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ABSTRACT Calmodulin (CaM) signaling in-
volves important, wide spread eukaryotic protein–
protein interactions. The solved structures of CaM
associated with several of its binding targets, the
distinctive binding mechanism of CaM, and the
significant trypsin sensitivity of the binding targets
combine to indicate that the process of association
likely involves coupled binding and folding for both
CaM and its binding targets. Here, we use bioinfor-
matics approaches to test the hypothesis that CaM-
binding targets are intrinsically disordered. We de-
veloped a predictor of CaM-binding regions and
estimated its performance. Per residue accuracy of
this predictor reached 81%, which, in combination
with a high recall/precision balance at the binding
region level, suggests high predictability of CaM-
binding partners. An analysis of putative CaM-
binding proteins in yeast and human strongly indi-
cates that their molecular functions are related to
those of intrinsically disordered proteins. These
findings add to the growing list of examples in
which intrinsically disordered protein regions are
indicated to provide the basis for cell signaling and
regulation. Proteins 2006;63:398–410.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Calmodulin (CaM) is a 148-residue long, 16.7-kDa,
intracellular protein involved ubiquitously in numerous
eukaryotic regulatory processes and highly conserved
throughout the eukaryotic kingdom.1–3 CaM is character-
ized by a unique dumbbell-like structure, with a flexible
linker connecting globular lobes at the two termini.4,5 The
N- and C-terminal globules are homologous and indepen-
dent,6 each consisting of a pair of helix-loop-helix (EF-
hand) structural motifs. The central flexible linker be-
comes an �-helix in the crystalline state.7,8

CaM is a major transducer of calcium signals via its
interactions with many partners and so is abundantly
expressed in all eukaryotic cells so far studied.1 The modes
of CaM interaction with binding partners are very diverse:
CaM binds short peptides and proteins both in the pres-
ence or the absence of Ca2�, reversibly and irreversibly, as

an inhibitor or an activator.9 Perhaps even more remark-
ably, CaM regulates the activity of kinases10 and phospha-
tases,11 protein classes with opposite functions. CaM also
exhibits the capacity to bind small drug-like molecules,12

although it is unclear whether this capacity relates to
biological function in any direct way.

The interactions between CaM and its binding targets
(CaMBTs) involve disorder-to-order transitions for the
CaM molecule. The flexible linker,4,5 which becomes struc-
tured upon complex formation, allows the globular do-
mains to wrap around the CaMBT as shown in Figure 1.
The helix–helix interactions within the two globular do-
mains are not completely rigid, so the helix–helix packing
interfaces in these domains vary in a manner that depends
on the detailed interactions with the different CaMBTs.3,13

Finally, the CaM target-binding surface is rich in methioni-
nes, which adopt different configurations when CaM asso-
ciates with CaMBTs having different sequences. The end
result of this structural plasticity is that CaM binds to a
very large number of different sequences with high affin-
ity.

Most of the CaM’s binding targets are regions of about
20 residues in length, typically in an �-helical conforma-
tion. The Calmodulin Target Database14 classifies CaM-
binding targets into five distinct motifs: 1–10, 1–14, 1–16,
IQ, and Other. Motifs 1–10, 1–14, and 1–16 are named
according to the positions of large hydrophobic residues.
Binding to these motifs is predominantly Ca2� dependent.
On the other hand, binding to IQ motifs is typically
independent of Ca2� concentration. Nevertheless, pep-
tides that bind to CaM regardless of the [Ca2�] have also
been encountered. Interestingly, some CaM-binding tar-
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gets are not helical in their entire lengths. For example, in
the CaM-CaMKK complex, CaMKK’s hairpin loop resi-
dues are essential for the interaction.15 Another rule-
breaking motif is a �-sheet region of iNOS, which accommo-
dates both �- and �-like conformations in different modes
of binding to CaM.16

Three lines of evidence suggest that, before their associa-
tions with CaM, CaMBTs exhibit conformational flexibil-
ity or even intrinsic disorder, which is a protein feature
that is receiving increasing attention.17–21 First, in a
collection of more than 20 examples reported since the late
1970s, CaM-stimulated enzymes were also stimulated by
limited trypsin digestion. The digested proteins were no
longer stimulated by CaM, and if tested, the digested
proteins no longer bound CaM; here we provide a few of the
pioneering references.22–26 Because structured proteins
are orders of magnitude more resistant to trypsin diges-
tion than are unfolded proteins,27 such digestion studies
can be interpreted as indicators that the CMBTs are
structurally disordered before association with CaM. Sec-
ond, the manner in which CaM wraps around the CaMBTs
suggests that there has to be enough physical space to
accommodate CaM. A piece of protein, even a helix, in such
an open environment would very likely sample an en-
semble of structures and conformations over time, as
experimentally verified for some CaMBTs.28,29 Third, in a
limited number of examples, the CaMBT regions of pro-
teins are missing from the electron density maps of the
corresponding protein crystal structures, suggesting that
these regions lack specific 3-D structures and are instead
intrinsically disordered. We have found four such ex-
amples in the Protein Data Bank (PDB) that matched
CaM-binding regions from the Calmodulin Target Data-
base: calcineurin (1aui�a), N-Nos (1tll), Irs-1 (1qqg), and
Rala (2bov�a).

