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Abstract. We investigate the problem of supervised feature selection within the 
filtering framework. In our approach, applicable to the two-class problems, the 
feature strength is inversely proportional to the p-value of the null hypothesis 
that its class-conditional densities, p(X | Y = 0) and p(X | Y = 1), are identical. To 
estimate the p-values, we use Fisher’s permutation test combined with the four 
simple filtering criteria in the roles of test statistics: sample mean difference, 
symmetric Kullback-Leibler distance, information gain, and chi-square statistic. 
The experimental results of our study, performed using naive Bayes classifier 
and support vector machines, strongly indicate that the permutation test im-
proves the above-mentioned filters and can be used effectively when sample size 
is relatively small and number of features relatively large. 

1   Introduction 

The increasing trend of high dimensional data collection and problem representation 
calls for the use of feature selection algorithms in many machine learning tasks. Real-
life datasets are often characterized by a large number of irrelevant features that, if not 
properly isolated, may significantly hamper model accuracy and learning speed. In 
addition, feature selection algorithms can be handy in explaining and visualizing data. 

Traditionally, methods for selecting subsets of features that provide best perform-
ance results are divided into wrappers and filters [1]. Wrappers utilize the learning 
machine as a fitness (evaluation) function and search for the best features in the space 
of all feature subsets. This formulation of the problem allows the use of standard opti-
mization techniques, with an additional complication that the fitness function has a 
probabilistic nature. Despite their simplicity and often having the best performance 
results, wrappers highly depend on the inductive principle of the learning model and 
may suffer from excessive computational complexity since the problem itself is NP-
hard. 

In contrast to wrappers, filters are typically based on selecting the best features in 
one pass, although more complex approaches have also been studied [2]. Filters are 
model independent and are applied as a preprocessing step to model selection and 
learning. In domains such as text categorization or gene selection filters are still domi-
nant [3]. Evaluating one feature at a time, filters estimate its usefulness for the predic-
tion process according to various metrics [4-7]. 



Besides wrappers and filters, some authors distinguish embedded methods as a sepa-
rate category of feature selection algorithms [3, 8]. Embedded methods are incorpo-
rated into the learning procedure, and hence are also dependent on the model. Many 
such algorithms have been proposed in learning logical expressions or in the PAC 
setting. In fact, almost any learner can be considered some form of an embedded fea-
ture selection algorithm, where the particular estimation of features’ usefulness may 
result in their weighting [9], elimination [10] or construction of new features [11]. 

In this paper we focus on the problem of supervised feature selection. We extend 
the work of Frank and Witten [12] and present a permutation-based filtering frame-
work which is effective when the number of available examples is relatively small. In 
particular, we adopt a statistical approach with the goals of testing the null hypothesis 
that the class-conditional densities of individual features are equal and of using the test 
p-value for their comparison. The features are ranked in the increasing order of their 
estimated p-values and the top-ranked features are used for classification. To estimate 
p-values we used Fisher’s permutation test. A simple procedure for feature ranking is 
then proposed that introduces only a moderate computational overhead over the stan-
dard filters. Finally, we performed extensive experimentation to evaluate the proposed 
permutation-based methodology. 

The rest of the paper is organized as follows. Section 2 describes previous work 
relevant to our approach. In Section 3 we present our framework in detail. Section 4 
gives experimental setting and most important results of our study. Finally, concluding 
remarks are contained in Section 5. 

2   Related Work 

A significant body of research has been produced in the feature selection area. Excel-
lent surveys, systematizations, and journal special issues on feature selection algo-
rithms have been presented in the recent past [1, 3, 8, 13]. Searching for the best fea-
tures within the wrapper framework, Kohavi and John [1] define an optimal subset of 
features with respect to a particular classification model. The best feature subset given 
the model is the one that provides the highest accuracy. Numerous wrappers have been 
proposed to date. These techniques include heuristic approaches such as forward selec-
tion, backward elimination [14], hill-climbing, best-first or beam search [15], random-
ized algorithms such as genetic algorithms [16] or simulated annealing [17], as well as 
their combinations [18]. In general, wrappers explore the power set of all features 
starting with no features, all features, or a random selection thereof. 

