated genes as well as 10% of nondi-

sease-associated genes, selected at random (due to their

Figure 1
Distribution of the fractions of protein pairs at distance d [ {1, 2, >2} in the

human PPI network versus the similarity of their disease annotation (see text for

the definition of similarity between disease terms). Each group has been

normalized by the total number of pairs at distance d (2519; 46,306; and

1,101,061).
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large number). Prediction models were trained only for

the disease terms having 10 or more genes associated

with them. In addition, if two or more disease terms had

identical sets of associated genes, only the most specific

term was retained. This procedure resulted in 422 disease

terms on which the predictions were made.

Figure 2 shows area under the ROC curve (AUC) for all

422 individual disease terms as a function of the size of

the training set. The mean AUC was estimated at 73.1%,

and it can be observed that the accuracy slightly drops

with the increase of the number of positive terms. This is

expected, since as one climbs closer to the root of DO, the

diseases are becoming more general and harder to predict.

The disease terms with the highest AUC scores were ‘‘skin

diseases, vesiculobullous’’ (DO ID: 2731; AUC: 99.8%),

‘‘coagulation protein disorders’’ (2212; 99.7%), ‘‘Zellweger

syndrome’’ (905; 99.7), ‘‘deficiency, coagulation factor

NOS’’ (2232; 99.0), and ‘‘lysosomal storage diseases, nerv-

ous system’’ (2753; 98.3%). On the other hand, disease

terms, for which the predictor was nearly random, were

‘‘seizures’’ (DO ID: 2542); ‘‘hypothalamic diseases’’

(1931); ‘‘congenital chromosomal disease’’ (1086);

‘‘osteoporosis’’ (11,476), and ‘‘lung diseases’’ (850).

Figure 3 shows recall as a function of precision for the

three individual classifiers as well as a combined model

(PhenoPred) that was obtained by training a second-stage

model. Importantly, all three types of data performed

better than random; however, the differences between

classifiers were significant. The classifier based on the PPI

network and GO annotation (PPI-GO) had the weakest

performance, followed by the classifier based on the PPI

network and DO annotation (PPI-DO), and finally the

classifier based on sequence and GO information (SPP-

GO) had the highest accuracy. The combined classifier

achieved the best performance: the top scoring subgraph

on average has about 60% correctly predicted terms,

while predicting 33% of available disease terms. Note

that at a precision level of about 45%, PhenoPred has 40

percentage points higher recall than the random model.

The ‘‘good’’ performance of a uniformly random classi-

fier is not very surprising, given that there is a high

chance of correct prediction of disease terms near the

root. The performance accuracy was measured on genes

that were associated with at least one disease. However,

the accuracy on genes neighboring at least one disease

gene in the PPI network (1138 genes) is significantly

higher, which indicates that there are a number of miss-

ing edges in GPPI and GP-DO (data not shown).

Case study: leukemia

Here, we analyze the top predictions of the PhenoPred

classifier on the ‘‘leukemia’’ term (DO ID: 1240), repre-

senting an incompletely understood disease with multiple

forms. Our annotation set has leukemia associated with

80 genes, and it had performance accuracy of 77.5% on

the test set, which is close to the average case. When the

full predictor was applied to the entire database, the top

predictions that were not already in the set of positives

included GATA2, RB1, MAPK3, NCOR2, CBL, SP1,

HDAC1, SIN3A, PCAF, CREBBP, CRK, EP300, STAT1,

CDK2, and RUNX1T1. We split the literature analysis of

these proteins into three groups based on the confidence

that they are associated with leukemia.

Figure 2
Area under the ROC curve (AUC) as a function of the number of positive

examples for 422 disease terms. Dotted line indicates the average case.

Figure 3
Recall as a function of precision for the three individual classifiers, PPI-GO

(gray, diamonds), PPI-DO (gray, squares), SPP-GO (gray, triangles) and the

combined classifier, PhenoPred (black, circles). Dotted line (light gray, pluses)

corresponds to a uniformly random predictor.
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EP300, STAT1, RUNX1T1, NCOR2, SIN3A, HCDAC1,