Although experimental data indicates that several
CaMBTs are disordered before association with CaM, the
generality of these findings has not been tested. In the
present study we used bioinformatics approaches to carry
out a systematic analysis over a large number of examples
in order to further test the hypothesis that CaMBTs are
intrinsically disordered or are flanked by disordered re-
gions before their associations with CaM. To our knowl-
edge, no large-scale systematic studies have been under-
taken so far on the structural properties of CaMBTs, on
their abundance, nor on the functional properties of their
associated proteins. Here, we first performed an analysis
of sequence and physicochemical properties of CaMBTs.
Then, we constructed a predictor of CaM-binding targets
and carried out a detailed evaluation on all types of known
binding motifs: our results strongly indicate that CaMBTs
are predictable from an amino acid sequence with a useful
accuracy and that disordered, compared with ordered,
regions have a significantly higher propensity for contain-
ing CaMBTs. Overall, these results support the hypothesis
that CaMBTs are disordered (i.e., they sample multiple
conformations before their associations with CaM).

The pioneering studies by Depaoli-Roach et al.22 and
others23–26 was one of several early harbingers in the late
1970s, indicating the possibility of functional roles for
highly flexible, perhaps even unfolded regions of proteins.
Years later, Rose and coworkers helped to further stimu-
late the growing interest in unfolded proteins with their
computational analysis of the steric interactions of un-
folded protein.30,31 Although this and other work32 has
focused on unfolded proteins as the initial state in the
protein folding reaction, the recent findings that many
proteins use unfolded regions for biological function17,21,33

means that the seminal work of Rose, his coworkers, and

Fig. 1. The CaMBT peptide bound to CaM. This figure illustrates (especially the axial view of the helix) the spatial separation from a parent globular
domain of the CaMBT peptide. Because of this behavior, we hypothesize intrinsic disorder enables the CaMBT peptide to be spatially separated from the
rest of the protein in the unbound state that permits CaM to subsequently bind in such a manner.
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others on unfolded proteins will have a wider applicability
than protein folding alone.

MATERIALS AND METHODS
Datasets

A set of proteins containing CaM-binding targets was
assembled from the Calmodulin Target Database14 lo-
cated at http://calcium.uhnres.utoronto.ca/ctdb/. This data-
base contains the accession numbers of the calmodulin-
binding proteins (CaMBPs) and the sequences of the
isolated binding targets (CaMBTs). Several of these motifs
have structural representatives in PDB that indicate a
common binding mechanism among them (e.g., 1cdl, 1ckk,
1g4y, 1iq5, 1mxe, 2bbm).

The set of 210 CaMBPs containing 287 CaMBTs was
then filtered for similarity to prevent over-representation
of any particular sequence and binding site during predic-
tor construction. A nonredundant set was selected such
that no two CaM-binding proteins or peptides were signifi-
cantly similar. To achieve this, we used a 40% sequence
identity threshold at a protein level and 50% for the
binding targets. In several cases, based on visual inspec-
tion and the fact that CaMBTs were located in the
divergent regions, we allowed the global sequence identity
to exceed 40%. At a binding target level, only 55 of 19,503
pairs (0.3%) had sequence identity �40% (and �50%).
Because these thresholds lay well below those providing
accurate functional inference “by homology transfer,” 34

we considered our dataset to be nonredundant. The result-
ing dataset contained 157 proteins in which 198 regions
were labeled as targets. The total residue count in the
filtered dataset was 132,709, of which 4088 were involved
in CaM binding (Table I).

Several other datasets were also used at various stages
of model building. A set of 154 intrinsically disordered
proteins was taken from DisProt,35 whereas a set of
nonredundant globular proteins with high-resolution 3-D
structures was selected by Smith et al.36 To estimate
functional characteristics of proteins, we have extracted
all yeast and human proteins from Swiss-Prot.37 Finally,

to estimate the reliability of CaMBT prediction, we con-
structed a SwissRep dataset that consisted of 54,846
sequences obtained as a random subset of UniRef50, which
is listed in the release 44.0 of Swiss-Prot. All datasets are
available on request.

Predictor Architecture and Data Representation

The predictor consists of two stacked layers, one work-
ing at an amino acid level with the other at the predicted
region level. Outputs from the first layer were grouped into
runs of consecutive positive predictions and, using an
appropriate data representation, fed into the second layer,
which then estimates a probability that the whole region is
CaM-binding. In the first layer, 92 sequence features were
collected for each residue of the 157 selected proteins using
symmetric sliding windows of length win � {1, 7, 11, 21}. To
account for the residues near protein ends, the window
was allowed to expand or collapse near the N- or C-
terminus, respectively. The first 20 features were the
amino acid compositions only within win � {11, 21}.
Another set of features consisted of sequence complexity38

and physicochemical properties such as net charge, total
charge, and aromatic content within the same windows.
The final set of features was constructed using outputs of
several sequence-based predictors: hydrophobic moment,39

secondary structure,40 and intrinsic disorder.41–43 The
second stage inputs also contain length of the predicted
region, percentage of predicted disorder in the flanking
regions within wflank � {10, 20, 30, 40} at both sides of the
predicted region, overall predicted globularity of the pro-
tein, and charge/hydropathy ratio.19 Also, unrealistically
short predicted binding regions (targets) were filtered out.
The predictor model is shown schematically in Figure 2.

To construct a dataset appropriate for model training,
examples (vectors) corresponding to the CaM-binding resi-
dues (predicted regions in the second layer) were labeled
as positives, whereas all remaining residues (false positive
regions in the second layer) from the same set of proteins
were labeled as negatives. In this setting, the task of a
predictor is to separate the CaM-binding residues (re-
gions) from the sequence “background.”