Optimality criterion was also tackled within the filtering framework. Koller and Sa-
hami select the best feature subset based strictly on the joint probability distributions 
[19]; a feature subset Z ⊆ X is optimal if p(Y | X) = p(Y | Z). The difference between the 
probability distributions was measured by the relative entropy or Kullback-Leibler 
distance. This problem formulation naturally leads to the backward elimination search 
strategy. Since the true conditional distribution p(Y | X) is generally unknown, Koller 
and Sahami proposed an efficient approximation algorithm based on Markov blankets. 

In addition to the optimality criterion, many authors also discuss relevancy of fea-
tures [1, 8, 20]. John et al. [20] define relevancy in the following way: feature j is 



strongly relevant to the target concept and distribution D iff there exists a pair of ex-
amples x1 and x2 in the instance space with non-zero probability over D, such that x1 
and x2 differ only in their assignment to feature j and have different class labels. Addi-
tionally, feature j is weakly relevant to the target concept and distribution D, if there is 
a subset of features that can be removed such that feature j becomes strongly relevant. 
The fact that a feature is irrelevant according to some criterion, however, does not 
automatically imply that it is not useful in the model construction process. An example 
of such a situation is XOR task where none of the relevancy definitions can detect all 
truly relevant features [1]. Hence, relevance and optimality do not imply each other. 

Naturally, in cases of high-dimensional datasets containing thousands of features, 
filters are preferred to wrappers. The domains most commonly considered within the 
filtering framework are text categorization [3] and gene expression [21, 22]. A signifi-
cant difference between the two models is that text categorization systems typically 
contain both a large number of features and a large number of examples; while gene 
expression data usually contain a limited number of examples pushing the problem 
toward statistically underdetermined. Most commonly used filters are based on infor-
mation-theoretic or statistical principles. For example, information gain or χ2 good-
ness-of-fit tests have become baseline methods. However, both require discretized 
features and are difficult to “normalize” when features are multi-valued. Kononenko 
explored biases of several feature selection filters and showed that even normalized 
versions of the information gain and χ2-test are significantly biased against the features 
with fewer values [4]. In addition, χ2-test requires >30 examples in each field of the 
contingency table in order for the probability distribution to be well approximated by 
the χ2 distribution. Thus, in many cases the application of both methods is limited. 
Several other approaches frequently used are Relief [23, 24], gini-index [11], rele-
vance [25], average absolute weight of evidence [26], bi-normal separation [6] etc. 
Various benchmarking studies across several domains are provided in [5-7]. 

Some examples of embedded methods are decision tree learners such as ID3 [27] 
and CART [11] or the support vector machine approaches of Guyon et al. [10] and 
Weston et al. [28]. For example, in the recursive feature elimination approach of 
Guyon et al. [10], an initial model is trained using all the features. Then, features are 
iteratively removed in a greedy fashion until the largest margin of separation is 
reached. Good surveys of embedded techniques are given by Blum and Langley [8] 
and Guyon and Elisseeff [3]. 

2.1   Statistical Tests in Feature Selection 

Statistical tests are straightforward choices for the feature selection algorithms, espe-
cially filters. Methods such as the F-test, measuring the ratio of standard deviations 
between the classes, or the t-test, in cases when the distribution of features is near 
Gaussian, have been used for feature selection in the statistical community. Several 
other approaches were also proposed as splitting criteria in decision tree training. For 
example, White and Liu [29] used a χ2-goodness-of-fit test, while Martin [30] used an 
exact probability of a contingency table. In a study by Frank and Witten [12] it was 
shown that Fisher’s permutation test [31] used on contingency tables can be effectively 
implemented as a decision-tree pre-pruning strategy. This algorithm represents a 



Monte Carlo approximation of Freeman and Halton’s exact test and its significance lies 
in the bias correction of the exact probability of the contingency table. Frank and Wit-
ten also traced that the first use of the permutation test in machine learning was proba-
bly by Gaines [32], who used Fisher’s exact test in rule learning. Excellent coverage of 
permutation tests and other non-parametric methods is provided by Efron and Tibshi-
rani [31]. 

