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Advancing remote homology detection:
A step toward understanding
and accurately predicting protein function
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Identifying homologous proteins with divergent amino acid sequences can add to our understanding of pro-
tein evolution, structure, and function. A new study reports the development of a deep-network-based
method to identify 6.8 million new Pfam members, a dramatic singular increase that exceeds a decade of
accumulation using traditional approaches.
Finding groups of proteins with similar

amino acid sequences has been of inter-

est since the early days of computational

biology. Russell Doolittle (1986) dis-

cussed ‘‘surprising similarities’’ between

proteins found almost half a century ago

(Table V in his book titled ‘‘Of URFs and

ORFs’’), as the new field of database

searching and protein family modeling

was about to take shape. With the

subsequent rise of genome and metage-

nome sequencing contributing an ever-

increasing number of sequences, the

identification of protein families—and

especially their divergent members,

called remote homologs—created the

framework for asking fundamental ques-

tions about evolutionary, structural, and

functional properties of these families.

What were the evolutionary processes

that led to the ‘‘surprising’’ sequence sim-

ilarities within and between species? Do

proteins from the same family share struc-

ture and conformational dynamics? And

to what extent do they carry out the

same function?

There have been two principal threads in

the field of identifying remote homologs:

methods whose core engine is sequence

alignments (alignment-based methods)

and methods based on protein sequence

signatures powered by supervised ma-

chine learning (alignment-free methods),

though there is not always a clear

distinction between the two. Alignment-

based methodologies emerged first, pre-

dominantly involving pairwise similarity

searches, multiple sequence alignments,

and sequence-to-profile alignments (Grib-

skov et al., 1987; Altschul et al., 1997). The
most formal of those techniques is the

probabilistic modeling of protein families

using hidden Markov models (HMMs),

a generative approach based on

the Markov-chain assumption underlying

observed protein primary structure (Eddy,

1998). The turn of the 21st century intro-

duced alignment-free methods in the

form of string and profile kernels, typically

based on sparse encoding (embedding)

of proteins into high-dimensional spaces,

from which supervised methods could be

trained to identify new familymembers (Le-

slie and Kuang, 2004). These methods

depart from sequence alignments, except

when the seed families are constructed,

and instead rely on counting k-mers to

identify signatures of each family—that is,

groups of k-mers that are enriched in indi-

vidual families but not others (Leslie and

Kuang, 2004). However, the state of the

art has not substantially changed, in part

because alignment-free methods, unlike

HMM-based approaches (Eddy, 2011),

have not readily been translated into soft-

ware tools.

The work by Bileschi et al. (2022),

recently published in Nature Biotech-

nology, presents a conceptual and prac-

tical advance in the field of remote ho-

mology detection, with implications for

protein function prediction. The authors

have developed a new deep-learning

alignment-free approach by combining

a series of convolutional neural network

layers that create an embedding of an

input sequence, on top of which is a

multiclass logistic regression model

that scores Pfam (Mistry et al., 2021)

categories and picks the most likely
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one for the given embedding. The

embedding machinery is the core of

this paper, resulting in a real-valued vec-

tor representation of each sequence. It

starts with accepting a one-hot encod-

ing of an amino acid sequence as input,

basically a 20 3 n matrix per sequence

of length n, where only a single element

in each column is a 1 (denoting the

observed amino acid in the sequence)

and all other elements are 0. It then ap-

plies a series of filtering and pooling op-

erations to generate a flat 1,100-dimen-

sional vector; the filtering coefficients

as well as other parameters (kernel

size, number of channels, etc.) are

learned from the data during optimiza-

tion and model selection.