Model Selection and Training

Because of the small size of the positive dataset, we
chose to use an ensemble of 20 logistic regression models.
Note that the positive dataset was effectively smaller than
4088 because of the data representation: a shift of win by
one residue induces only a slight change in feature space,
eventually causing a significant number of examples to be
mutually dependent. Each model was trained on a bal-
anced set using all the positive examples and a random
selection of negatives, with the final prediction being an
arithmetic average of all 20 models. Unpromising features
were filtered out using the t-test, whereas the dimensional-
ity was further reduced to 95% of variance using principal
component analysis. Balanced training sets are known to
be a good choice in cases with training data that exhibit
asymmetric noise.44 Overprediction on the majority (here
negative) class can be easily addressed by changing deci-

TABLE I. Characteristics of the Dataset†

Motif typea
No. of

regions
No. of

proteins
No. of binding

residues

1–10 15 12 239
1–12 7 6 135
1–14 39 38 774
1–16 1 1 23
IQ 49 35 977
Other 87 74 1955
†Note that, because several proteins contain multiple binding regions
and because some binding regions overlap, the total number of
proteins exceeds 157 and the total number of binding residues exceeds
4088.
aMotif type 1–10 includes 1–10, 1–5–10, and basic 1–5–10 from
Calmodulin Target Database (CTD).14 Motif type 1–14 includes 1– 14,
1–5–8–14, 1–8–14, and basic 1–14. Motif type IQ includes IQ and
IQ-like motifs. Motif type Other includes basic and others from CTD.
Motif type 1–12 was separated form its original CTD classification
Other.
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sion thresholds or adjusting the outputs of the predictor45

if the goal is to minimize the total number of misclassified
examples.

Model evaluation was performed using a per protein
leave-one-out strategy. In particular, one protein at a time
was selected as a test set, whereas the remaining 156
sequences were used for the training. After the predictor
was constructed, its performance was evaluated on the
test protein. Each protein was used only once as a test set
and the performance results were averaged over all test
proteins.

Performance Measures

We measured accuracy on both per-residue and per-
region levels. Per-residue performance was measured us-
ing standard definitions of sensitivity (sn), specificity (sp),
and precision (pr). Sensitivity represents the percentage of
true positives predicted to be positive (CaM-binding resi-
dues), specificity represents the percentage of true nega-
tives predicted to be negative, whereas the precision
represents the percentage of positively predicted residues

that are in fact positives. Each statistic (sn, sp, pr) was
measured for each test protein and finally averaged over
all 157 sequences. In addition to sn, sp, and pr, we also
report accuracy (acc) on a balanced sample, where acc is
defined as the average of sn and sp, and visualize tradeoffs
between the true (sn) and false (1 � sp) positives by
plotting the receiver operating characteristic (ROC) curve.
The area under the ROC curve (AUC) provides another
useful measure of accuracy. Both acc and AUC are essen-
tially unaffected by the disparity in class sizes.

At a per-region level, we measured sensitivity (or recall)
and precision because a negative CaM-binding region
cannot be defined. A situation where a predicted and a true
region overlapped was considered a hit, whereas noncov-
ered true regions were considered missed regardless of the
distance of the nearest positively predicted residue. Care
was taken to prevent one residue/region counted twice as a
true positive. Sensitivity and precision at a protein level
were estimated based on 198 available binding regions
over all proteins.

Assessment of Prediction Reliability

Given a relatively small set of 157 nonredundant pro-
teins used for the training of the CaMBT predictor, it is
highly likely that the sequences used to develop CaMBT
predictor are not a good representative of the protein
feature space and so the resulting predictor is likely to be
biased. To reduce the adverse effects of statistical infer-
ence on the residues with features underrepresented by
the CaMBT training set, we developed a model to assess
the reliability of each prediction outputted by the CaMBT
predictor. In case this reliability predictor signals that the
input is coming from an underrepresented part of the
sequence space, the predictions made by the CaMBT
predictor were simply disregarded. Although this resulted
in the reduced coverage by the CaMBT predictor, it also
allowed for an improved quality of statistical inference on
the remaining residues.

To develop a reliability estimator, we constructed a Swiss-
Rep dataset and used it as an unbiased representative of the
protein sequence space. The model consisted of an ensemble
of 20 feed-forward neural networks with 10 hidden nodes and
one output neuron, all using a sigmoidal transfer function.
Each classifier was trained on a balanced set with 10,000
randomly selected data points from SwissRep (a positive set)
and 10,000 randomly selected points from the 157 nonredun-
dant CaBMT sequences (a negative set). A residue was
represented by three sets of features within sliding windows
of lengths win � {11, 21, 41}. Each feature set consisted of 20
amino acid frequencies, sequence complexity,38 and average
hydropathy,46 flexibility,47 and coordinate values.48 After
transforming each feature to its z-score, the resulting set of
72 normalized features was transformed to a set of principal
components retaining about 95% of variance. The reliability
predictor is incorporated into the second stage of the overall
predictor (Fig. 2).

It is easy to show49 that a prediction near 0.5 by the
reliability estimator indicates that the given residue is
represented equally well by SwissRep and CaMBT se-

Fig. 2. CaMBT prediction mechanism. CaM-binding residues were
first predicted on a query protein. After the regions are constructed, they
are accepted or rejected based on the second layer. The model can also
decide to refuse prediction based on the reliability model which is
incorporated in the second layer.
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quences; lower or higher values indicate that the residue is
over- or underrepresented, respectively, in CaMBT se-
quences. In our approach, the CaBMT predictor was not
applied on the residues with reliability prediction above a
given threshold.