2.2   Classification Models in Evaluating Feature Selection Algorithms 

Speed of the learning process in real-life conditions often dictates that the classifica-
tion model be pre-selected. Thus, in the applications for high-dimensional datasets 
filtering methods are often combined with the simplest or fastest learners. This is due 
to the fact that learning parameters usually involved in choosing complex learners may 
make the selection process infeasible or may result in overfitting [33]. Consequently, 
most frequently used models have historically been naive Bayes [34], K-nearest 
neighbor models or decision trees, typically C4.5 [35]. Recently, embedded methods 
and increases in computational power have also enabled the choice of support vector 
machines [36]. 

3   Methods 

We constrain our discussion to a class of binary classification problems. Let D = {(xi, 
yi) | i = 1…n} be the set of n labeled data points, where xi = (xi,1, xi,2, …, xi,k)

T repre-
sents an assignment of values to a set of k features X = (X1, X2, …, Xk)

T and yi ∈ {0, 1} 
is the realization of the class label Y. Let ��j be the domain for feature Xj. As real-life 
datasets may contain a large number of irrelevant features, the task of estimating the 
relevance of a feature in a single pass is gaining importance. 
 

Definition 1. The relevance of feature X is measured as the difference between class-
conditional distributions p(X |Y = 0) and p(X |Y = 1). 
 

We consider the following distance measures between p(X |Y = 0) and p(X |Y = 1): 
1. The difference in sample means  
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2. Symmetric variant of the Kullback-Leibler distance, called J-measure [37]  
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While rIG and rCHI have been often and successfully used for feature selection we con-
sider rM and rJ as interesting alternatives; rM as a simple measure for selection of real-
valued attributes, and rJ as an information-based measure of the difference between 
two probability distributions. It should be noted that rM measure is suitable for real-
valued or binary features while rJ, rIG, rCHI are suitable for categorical features. There-
fore, if rM is used, categorical features with C > 2 categories are transformed into C 
binary features. On the other hand, if rJ, rIG, rCHI are used, real-valued features are 
discretized and transformed into categorical attributes. Note that when p(X |Y = 0) = 
p(X |Y = 1) all the measures result in zero values. 

rCHI measure has an interpretation particularly relevant to our study. The quantity 
n⋅rCHI represents χ2-statistic that is used in the χ2 goodness-of-fit test of independence 
between a feature X and target Y, or, equivalently, of the equality between distributions 
p(X |Y = 0) and p(X |Y = 1). It can be shown that, for a sufficiently large sample size n, 
the χ2-statistic follows the χ2 distribution with | � | − 1 degrees of freedom. This allows 
easy estimation (using a lookup table) of the p-value, defined as the lowest significance 
level at which the null hypothesis H0: p(X | Y = 0) = p(X | Y = 1) can be rejected. There-
fore, rCHI is proportional to the p-value of the hypothesis test H0, i.e. the feature rele-
vance is inversely proportional to its p-value. We extend this notion to the novel 
framework for feature selection filters. 

Let us define 0
jD  = {xi,j | yi = 0} and 1

jD  = {xi,j | yi = 1} as samples containing values 
of the j-th feature of all data points with class 0 and 1, respectively. Let us also denote 

),( 10
jj DDθ  as a test statistic obtained as a function of samples 0

jD and 1
jD , and π j as the 

p-value of the hypothesis test H0: p(Xj |Y = 0) = p(Xj |Y = 1) based on ),( 10
jj DDθ .  

 

Definition 2. The relevance of feature Xj is inversely proportional to the p-value πj of 
the hypothesis test H0: p(Xj | Y = 0) = p(Xj | Y = 1) based on the test statistic ),( 10

jj DDθ .  
 

Our goal is to empirically test whether Definition 2 results in a successful feature selec-
tion procedure. It should be observed that the measures in (1-4) can be interpreted as 
test statistics θ since they can be estimated from 0

jD  and 1
jD . Similarly, one could 

think of a number of different test statistics that could be used within the flexible 
framework provided by Definition 2. 

