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This document is primarily intended for computer scientists as a rapid introduc-
tion to the area of protein function prediction. I will try to formally introduce
the protein function prediction problem and comment on why it is important
and challenging. I will also discuss the Critical Assessment of Functional Anno-
tation (CAFA), an experiment dedicated to evaluating computational tools for
protein function prediction [30]. Throughout, I will provide background infor-
mation and pointers on where to find data and what to pay attention to when
developing new methods. My hope is that this document will help to increase
the participation of computater scientists in this important computational biol-
ogy problem.

Before we start, let me mention a couple of more things: (¢) an old but still
relevant introduction to molecular biology for computer scientists was written
by Larry Hunter [17], and I recommend reading it; (i) a good set of review
papers can provide additional perspectives on protein function prediction [5,
35, 16, 40, 29, 31]; and (#4) if you have any questions or comments about this
document, feel free to contact me. Feedback is always welcome!

1 Proteins

Proteins are biological macromolecules responsible for a wide range of activities
in our cells, tissues, organs, and bodies. They constitute more than 50% of
the dry weight of cells and play a central role in the structure and function
of cells. Examples of important biological roles a protein may have include
catalytic activity (e.g. trypsin), muscle contraction (myosin), structural support
(keratins), antibacterial and antiviral defense (immunoglobulins), signaling and
regulation (Fos/Jun families through DNA transcription), helping other proteins
fold (e.g. the chaperone activity of GroEL in bacteria), or storage (e.g. ferritin
for iron storage and release).

Proteins carry out their function in the context of environment they are
in. This environment includes other macromolecules such as proteins, DNA, or
RNA. Some of these molecules come from viruses that at the very least take
up resources of the cellular machinery. Others, on the other hand, come from



(potentially pathogenic) microorganisms; for example, through secretion. The
environment also includes small chemical compounds from food, water, or air, as
well as factors such as temperature or pH level. Modulation of protein function
upon many of these factors has been studied for various molecules; see [45] for
a recent example.

1.1 Protein structure and dynamics

Proteins have a relatively simple chemical organization. They are linear chains
(polymers) of amino acids connected by covalent (peptide) bonds [6]. Amino
acids are small molecules with a common backbone (consisting of several C, H,
O, and N atoms) and a side chain with up to 30 more atoms (C, H, O, N, and S).
When a peptide bond is formed between two amino acids, a molecule of water
is released (two hydrogen atoms and one oxigen), which is why we frequently
refer to proteins as chains of amino acid residues.

Short polypeptide chains are called peptides, while the long ones are usually
called proteins.! In either case, these linear chains of amino acid residues explore
a large space of possible 3D conformations (shapes) and can in theory be found in
any (kinetically) accessible conformation at a particular time. However, points
in the protein’s conformational space are not equiprobable.

I think an easy and good way to think about a protein’s structure is through
its probability distribution over the possible 3D conformations (biologists and
physicists would probably prefer the “energy landscape” terminology). Those
proteins with a single dominant (narrow) peak can be “solved” using X-ray
crystallography or NMR spectroscopy and then visualized as static molecules
(Figure 1). Such proteins can be found in the Protein Data Bank (PDB) [4].
Interestingly, highly dissimilar protein sequences can have highly similar dom-
inant 3D structures (folds) [34]. In fact, there is a relatively small number of
folds a protein may have. You can find more about structural classification of
proteins from the SCOP [22] and CATH [25] databases.

Of course, proteins are not rigid bodies, their 3D structure changes in time.
Sometimes these are only minor fluctuations around a set of time-invariant atom
positions which themselves can be obtained through averaging. On the other
hand, the sequences and physicochemical properties of other proteins allow large
and/or irregular conformational changes. Their probability distribution over the
space of conformations in physiological conditions does not have a single dom-
inant peak. These proteins are referred to as intrinsically disordered proteins
[12]. A large number of proteins contain both ordered and disordered regions. If
a consecutive set of residues is missing in a protein’s PDB structure, we typically
consider such regions to be disordered, but there are several other techniques

IThere is no clear distinction between peptides and proteins. Usually, a chain of several
amino acid residues is referred to as peptide. Longer polypeptides that carry out function are
usually refered to as proteins. Insulin (57 residues) and ubiquiin (76 residues) are probably
the shortest human proteins; titin (34,350 residues) is the longest. On the other hand, many
peptides are functional and in size close to insulin. Neuropeptides are good examples of
functionally important peptides.



Figure 1: Structure of human hemoglobin; PDB ID 1AN3. Hemoglobin is a
tetramer containing two alpha and two beta subunits (chains). Hemoglobin
is involved in oxygen binding and transport. It carries oxygen from lungs to
everywhere else in our bodies via red blood cells. Mutations in the sequence of
this protein are associated with sickle cell disease.

for broadly characterizing a protein’s conformational dynamics. Disordered pro-
teins are listed in the DisProt database [43]. They can become ordered upon
binding to other molecules. The studies of disordered proteins in the past decade
have shown that the dynamics of a protein’s structure plays an important role
in its biological activity [41]. In fact, I think that what we used to call a protein
folding problem to find the dominant conformation of an ordered protein, has
become an incomplete and maybe even old-fashioned way of looking at things
(it is still very important!).