RESULTS
CaM-binding Targets Present in PDB

In order to investigate structural properties of CaM-
binding regions, we searched for the structures of known
CaM-binding proteins14 in PDB. We were specifically
interested in those that were in the monomeric form and, if
in a complex, not associated with CaM. We also required
�70% sequence identity as a reasonable threshold for the
functional inference by similarity.34

As mentioned in the Introduction, we found four pro-
teins with missing atom coordinates in the place of CaM-
binding regions (1aui�a, 1qqg, 1tll, 2bov�a). Such regions
can be considered disordered with high confidence, as it
has been argued previously that the proportion of wobbly
ordered regions among all regions with missing electron
density is small.50 In another 24 sequences that matched
CaM-binding proteins (1azs�a, 1byy�a, 1efn�b, 1gc1�g, 1iss,
1jkt, 1joc, 1kgd�a, 1khu, 1khx�a, 1n4k�a, 1n9d�a, 1pb7�a,
1qav�a, 1qom, 1rzj�g, 1taz�a, 1u4q, 1w7j�a, 1wgp�a, 1xi4�r,
1yfo, 2bf1�a, 3nos), the actual CaMBTs were removed from

the expression construct before crystallization. This is
frequently done in cases of the hard-to-crystallize frag-
ments such as disordered regions or multidomain proteins.
Finally, 14 CaM-binding proteins had CaMBTs present in
the coordinate lists and were analyzed in more detail
(Table II). Five of these proteins were in complexes in
which CaMBTs are in direct contact with a binding
partner and as such cannot interact with CaM without
releasing the current partner and possibly undergoing
structural change. In fact, one of these cases, synaptobre-
vin (1sfc�i), is an experimentally verified disordered pro-
tein in its monomeric form.51 In seven cases, CaMBT
residues were directly involved in crystal contacts and so
their observed structure could not be trusted as native.

In total, out of 210 CaM-binding proteins, 42 had
representatives in PDB with sufficient sequence identity,
and of those, only in three cases have we found an ordered
form for a CaM-binding target (1e8z�a, 1gg3, 1omw�a) that
did not have CaMBT residues directly involved in crystal
contacts or in interchain interactions.

Dataset Inconsistencies

Because the large majority of crystallized CaM-binding
targets are known to be helical, with about 22 residues in
length on the average, we have analyzed nonredundant
CaMBTs available in our dataset with respect to their

TABLE II. Analysis of the CaMBTs Whose Coordinates are Present in PDB†

Swiss-Prot id
PDB id

(no. chains)
CaMBT
position

Sequence
identity (%) Comments

Q14012 1ao6�a (2) 300–319 97 A300–L302, S304–A306, V310–E311, K313–D314 are in crystal contacts.
P48736 1e8z�a (1) 678–693 100 CaMBT overlaps with two �-helices at R678–N687 and R689–S705.
O88935 1px2�b (2) 123–138 99 K133 is in crystal contacts.
O97754 1tki�a (2) 318–337 96 R309, L311, H318, Q343–V348 are in crystal contacts.
P19065 1sfc�i (12) 73–92 100 Largely unfolded in solution.51 Residues G72–L92 are in contacts with

chains A, B, J, L, and K.
Q9QYF3 1w7j�a (2) 770–789 93 Residues A769–Y786 are in contact with multiple residues of myosin light

chain 1. Residues 755–795 are likely disordered.101 Last three CaMBTs
were not expressed.

793–812
818–837
866–885

P11017 1omw�b (3) 26–45 90 K43 is in contact with chain A. I29, M31, R34–R35 are in contact with
chain G

Q8IXV9 1gg3�a (3) 76–92 100 Residues M1–N209 were not expressed. S469–R471 are involved in
interchain contacts.

390–406
473–489

P11023 1zbd�a (2) 51–84 96 V68–I69, D71–F72, V74, K85, Q87, and W89 are in contact with chain B.
P27322 3hsc (1) 263–283 81 R264, S282, T284 are in crystal contacts.
Q99LL8 1omw�a (3) 16–38 98 No crystal or interchain contacts at CaMBT residues.

610–630
P30301 1ymg�a (1) 223–235 92 L218–Y219, L222–F224, R226, K238 are in crystal contacts.
Q9TU34 1xzz�a (1) 49–81

106–128
99 Q102, K109–V114, Q116, G118–V120, L124, L126–K127, N129 are in

crystal contacts. Region 49–81 was not expressed.
P11531 1dxx�d (4) 18–42

104–125
95 E12–D15, K18–K19, S30, G33–H36, E38–N39, F41–S42, Q45, D101–

L106 are in crystal contacts.
†All coordinates are presented with respect to original Swiss-Prot or TrEMBL sequences. The first column indicates the original sequence given in
the Calmodulin Target Database. The second column represents the PDB chain closest to the original sequence, and the corresponding sequence
identity is in column four. Crystal contacts were calculated using CryCo program100 with default threshold of 10 Å.
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length; 154 CaMBTs were shorter than 22 residues,
whereas 44 were longer. The shortest CaMBT in our
dataset was 8, and the longest one was 36 residues long.
Overall, if all CaMBTs with lengths shorter than 22
residues were actually mislabeled as shorter than in truth,
then such a mislabeling would produce 504 false negative
residues (12.3% of the positive dataset). On the other
hand, 251 residues (6.1%) of the CaM-binding residues are
those that exceed 22 residues and could be false positives.
Finally, because many proteins in our dataset contain
multiple binding regions, it is possible that there exist
many other yet nonannotated CaMBTs scattered across
the set of currently available proteins. Thus, our dataset is
likely to contain a certain amount of class-label noise,
which poses a limitation for the CaMBT analysis and
predictor performance.

Statistical Properties of CaM-binding Regions

Several sequence and physicochemical properties of the
CaM-binding proteins were analyzed. Here, CaM-binding
proteins were separated into CaM-binding residues and
remaining (background) residues and then compared to
the set of globular proteins.36 The results of this analysis
are shown in Table III.