As already mentioned, the test statistic rCHI applied to large samples allows easy 
calculation of the p-value. However, for the small sample size and/or for an arbitrary 
test statistic θ, it is difficult to derive its distribution under the null hypothesis. There-
fore, to estimate the p-value we use Fisher’s permutation test. This reduces the feature 
selection algorithm to the application of a standard statistical tool with the test statistic 
chosen according to the criteria from Definition 1. In Section 3.1 we describe the per-
mutation test used for feature selection according to Definition 2. 

3.1   Permutation Test  

The algorithm begins by choosing and calculating a test statistic θ, e.g. difference of 
means, J-measure, information gain, χ2-statistic, for a given dataset. Without loss of 
generality, we consider only the cases where θ is non-negative. Then, assuming the 
null hypothesis H0 is true, i.e. that samples 0

jD  and 1
jD  of lengths l and m were gener-

ated according to the same probability distribution, they are concatenated into a single 



sample ),( 10
jj DDW =  of size l + m. There are (l + m)! / (l! ⋅ m!) possible splits of W into 

two parts of sizes l and m, each of which is equally likely under H0. The achieved sig-
nificance level, or the p-value, of the statistical test is defined to be the probability that 
the test statistic of a random permutation is at least as large as θ. However, due to the 
sizes of samples 0

jD  and 1
jD , the exact p-value, calculated by evaluating all possible 

permutations, cannot be computed in most practical situations. In such cases, it is esti-
mated using a fixed number of permutations (B) of the combined sample W, as shown 
in Figure 1. In each step b (b = 1…B), W is randomly shuffled and split into two parts 

)(* bU and )(* bV of lengths l and m. The test statistic )(b*θ  is calculated for each pair 

)(* bU and )(* bV , and the p-value is finally estimated as the fraction of times 
θθ ≥)(b* . The actually observed permutation W is included as the iteration B + 1. 

 
    Input: D = {(xi, yi) | i = 1…n}; B – number of permutations 

    for each feature j ∈ {1, 2, ... k} 
        split feature j into 0

jD  and 1
jD , where 0

jD = {xi, j | yi = 0} 
          and 1

jD = {xi, j | yi = 0} and l = | 0
jD | and m = | 1

jD | 
        calculate test statistic )( 10 , jj DDθ  
        counter = 1 
        for b = 1 to B 
            randomly shuffle feature j and split it into two parts 
              U *(b) and V *(b), where | U *(b) | = l and | V *(b) | = m 
            calculate ))(),(( bVbU **θ  
            if ),())(),(( 10

jj DDbVbU θθ ≥**  
                counter = counter + 1 
            end 
        end 
        jπ̂ = counter / (B + 1) 
    end 

    Output: kπππ ˆˆˆ ,,, 21 � – estimated p-values for features 1…k 

Figure 1. Steps of the permutation-test based algorithm applied to the feature selection. 

After the p-values of all k features are calculated, the features are ranked according to 
the ascending level of their estimated p-values. Therefore, the most important features 
are the ones whose probability distributions of the components having different class 
labels are least likely to be identical.  

3.2   Practical Implementation of the Permutation Test 

Given the actual p-value πj and the number of permutations B, the number of times nj 
the test statistic of the random permutation is at least as large as ),( 10

jj DDθ is a random 
variable with a binomial distribution b(B, πj). Therefore, to estimate πj within 10% of 
its true value, the coefficient of variation CV = 2/1))/()1(( Bjj ⋅− ππ  should be set to 
0.1. As a result, for an accurate estimate of the p-value πj = 0.05, approximately B = 



2,000 random permutations are required. However, for highly relevant features, πj 
could be extremely small which would, in turn, require a very large number of permu-
tations. 