CDK2, and RB1 are genes very strongly associated with

leukemogenesis in the literature, but were not included

in our dataset of positives because of limitations in our

annotation process. EP300 has been associated with leu-

kemia via fusion events with other proteins, for example,

MLL47 or MYST3,48 or other abnormalities.49 Fusion of

RUNX1T1 and RUNX1 is known to interfere with regu-

lation of several genes involved in hematopoiesis, with

evidence that this event occurs through transcriptional

repression via binding to the complex of NCOR2/SIN3A/

HDAC1.50 STAT1 was detected as a biological treatment

mediator of chronic lymphocytic leukemia and may pre-

dict response to gene therapy.51,52 Schmitz et al. showed

that CDK2 phosphorylates RB1 in a loss of its nuclear af-

finity in acute lymphoblastic leukemia.53 Interestingly,

RB1 was also studied for its association with the B-cell

chronic lymphocytic leukemia. However, subsequent

studies failed to precisely identify causative mutations or

genes54 and excluded RB1 as a causative gene.55

Strong associations with leukemia were also detected

in GATA2, PCAF, and CREBBP. GATA2 has been linked

to the fate of blood cells, and interactions with proteins

associated with acute promyelocytic leukemia were

hypothesized to start its transactivation capacity.56,57

PCAF was shown to acetylate TAL1, thus triggering sev-

eral downstream reactions implicated in T-cell acute lym-

phoblastic leukemia,58 while mutations and genome

rearrangements of CREBBP have been associated with

acute myelogenous leukemia.59,60

Protooncogene CBL was found to translocate from

chromosome 11 to chromosomes 4 and 14 in different

leukemia types,61 and may also be causally involved in

familiar leukemia.62 SP1 was implicated in the survival

of leukemic cells,63 while the expression of MAPK3 has

been found to be a good discriminator in acute myelo-

blastic leukemia.64 Finally, we did not find any evidence

for a link between CRK and leukemia, though our results

suggest that further investigation of this gene and its role

in leukemia should be made.

DISCUSSION

We proposed and evaluated an algorithm for candidate

gene prioritization based on PPI network data, protein

sequence, and protein functional information. We pro-

vide evidence that the accuracy of the model is satisfac-

tory for the use by experimental and computational

researchers, and note that the results presented in Figure

3 correspond to the case when all 422 disease terms were

used. Thus, better performance can be expected if disease

terms with low prediction accuracy were removed from

calculation (e.g., terms with AUC <60%, there are 42

such terms). Our approach is novel in that it encodes

each protein based on the distribution of distances to all

other proteins in the PPI network that are either associ-

ated with disease or have known molecular function. In

addition, the incorporation of sequence and other prop-

erties further improved prediction accuracy. To the best

of our knowledge, PhenoPred has been evaluated on a

larger set of disease terms than any other predictor of

gene-disease associations. Unfortunately, a direct per-

formance comparison would be very difficult due to the

differences in datasets and number of considered disease

terms in each individual study. However, despite the

good overall performance, there are limitations to this

study based on data quality, the statistical nature of the

proposed algorithm, the interpretation of results, and the

very concept of a gene–disease association.

First, the datasets used here were incomplete and

noisy, that is, a number of gene–disease associations were

missing whereas some were likely false positives. Also,

without domain expertise on a particular disease, it is

generally difficult to assess whether our top predictions

are correct and novel or are already known by the experts

in the field. Several case studies, however, strongly sug-

gest that the predictions are meaningful, as shown above

in the case of leukemia. As indicated by some previous

studies, protein annotation at a molecular function level

can be reliably used to infer associations with disease.65

We stress here that PPI networks also significantly con-

tribute to the quality of prediction. Although we believe

that their quality may be higher than previously

thought,66 it is still one of the most important factors

for further improvement of candidate gene prioritization

algorithms. At the level of disease annotation, there is no

database that is accepted by the community as complete

and reliable. OMIM presents one such effort, but it was

originally designed for gene–disease associations with

Mendelian inheritance patterns, while complex or epige-

netic relationships are largely missing. Thus, we hope

that the mapping we performed to annotate all genes by

DO terms will be valuable for the community and the

next generation of algorithms. Note, however, that at this

stage DO is still incomplete and its graph structure will

likely be changing in future. For example, a number of

diseases from OMIM and Swiss-Prot could not be

mapped to DO and many of those appear to be meta-

bolic disorders or syndromes. Finally, GO also suffers

from incomplete and less refined substructures.

It is important to mention that the goal of our study

was to find genes associated with a disease, though this

association is not necessarily genetically causative. This

distinction is important since such genes may still be

good drug targets. However, the number of genes

involved will be progressively larger with more advanced

disease stages, thus making it hard to distinguish between

curable, palliative, and untreatable stages. Another limita-

tion of our work stems from considering diseases associ-

ated with at least 10 genes. Although this was of practical

importance for the proposed supervised algorithm, it is
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unclear whether such an approach, or statistical methods

in general, can be extended further to diseases with fewer

associated genes. However, it can be argued that such

methods will not be necessary for simpler diseases, as

mapping efforts are more likely to succeed. Finally, some

diseases are caused by deletions of large chromosomal

regions, chromosomal rearrangements, or various envi-

ronmental factors, which are difficult to model.

In summary, we are encouraged by the results of this

work and hope that previously undiscovered candidate

genes outputted by PhenoPred will be useful to experts

working on a range of diseases.
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