Table III indicates that CaM-binding residues are dis-
tinct from other residues in several respects: they have
significantly higher net charge and helical propensity, as
observed before,52 but also higher total charge and propen-
sity of being intrinsically disordered. On the other hand,
despite this tendency for conformational flexibility these
regions also have increased aromatic content. These prop-
erties, seemingly conflicting, could be explained by the
longer window sizes that were used to obtain disorder
scores (41 residues), whereas the aromatic content was
calculated only within CaM-binding residues. Thus, in
addition to the presence of charged residues, the overall
disorder propensity of CaMBTs is also influenced by the
flexible flanking regions. Interestingly, the disorder score
of the non-CaMBT residues was on average higher that
that of globular proteins. Even though this score can partly
be attributed to the CaMBT flanking regions and yet-to-be-
annotated additional CaMBTs, we believe that biological
functions of CaMBPs may simply require more conforma-
tional flexibility than that present in compact globular
proteins.

Predictor Performance

The overall performance of the predictor was estimated
both on a per residue and per region basis (see Perfor-
mance Measures). Results of this estimation, shown in
Table IV, indicate that the balanced accuracy of the
predictor is 80.8%. Shown in Figure 3 is an ROC curve for
the prediction data. The AUC was calculated to be 89.1%.

To gain insight into the predictor’s ability to detect an
unknown motif type, we performed the following experi-
ment: all proteins containing a particular motif type were
excluded from the training set, whereas the prediction
accuracy was estimated using sequences only from the
left-out motifs and the remaining negative residues. Thus,
residues belonging to a nonexcluded motif type were not
used in the evaluation. Prediction accuracies on the un-
seen motifs are shown in Table V. These results indicate
that our model is general, but these results also emphasize
the similarity of all motif types in our feature space.

To our knowledge, computational prediction of CaM-
binding targets was first proposed by DeGrado et al.,52

who searched for the motifs of appropriate length, hydro-
phobicity, hydrophobic moment, and charge. The features
used to develop this original model are a subset of those
used herein. Another predictor of CaMBTs can be found at
the Calmodulin Target Database web site.14 It consists of
hidden Markov models designed to recognize the observed
classes of motifs. Hidden Markov models belong to so-
called generative predictors. On the other hand, our
discriminative model was trained on all types of motifs
simultaneously and as such may have increased generaliz-
ability, traded off for a somewhat decreased specificity.
Therefore, generative and discriminative approaches
complement each other. A direct comparison between
these models is not possible because the former was
trained on all available sequences.

TABLE IV. Estimated Prediction Accuracy (per residue
and per region) and Standard Error of Our Predictor

of CaM-binding Targets

Accuracy per residue (%)
Accuracy per

region (%)

sn sp acc pr sn pr

73.2 � 2.7 88.5 � 0.8 80.8 29.1 � 2.1 80.0 22.8

TABLE III. Comparison of Sequence Properties

CaMBTs Non-CaMBTs Globular

Net charge 0.1779 � 0.0080 �0.0148 � 0.0014 �0.0156 � 0.0016
Total charge 0.3094 � 0.0073 0.2517 � 0.0013 0.2226 � 0.0016
Hydropathy �0.6322 � 0.0509 �0.3886 � 0.0086 �0.2871 � 0.0116
Disorder score 0.5363 � 0.0102 0.4596 � 0.0022 0.3181 � 0.0018
Aromatic content 0.0819 � 0.0040 0.0774 � 0.0008 0.0927 � 0.0011
Helix score 5.460 � 0.173 3.969 � 0.031 3.088 � 0.041
Sheet score 1.024 � 0.099 1.320 � 0.019 2.088 � 0.033
Coil score 2.213 � 0.131 3.319 � 0.026 3.419 � 0.035

CALMODULIN SIGNALING AND INTRINSIC DISORDER 403



Analysis of Reliability

The developed reliability assessment model was applied
on all residues of SwissRep and CaM-binding proteins.
The estimated distributions of reliability scores are shown
in Figure 4. By selecting the false negative rate (number of
CaMBP residues rejected by the reliability assessment
model) of 10, 5, and 1%, with rejection thresholds of 0.598,
0.636, and 0.700, a total of 41.8, 28.4, and 9.4% residues
from SwissRep were selected as underrepresented by
CaMBP training sequences. The significant difference in
the distribution of the reliability scores among SwissRep
and CaMBPs confirmed the anticipated bias of CaMBPs
compared to the overall distribution of the protein feature
space and validated the use of the reliability estimator in
conjunction with our CaMBT predictor.

Application of the Predictor

In this section we present two illustrative examples that
support our main hypothesis and demonstrate the useful-

ness of the CaMBT predictor. First, we discuss in some
detail the interaction of CaM with one of its binding
partners, caldesmon (CaD), and then we focus on how our
predictor can be utilized as a companion to proteomics
experiments.

We selected CaD as an illustrative example to show that
even proteins that are disordered over their entire lengths
can be associated with important functions and that these
functions can be modulated by CaM binding. CaD inter-
acts with actin, tropomyosin,53 and CaM at multiple sites
along its amino acid sequence.54–57 For example, chicken
gizzard CaD contains at least four CaM-binding sites. One
of them was assigned to a long N-terminal region 26–199,
which also binds myosin,58 whereas C-terminal domain
was shown to contain three additional CaM-binding sites,
centers A (close to Trp674), B (close to Trp707), and B�
(close to Trp737).54 Only the first of these three sites was
originally present in our positive dataset, whereas others
were included as negatives (as they were not present in the
Calmodulin Target Database).

CaD has been shown experimentally to be mostly if not
entirely disordered.59 In agreement with this experimen-
tal data, CaD is predicted to be disordered over its entire
length by the VL3 order/disorder predictor [Fig. 5(a),
dotted line]. The CaMBT predictor identifies several poten-
tial CaMBTs in CaD [Fig. 5(a), solid line]. Importantly, all
three experimentally verified CaMBTs at the C-terminal
part of CaD are recognized by the CaMBT predictor as
CaM-binding sites. The N-terminal region of CaD (resi-
dues 26–199) is too large to be considered as a single
CaMBT. However, three CaM-binding regions are pre-
dicted within this long stretch, suggesting that this long
previously identified binding region possibly contains three
specific target regions.