There are two extensions to the base

model (ProtCNN). The first one (ProtREP)

is created by averaging the embeddings

of sequences from the same family. This

step effectively creates a cluster center

in the embedded space, allowing for

easy assignment of new sequences to

the nearest cluster centers. It also allows

for visualization of learned embeddings

after further projection to two-dimen-

sional spaces. The second extension is

created by training multiple ProtCNN

models on the same data through differ-

ential network initialization, leading to

an ensemble of deep networks (ProtENN)

that is more stable and more accurate

than a single network. These models are

trained on a large set of labeled (hand-

curated) protein domain sequences

from Pfam. Although these models are

effectively classification machines, they

are easily transformed from domain
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Figure 1. Similarity of functional annotations between pairs of proteins with different Pfam
domain structure
Functional similarity is visualized using standard box plots (with removed outliers) over all pairs of se-
quences in a category. It was measured using Jaccard coefficient between propagated Gene Ontology
terms separately for ‘‘Molecular Function,’’ ‘‘Biological Process,’’ and ‘‘Cellular Component’’ sub-
ontologies. ‘‘Same multiple’’ refers to proteins with multiple Pfam domains, identical for both proteins;
‘‘same single’’ refers to single Pfam domain proteins with an identical domain; ‘‘shared’’ refers to proteins
that have at least one common Pfam domain but are not in the previous two categories; and ‘‘distinct’’
refers to pairs of proteins that do not share any Pfam domains. A sample of UniProtKB proteins was
considered, and proteins without any Pfam annotations were omitted. It was required that both proteins in
each pair have experimentally determined Gene Ontology terms in the relevant subontology. Note,
however, that incomplete annotations may differentially affect average annotation similarity as well as
relative comparisons.
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classification into domain calling by

considering all contiguous subse-

quences of an input protein, thus allow-

ing the new system to find regions that

belong to different Pfam domains. The

embedding engine further allows the

identification of new domains by clus-

tering in the embedded space without

ever performing sequence alignments.

The authors first evaluate the accuracy

of new methods by comparing them to a

traditional sequence alignment (based on

the Basic Local Alignment Search Tool),

profile HMMs, and supervised k-mer ap-

proaches (with dimensionality reduction

and logistic regression) todemonstrate su-

perior performance in identifying family

members of existing manually curated

Pfam families.While the newmethods out-

performedall other individualmethods, the

best performancewas achievedby a com-

bination of HMMs and deep networks,

suggesting complementarity. The authors

then go on to explore how in silico muta-
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tions impact sequence-to-family classifi-

cation. They similarly derive a new data-

driven scoring matrix, showing it to be

similar to BLOSUM62 and providing evi-

dence that the networks have learned

meaningful information. Finally, and impor-

tantly, the top-performing method was

applied to unannotated sequences to in-

crease the confident annotations in the

full Pfam database by 9.5%—a staggering

6.8 million previously unclassified Pfam

members. This is a significant advance

compared to only a 5% cumulative in-

crease in the past several years.

There are three additional takeaways

from this work. First, the deep networks

outperformedprofileHMM-basedmodels.

This is a surprising outcome that questions

the long-standing underpinnings of protein

sequence modeling—i.e., the Markov-

chain assumption as an all-encompassing

model. Though researchers in the field are

certainly not surprised by the limitations of

Markov modeling, this challenge comes
fromasetofobscureoperationsoffiltering,

pooling, and gradient-descent-driven

parameter optimization that will take

some time to understand. Second, the au-

thors find that a combination of deep-

learning-based models and profile HMMs

in fact gives the best performance, sug-

gesting complementarity of the two ap-

proaches—and a new standard for identi-

fying remote homologs! Third, it will be

worth understanding whether the new ap-

proaches emulate advances in 3D struc-

ture prediction or are in fact capturing

long-range residue interactions beyond

what was previously possible from solved

3D structures (Jumper et al., 2021). Since

the Pfam training data is considerably

larger than that used for structure predic-

tion, additional information such as under-

lying evolutionary processes, conforma-

tional dynamics, or protein function could

be modeled.

Though a tangible advance in the field,

the task of accurately predicting protein

function at all levels of abstraction re-

mains challenging (Figure 1). About 50%

of human and yeast proteins and 60% of

E. coli proteins have only a single Pfam

domain, and even for those, the large

within-family sequence divergence may

hamper fine-grained function prediction.

For those proteins with multiple domains

(40% in human, 25% in yeast, 30% in

E. coli), the combinatorial effects of diver-

gent Pfam sequences present even more

difficult challenges. Some answers to

these questions may emerge soon. The

upcoming rounds of the Critical Assess-

ment of Functional Annotation could be

an opportunity to deploy the new para-

digm to directly infer protein function

(Radivojac et al., 2013). The infusion of

new ideas will benefit protein function

prediction and with it the biomedical

sciences.
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