To reduce computational cost, we limit the total number of permutations, e.g. to B = 
2,000, and propose the following procedure for feature ranking. Feature Xj is classified 
as weak if nj ≥ 0.05B and its p-value is estimated as jπ̂ = (nj + 1) / (B + 1). Alternatively, 
if nj < 0.05B, feature Xj is classified as strong. For the strong features, nj is close or 
equal to zero and their p-value estimates jπ̂  are highly unreliable. For such features, 
we calculate Z-scores )),((/))},((),({ ****10 VUstdVUmeanDDZ jjj θθθ −= , where Zj 
measures the distance between ),( 10

jj DDθ and the distribution of the test statistic of a 
random permutation. Finally, strong features are ranked in the upper tier based on their 
estimated Z-scores, while the weak features are ranked in the lower tier based on their 
estimated p-values. Note that for most irrelevant features the coefficient of variation 
may quickly reach the pre-specified threshold in which case much less than 2,000 
permutations may be required. 

The computational cost of the permutation test is O(k⋅n), linear in the number of 
features and data points. 

4   Experiments and Results 

4.1   Datasets 

Our experiments were performed on eleven datasets summarized in Table 1. The first 
nine were downloaded from the UCI repository [38], with dataset HOUSING converted 
into a binary classification problem according to the mean value of the target. Datasets 
MAMMOGRAPHY and OIL were constructed in [39] and [40], respectively, and provided 
to us by the authors. 
 

Table 1. Datasets: basic characteristics. NF and CF indicate the number of 
 numerical and categorical features, respectively. 

Dataset Size Size of class 1 NF CF 
IONOSPHERE 351 225 34 0 
VOTES 435 267 0 48 
GLASS 214 163 9 0 
HEART 303 139 6 7 
LABOR 57 37 8 21 
HOUSING 506 250 13 0 
CREDIT 690 307 6 41 
PIMA 768 268 9 0 
ZOO 78 41 1 15 
MAMMOGRAPHY 11,183 260 6 0 
OIL 937 41 49 0 



4.2   Data Preprocessing 

The datasets were preprocessed such that each categorical feature with C > 2 catego-
ries was represented using C binary features. This resulted in datasets that allowed 
consistent comparison of different feature selection methods with naive Bayes and 
SVM algorithms. To allow application of rJ, rIG, and rCHI test statistics, prior to the 
feature selection process, real-valued features were discretized using the method by 
Fayyad and Irani [41]. This is a supervised, entropy-based algorithm that mimics re-
cursive splitting of a decision tree construction. It automatically decides on the number 
of quantization intervals.  

Given a real-valued feature X and a threshold t the set S = {(xi, yi) | i = 1…n} is di-
vided into two subsets S1 = {(xi, yi) | xi ∈ I1} and S2 = {(xi, yi) | xi ∈ I2}, where I1 = (−∞, t) 
and I2 = [t, ∞). The optimal threshold t is the one that maximizes the information gain 
defined as G(S, t) = H(S) – E(S, t), where  
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The procedure is recursively repeated for each newly created interval I ⊂ X until the 
stopping criterion is met. To determine whether a partition should be accepted, we use 
a simple stopping criterion based on the minimum description length [41]. That is, the 
split is allowed if 
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where c, c1, and c2 are the numbers of distinct classes present in samples S, S1, and S2, 
respectively. 

4.3   Evaluation Strategy and Learners 

In order to evaluate different filters, we used 10 cross-validation. A dataset D is ran-
domly divided into 10 equal-sized subsets D1, D2, … D10 and the following procedure 
is repeated 10 times. In each step i, i = 1, 2, …10, D − Di is used to rank the features 
and then to build a classifier, while Di is used to test the accuracy of the classifier. The 
aggregate accuracy over the 10 steps represents the estimate of the accuracy. To elimi-
nate the influence of a particular split on the performance results, we repeated the 10 
cross-validation for 15 different partitions of D into 10 subsets. Finally, the average 
accuracy over 15 experiments is reported as the classification accuracy estimate. 

Due to a considerable class-imbalance in some datasets, all models were trained and 
tested using balanced class sizes. During construction of the dataset D from the origi-
nal data, in each of the 15 cross validation repetitions, all examples of the minority 
class were retained together with the same number of examples randomly selected 
from the majority class.  