Because all three C-terminal CaMBTs of CaD are cor-
rectly predicted and the exact locations of the N-terminal
CaMBTs are unknown, it seems reasonable to consider the

Fig. 3. The receiver operating characteristic (ROC curve) of the
CaMBT predictor (solid line) and the ROC curve of a random predictor
(dotted line). The area under the curve (AUC) was calculated to be 89.1%.
The x-axis represents the false positive rate (1 � sp), whereas the y-axis
represents the true positive rate (sn).

TABLE V. Prediction Accuracy of CaM-binding Site
Predictor when All Proteins Containing a Specific Motif

Type Were Excluded from Training†

Motif
type

Prediction accuracy (%)a No. of
proteinssn sp acc pr

1–10 75.3 � 9.0 88.2 � 15.4 81.8 24.9 � 5.8 12
1–12 85.0 � 9.2 71.5 � 15.4 78.3 58.5 � 13.8 6
1–14 80.6 � 4.9 87.2 � 1.6 83.9 25.1 � 4.5 38
1–16 95.7 96.1 95.9 53.7 1
IQ 72.9 � 6.6 86.0 � 1.7 79.4 17.8 � 3.7 35
Other 59.6 � 4.0 92.2 � 0.6 75.9 30.4 � 3.0 74
†Only the residues of this motif type and negative residues were used
for testing. Note that standard error is greatly influenced by the
number of proteins containing particular motifs.
aValues are means � SE.

Fig. 4. Estimated probability densities of scores for CaMBPs (solid
line) and SwissRep dataset (dotted line) of the reliability model. Reliability
scores are assigned on a per-residue basis, thus a CaMBT prediction is
accepted only for reliability scores below 0.598.
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per residue sensitivity of prediction on CaD to be very
high. Per residue specificity, on the other hand, is about
67%, assuming that there are no additional CaMBTs
present in this protein. On a binding region level, sensitiv-
ity remains high, whereas precision is at least 23% in case
that none of the three N-terminal predictions is correct (3
of 13). Thus, both per residue and per region accuracies
agree well with our estimates from the Predictor Perfor-
mance section.

Our second application is related to a proteome-wide
study by Zhu et al.,60 in which the authors detected 37
putative CaMBPs using protein chips. Only six of these
proteins had previously been experimentally verified. For
14 of the detected proteins, the authors computationally
found possible IQ-motifs using sequence alignments,
whereas other hypothesized regions of interactions were
not provided. Out of all 37 proteins, only two shared �30%
global sequence identity with any of the proteins or
peptides in our training data.

Of 14 proteins hypothesized by Zhu et al.60 to contain IQ
motifs, 13 are predicted as positives by our model. We
predict only four motifs to be at the positions found by Zhu
et al. (sps19, ipp1, rpl26b, cmk1), whereas in several other
proteins (e.g., reg2, cmk2, rpb3, myo4) the predicted
regions (with high scores) were shifted from the sites
suggested by the authors [Fig. 5(b–d)] and, we believe,

may not be IQ motifs. On the other hand, a motif search
algorithm available at the Calmodulin Target Database
web site identifies only two target regions (in msh4 and
cmk1) that overlap with those found by Zhu et al.

On the basis of these results we suggest here that a
combined use of generative and discriminative computa-
tional approaches may be beneficial in detecting CaM-
binding partners. Such predictions could be especially
useful when combined with laboratory experiments.

Analysis of Function of Putative CaMBPs

We applied our predictor to complete yeast (data not
shown) and human proteomes available in Swiss-Prot.
Each region that had a prediction score over 0.75 and
reliability index below 0.598 was considered positive.
These thresholds provide a smaller number of false posi-
tives and significantly reduce the length dependence in the
target set. A set of function-related keywords was collected
for each protein in two nonoverlapping sets: a set of
putative target proteins and a set of the remaining pro-
teins. Then, a p-value was calculated such that the func-
tional category was over- or under-represented in the
putative CaM-binding proteins. In addition to the p-value,
we also calculated the difference and relative difference in

Fig. 5. CaMBT prediction (solid line) and disorder prediction (dotted line) for four selected CaMBPs. (a)
Chicken caldesmon (sp:P12957); thick grey lines indicate experimentally verified regions; the first and third
C-terminal CaMBTs were visualized �10 residues around the known aromatic residue; (b) yeast msh4, IQ
motif predicted in Ref. 60 is at 380–388; (c) yeast reg2, IQ motif predicted in Ref. 60 is at 186–194; (d) yeast
cmk2, IQ motif predicted in Ref. 60 is at 385–393. Proteins in (b–d) were selected from the study by Zhu et al.60

The high predictions of CaM-binding sites are frequently correlated with high predictions of intrinsic disorder.
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the fractions of proteins containing a particular keyword
between the two sets (Table VI).

DISCUSSION
Limitations to Model Accuracy and Future
Improvements

Constructing a model and estimating its accuracy in the
case of CaM-binding region predictor is difficult primarily
because of the dataset noise. The major sources of noise are
stemming from the difficulties in precisely determining
CaM-binding regions and the possibility of multiple, non-
annotated binding targets in the interacting protein. Thus,
the ability to reduce mislabeled residues would quite likely
contribute to an even higher prediction accuracy. Other
limitations to the performance of our model are caused by
the data representation and the exclusion of long-range
interactions in predicting binding sites. In addition to
denoising, further improvement in predicting CaM-
binding targets, especially reducing the false positives, can
be achieved by including other information sources such as
protein network data and evolutionary and genomic infor-
mation. Finally, integrating discriminative with genera-

tive prediction models would contribute to the reduction of
false negatives.