We examined two learning algorithms with different inductive biases: (i) naive 
Bayes and (ii) support vector machines. Naive Bayes is a MAP classifier based on the 
assumption that feature values are conditionally independent given the class label. In 



the case of categorical features, we estimated probabilities via the Laplace correction 
approach. For numerical features, we used the assumption of a normal distribution [7, 
42]. Support vector classifiers are learning algorithms whose goal is to find class 
boundaries which maximize margin of class separation. For the experimental evalua-
tion we used support vector machines with linear kernel and regularization parameter 
C = 0.1.  

We examined eight feature selection methods; the first four of them are directly us-
ing measures rM, rJ, rIG, rCHI for feature ranking, while the second four are ranking 
features according to the p-values of the hypothesis test that uses rM, rJ, rIG, rCHI as test 
statistics, as described in Definition 2. Thus, the first four methods correspond to the 
traditional approach to feature ranking, while the second four correspond to the pro-
posed framework. 

For each of the eight feature selection filters, we trained naive Bayes and SVM clas-
sifiers using only the highest ranked features, then the two highest ranked features, up 
to the M highest ranked features, where M = min(15, k/2) and k is the number of fea-
tures in the dataset. This allowed us to provide a comprehensive evaluation of the 
proposed feature selection framework in which the datasets were similarly weighted. 
We observe that, to accomplish the proposed extensive evaluation, we trained 
10⋅15⋅8⋅2⋅M classifiers for each dataset. 

4.4   Experimental Results 

In Table 2 we show the maximum achieved accuracies for each dataset and feature 
selection algorithm. In each field of the table, accuracies of the two classifiers trained 
on i = 1, 2, … M highest ranked features were compared and the highest achieved accu-
racy is reported. These results provide a weak indication that the permutation-test 
based approaches result in higher accuracy. However, considering small differences 
between the methods and a possibility of overfitting, the results were not conclusive. 

To provide a more detailed evaluation we used a win/loss counting method often 
applied by machine learning researchers, e.g. in [7]. The objective was to compare the 
performance of each traditional feature ranking measure with its permutation test coun-
terpart. Since for each dataset we estimated accuracy of M naive Bayes and M SVM 
classifiers, this provided us with 103 comparisons for both classifiers. In Table 3 we 
list the number of wins and losses by the permutation-based method over its traditional 
counterpart, where the comparison is counted as a tie if the accuracies differed by less 
than 0.1%. It can be seen that permutation-based methods are consistently better for all 
four test statistics and for both classification algorithms. This provides a strong indica-
tion that the permutation-based approach is superior to traditional feature ranking.  

Finally, we used a similar win/loss methodology to find the most successful among 
the eight feature ranking algorithms. Here, for each tuple (dataset, learning method, 
number of selected features) we compared a given feature ranking algorithm with the 
remaining ones and reported the number of wins (that could range from −7 to 7). The 
results shown in Table 4 indicate that each of the four permutation-based algorithms 
outperforms each of the four traditional algorithms. There is only a slight difference in 
the results obtained with naive Bayes and SVM classifiers. It is interesting to observe 



that while traditional use of rM and rJ measures results in clearly inferior feature rank-
ing as compared to the more popular rIG and rCHI measures, they appear to be superior 
if used as test statistics in a permutation-based approach. 

Table 2. Maximum achieved accuracy [%], with the number of selected features (in parenthe-
ses), for the eight feature selection criteria. Notation: rIG – information gain, rCHI – chi-square 
statistic, rM – sample mean difference, rJ – J-divergence. Corresponding methods based on the 
permutation test are denoted as p-rIG, p-rCHI, p-rM, and p-rJ. Symbols � and � indicate that the 
maximum accuracy was achieved using naive Bayes classifier and SVM, respectively. The 
absence of any symbol indicates a tie between the two classification algorithms. Values in bold 
indicate the winning algorithm between each measure and its permutation-based variant. 