Interaction of CaM with CaD

CaD has multiple CaM-binding sites so gaining further
insight into the structure-function relationships of CaD
and its interactions with CaM can serve as a model for the
structures and functions of CaM target proteins.

CaD is a ubiquitous actin-binding protein involved in
the regulation of smooth muscle contraction, nonmuscle
motility, and cytoskeleton formation.58,61,62 It was origi-
nally discovered in chicken gizzard smooth muscle as a
protein that binds to CaM in a Ca2�-dependent manner
and to filamentous actin (F-actin) in a Ca2�-independent
manner.63 Subsequently it was identified in different
smooth muscle tissues and in a variety of nonmuscle cells
and cell cultures (for reviews see Refs. 61, 62, 64, 65). CaD
controls a thin-filament-linked regulation of smooth muscle
contraction through its specific binding to F-actin and
F-actin–tropomyosin with a concomitant inhibition of the
actin-stimulated myosin ATPase.58 The CaD action is
reversed by interaction with several Ca2�-dependent pro-
teins, including CaM and caltropin. Furthermore, the
functional activity of CaD is regulated by multiple phos-
phorylation,62,66 and by calcium via Ca2�-binding pro-
teins, with CaD being alternatively bound either to F-actin
or to CaM, depending upon the calcium concentration.
This thin filament-based modulatory effect is assumed to
provide additional “fine-tuning” to the well-established,
myosin light chain phosphorylation-dependent, thick fila-
ment-based regulation of smooth muscle contraction.67

Structurally, a large hydrodynamic radius and a coil-
like shape of the far-UV circular dichroism spectrum59

suggest that CaD belongs to the family of natively disor-
dered proteins. Functionally, CaD interacts specifically
with numerous binding partners and could be divided into
four independent domains: (i) the N-terminal domain that
interacts with myosin and tropomyosin; (ii) the second
domain that participates in the binding of tropomyosin;
(iii) the third domain that is involved in the interaction
with myosin, tropomyosin, and actin; and (iv) the C-
terminal domain that plays the most important role in the
functioning of CaD, interacting with actin, Ca2�-binding
proteins, myosin, tropomyosin, and phospholipids. Interest-
ingly, the identified CaM-binding sites in the C-terminal
region are correctly predicted and the long N-terminal
region associated with CaM binding is predicted to be
subdivided into three distinct CaM-binding regions [Fig.
5(a)]. These predictions could be useful for further experi-
mental work.

Other Functions of CaM-binding Partners

Table VI indicates functional differences between puta-
tive CaM-binding proteins and the remaining proteins
from Homo sapiens. Several important functional classes,
such as transcription regulation, nucleic acid binding,
kinases, phosphatases, and others are briefly discussed
below.

Experimental research suggests that CaM is actively
involved in transcription regulation by both directly bind-

TABLE VI. Overrepresented (15 highest ranked) and
underrepresented (10 highest ranked) Swiss-Prot

keywords for putative CaMBPs in H. sapiens†

Category p-value
Difference*

(%)

Overrepresented in CaMBPs
Nuclear protein 1.1 � 10�45 15.3 (56.9)
DNA binding 2.1 � 10�42 9.9 (63.3)
Coiled coil 6.0 � 10�40 5.0 (66.8)
Transcription regulation 1.7 � 10�39 7.9 (56.9)
Homeobox 5.7 � 10�38 3.0 (99.4)
Alternative splicing 1.1 � 10�37 10.5 (37.4)
Chromosomal protein 5.0 � 10�34 1.0 (97.9)
Developmental protein 5.1 � 10�34 2.6 (66.0)
Phosphorylation 1.0 � 10�33 5.5 (40.7)
Activator 1.5 � 10�33 2.7 (71.0)
ATP binding 5.5 � 10�33 5.1 (54.1)
Ribosomal protein 2.1 � 10�30 1.5 (81.8)
Repressor 6.1 � 10�28 1.6 (68.6)
Helicase 4.6 � 10�27 0.9 (82.4)
RNA binding 1.9 � 10�26 2.1 (58.9)

Underrepresented in CaMBPs
Immunoglobulin V region 6.8 � 10�40 �2.7 (98.0)
Direct protein sequencing 3.9 � 10�35 �7.4 (38.6)
Lipoprotein 1.0 � 10�34 �3.1 (57.8)
Transmembrane 1.6 � 10�31 �7.5 (24.1)
Signal 2.4 � 10�30 �7.6 (29.7)
Glycoprotein 4.6 � 10�28 �6.5 (22.6)
GPI-anchor 4.8 � 10�26 �1.0 (74.6)
Keratin 4.4 � 10�25 �1.1 (76.3)
3D structure 1.4 � 10�24 �3.1 (22.9)
Pyrrolidone carboxylic acid 1.5 � 10�24 �1.1 (74.6)
†The table shows (i) the p-value that a particular keyword is equally
likely for putative CaMBPs and remaining human proteins; (ii) the
difference in percentages in the two groups, and (iii) an absolute
relative difference in percentage. The relative difference, presented in
parentheses, is normalized by the maximum between the two percent-
ages.
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ing transcription factors68 or via various kinases and
phosphatases.69 These mechanisms are especially complex
in plants where CaM is expressed in many isoforms.
Furthermore, CaM can affect nuclear processes by enter-
ing the nucleus and interacting with DNA and/or nuclear
proteins. In fact, recent reports suggest that, in addition to
its familiar functions in the cytoplasm, CaM may partici-
pate in rapid signaling between cytoplasm and nucleus,70

modulating nuclear processes indirectly via the active
transport of many Ca2� signals to the nucleus.71 These
facts can be used to explain the high abundance in the
CaMBPs of such annotations as nuclear protein, regula-
tion of transcription, chromosomal protein, DNA-binding,
homeobox, and phosphorylation (Table VI). On the other
hand, CaM has also been shown to be involved in regula-
tion of cell growth and proliferation. A related observation
is that the abundance of CaM increases significantly in
cells undergoing division and differentiation.9 This is
consistent with the high representation of developmental
proteins in the set of CaMBPs.

The high prediction of CaMBTs among the ribosomal
proteins came as a surprise. On the one hand, because of
the high positive charge of these proteins, it may easily be
argued that the presence of ribosomal proteins is an
artifact from the similar high positive charge of CaMBTs
and so ribosomal proteins may simply belong to the set of
false-positive predictions. On the other hand, it has been
pointed out that the real biological role of ribosomal
proteins is far from being completely understood. In fact,
functions traditionally assigned to ribosomal proteins are
the facilitation of the rRNA folding and the maintenance of
an optimal ribosomal configuration, providing protein
biosynthesis with the required speed and accuracy. How-
ever, there is evidence that a number of ribosomal proteins
have moonlighting functions72 apart from both the ribo-
some and protein synthesis.73 These extraribosomal func-
tions of these proteins include, but are not limited to,
replication, transcription, RNA processing, DNA repair,
autogenous regulation of translation, regulation of develop-
ment, and malignant transformation. Furthermore, ribo-
somal proteins were reported to possess DNA-binding
motifs such as the zinc finger,74 the bZIP domain,75 and
the helix-turn-helix motif.76 Recent findings by Mazumder
et al.77 confirmed the idea that much is yet to be under-
stood about the function of ribosomal proteins. In particu-
lar, it has been shown that phosphorylated human L13a is
able to inhibit ceruloplasmin at the RNA translation level.
Thus, the abundance of CaMBT-like sites in ribosomal
proteins found in our study may be related to the regula-
tion of the extraribosomal activities of ribosomal proteins.

Many of the keywords that are overrepresented in
putative CaMBPs correlate strongly with intrinsically
disordered proteins. One such example is repeat regions.
Such regions are known not only to carry out important
protein functions,33 but repeat region expansion may
represent an important evolutionary mechanism for disor-
dered proteins.78 A second example is phosphorylation.
Iakoucheva et al.79 showed that phosphorylation sites are
significantly more likely to occur in disordered than in

ordered regions. The connection between the functions
described by the keywords and CaM binding can be simple,
with the function and CaM binding occurring in the same
region of sequence, or the connection can be more complex,
with different parts of the protein being responsible for the
two functions.

CaM Signaling from a Structural Perspective

The available X-ray and NMR data suggest that several
CaM-binding regions80–83 and isolated peptides28,29 are
intrinsically disordered in their CaM-free state. In addi-
tion, other domains containing CaM-binding regions have
been shown to undergo rapid protease digestion,22–26

which is a hallmark of unfolded proteins.27 Our analysis of
sequence properties of a large number of nonredundant
CaM-binding targets and the existence of only a small
number of structured CaMBTs indicates that an unstruc-
tured form of these regions and/or its flanking residues is a
rule, rather than an exception. This observation is further
supported by the facts that the common binding mecha-
nism between CaM and its partner requires steric accessi-
bility to accommodate the interaction. Thus, CaM–CaMBT
coupling is highly unlikely to occur within a static globular
domain. Although it is possible that a globular domain
could unfold before its association with CaM binding, the
occurrence of such an event would be unlikely unless the
globular domain were very unstable to begin with, such as
a molten globular form. Finally, a scenario where an
ordered �-helical segment moves away from a folded
domain to interact with CaM is not very feasible unless, for
example, the binding energy were very low. Such a mecha-
nism would be facilitated if the binding helix were con-
nected to the rest of the protein by a flexible tether.

The disorder-to-helix conformational change upon bind-
ing as exemplified by the CaMBTs likely represents a very
common theme for signaling proteins in eukaryotic cells.
For example, p53 has two such helix-forming binding
regions: (i) a natively unfolded region near the amino
terminus84 becomes a helix upon binding to Mdm2,85 and
(ii) an unstructured region near the carboxyl terminus86

likewise becomes helical upon binding to S100B��.87 An
analysis of several other experimentally verified disor-
dered proteins provides 24 additional examples of disorder-
to-helix conformational changes upon complex forma-
tion.88

The existence of helical molecular recognition elements
has been observed in several cases to correspond to short,
sharp dips of predicted order within longer regions of
predicted disorder.89 The VLXT predictor appears, at least
so far, to be the most useful among the disorder predictors
for identifying such binding sites. Indeed, two binding
sites predicted by dips in the VLXT plots were subse-
quently confirmed experimentally.90,91 Also, both of these
regions were shown to adopt helical conformations upon
binding to their partners92 (B.F. Luisi, personal communi-
cation). We recently formalized the analysis of dips in
VLXT plots as indicators of �-helix-forming molecular
recognition elements and applied this algorithm to a set of
signaling proteins: nearly half of the signaling proteins
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were indicated to contain segments that potentially corre-
spond to regions that undergo disorder-to-helix changes
upon complex formation.93

In light of these findings, the high predictions of helicity,
high aromatic content, and yet high predictions of long
disorder within CaMBTs coincide with the above-men-
tioned model of signaling in which CaM-binding targets
are likely to undergo coupled binding and fold-
ing.20,21,33,94–96 In addition to disorder-to-helix, disorder-
to-sheet and disorder-to-irregular transitions have also
been observed (reviewed in Ref. 97). This coupled binding
and folding mechanism does not fit the simple lock-and-
key idea98 or the induced-fit hypothesis as originally
proposed,99 but requires some sort of extension of the
latter such as “extreme induced fit.” 94 By whichever
terminology is used to describe such associations, this
mechanism adds to the versatility and complexity of
protein-protein interactions.
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