Feature selection method Dataset 
rIG p-rIG rCHI p-rCHI rM p-rM rJ p-rJ 

IONOSPHERE 84.8 (15)� 85.6 (11)� 83.9 (8)� 84.8 (11)� 84.6 (13)� 86.2 (4)� 87.2 (13)� 87.7 (13)� 
VOTES 96.0 (2)� 96.0 (2)� 96.0 (2)� 96.0 (2)� 96.0 (2)� 96.0 (2)� 96.0 (2)� 96.0 (2)� 
GLASS 90.0 (2)� 90.4 (4)� 90.1 (3)� 90.1 (3) 91.0 (3)� 90.7 (4)� 89.7 (4)� 90.3 (1)� 
HEART 83.9 (9)� 83.9 (8)� 83.9 (9)� 83.9 (9)� 83.5 (11)� 83.9 (9)� 83.8 (9)� 83.9 (9)� 
LABOR 93.2 (8)� 93.0 (7)� 93.2 (8)� 93.2 (7)� 93.2 (13)� 93.5 (9)� 93.0 (8)� 93.2 (6)� 
HOUSING 84.9 (4)� 85.1 (4)� 84.9 (6)� 85.0 (7)� 82.3 (5)� 84.9 (7)� 85.0 (7)� 85.1 (3)� 
CREDIT 86.2 (1) 86.2 (1) 86.2 (1) 86.2 (1) 86.6 (15)� 86.4 (15)� 86.2 (1) 86.2 (1) 
PIMA 72.8 (4)� 73.7 (3)� 72.7 (4)� 73.7 (3)� 72.6 (4)� 73.6 (3)� 72.8 (3)� 73.6 (3)� 
ZOO 100.0 (1)� 100.0 (3)� 100.0 (1)� 100.0 (3)� 100.0 (3)� 100.0 (1)� 100.0 (1)� 99.8 (1)� 
MAMMOGRAPHY 85.8 (3)� 85.9 (3)� 85.8 (3)� 85.9 (3)� 84.2 (3)� 86.0 (3)� 85.9 (3)� 85.9 (3)� 
OIL 81.5 (2)� 81.7 (2)� 81.8 (2)� 81.6 (2)� 80.4 (11)� 81.3 (2)� 80.8 (14)� 80.5 (2)� 

 

Table 3. Relative comparisons between four feature selection filters and their permutation-test 
versions. The number of wins and losses are calculated using pairwise comparisons between 
each pair of filters. The score is calculated as the number of wins minus the number of losses. 

Naive Bayes Classifier Support Vector Machine Filters 
Score Wins Losses Score Wins Losses 

p-rIG vs. rIG +33 50 17 +28 44 16 
p-rCHI vs. rCHI +20 44 24 +30 46 16 

p-rM vs. rM +79 88 9 +52 69 17 
p-rJ vs. rJ +42 54 12 +31 51 20 

 

Table 4. Relative comparisons between eight feature selection filters. Each filter below is 
ranked according to its score, i.e. the number of wins − losses in pairwise comparisons to all 
other methods over all datasets and numbers of retained features. 

Naive Bayes Classifier Support Vector Machine Filters 
Score Wins Losses 

Filters 
Score Wins Losses 

p-rJ 396 744 348 p-rM 476 798 322 
p-rIG 354 700 346 p-rJ 180 618 438 
p-rM 268 744 476 p-rCHI 156 566 410 

p-rCHI 180 624 444 p-rIG 146 556 410 
rCHI −8 524 532 rIG −156 408 564 
rIG −30 518 548 rCHI −218 380 598 
rJ −178 482 660 rJ −292 374 666 
rM −982 196 1178 rM −292 464 756 



5   Conclusions 

In this study we investigated feature selection filters and the effects of the permutation 
test on various filtering metrics. Our experimental results suggest that sample mean 
difference and symmetric Kullback-Leibler distance (J-measure) can be used effec-
tively for the feature selection and that, overall, they achieve better performance than 
information gain or χ2-test. The permutation test was shown to improve all four met-
rics, but the improvement comes at a cost of increased computational complexity. The 
success of the proposed method on the diverse datasets selected for this study strongly 
suggests the applicability of the permutation-based framework to a wide range of real-
life problems. 
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