In many situations multiple chains come together to form a complex that
may be the only state in which the constitutive amino acid chains are biologically
active. One such molecule, hemoglobin, is shown in Figure 1.

1.2 Ontological annotation of proteins

Many biologists and biomedical scientists are involved in elucidating what pro-
teins do. Hundreds of thousands of papers that describe the activity of proteins
in different situations have been published. However, to facilitate knowledge
exchange and use of computers to process such massive data, natural language
descriptions of protein function are usually ontologized. That is, a protein’s ac-
tivity is described using hierarchical knowledge representations such as trees or
directed acyclic graphs [3]. In all such representations, nodes or terms describe
particular activities, and links represent relationships between terms (e.g. is-a,
part-of). Ontolgies are usually developed manually from deep understanding
of the domain [32], but more recently there have been attempts to use data
directly to construct ontologies or improve the existing ones [10, 1, 13].

There are a few biomedical ontologies describing protein function [23, 3, 36].
Here we are mostly interested in those representations developed by the Gene
Ontology (GO) Consortium. The Gene Ontology [3] actually consists of three in-



dependent directed acyclic graphs named Molecular Function Ontology (MFO),
Biological Process Ontology (BPO), and Cellular Component Ontology (CCO).
These ontologies are species independent and were originally developed with an
intent to unify biology via common knowledge representation across all species.
The Gene Ontology, however, does not address organismal phenotypes, that is,
sets of physical and behavioral characteristis of an individual. Most ontolo-
gies involving higher levels of functional descriptors (phenotypes, diseases) are
species specific, although some that are being worked on will consider large
groups of species (e.g. micobes). Owing to the biomedical importance, human-
centric ontologies have reached sufficient sophistication to be used for the phe-
notypic annotation of proteins. The Disease Ontology (DO) [39] and the Human
Phenotype Ontology (HPO) [33] are good albeit constantly evolving examples.

Sometimes there is confusion when different researchers refer to the term
protein function. Those closer to the biochemical side are typically interested
in the MFO aspects of function: e.g. whether a protein is an enzyme, and if so,
what kind of enzyme. For them, it is also important to understand structural
and mechanistic aspects of a particular enzymatic reaction. On the other hand,
researchers in the functional genomics area usually use term function to express
the BPO level of activity. They are typically interested in pathways in which
a protein participates and how high level cellular processes are carried out or
maintained. The BPO level of functional annotation is more abstract than MFO
in the sense that it describes a range of biochemical events that take place to
result in a particular biolgical outcome: e.g. cell-cell signaling, locomotion, or
cell death. Two proteins can have the same enzymatic activity, but because they
interact with different partners, they may be involved in completely different bi-
ological processes. Furthermore, if two proteins interact, it is highly likely they
are part of the same biological process; but it means little in terms of the molec-
ular function of these molecules. Thus, when protein-protein interaction data is
used to make inferences about protein function, it is important to specify what
aspect of function is considered. Phenotypic characterization is even fuzzier
because it describes how the changes in protein sequence or expression impact
physical and behavioral characteristics of the entire organism. It is difficult to
pin down what protein function really means; basically, it is “everything that
happens to or through a protein” during its lifetime [35]. Different ontologies
describe different aspects of a protein’s activity.

In addition to experimentalists, a number of biocurators are also involved in
annotation of protein function through interpretation of experiments from the
literature and summarizing these experiments using ontolgical representation.
Interestingly, there was an attempt to involve authors of the original papers to
annotate their proteins directly as part of the publication process [20]. It turned
out that the authors did not perform as well as biocurators, mostly because of
unfamiliarity with the full range and detail of the ontologies and lack of time to
learn it. Therefore, we need biocurators as much as we need experimentalists
and computer scientists.?

2This is a perfect place to mention Alex Bateman’s characterization, form a recent talk,



1.3 Data representation

Because there are only 20 amino acids that constitute proteins (there are some
exceptions here), it is convenient to represent proteins as strings using an alpha-
bet of 20 symbols; ¥ = {A,C, D, E,F, G, H, L K, L, M, N, P, Q, R, S, T, V,
W, Y}. This makes proteins, similar to other biological macromolecules (DNA
and RNA), ideal for the development and application of string algorithms and
data structures from the computer science community. Sequence alignment, for
example, is the conrnerstone of computational biology and also key to protein
function prediction (one might be tempted to say that sequence alignment is a
byproduct of the calulcation of edit distance between strings). Different variants
involve pairwise sequence alignment, multiple sequence alignment (a known NP-
complete problem [44]), alignment of a sequence or a sequence family against a
database of sequences or sequence families, or genome alignment, each of which
requires specific solutions.

Another powerful way to represent proteins is through graphs or networks.
A node in a protein-protein interaction (PPI) network corresponds to a pro-
tein and each link represents an event that the two proteins physically bind (or
interact) to carry out a biologically meaningful function. Similarly, gene regula-
tory networks (usually directed graphs) can be formed based on the expression
patters between of the paticular groups of genes. It is important to mention
that there exists a time component or a particular order in which various bind-
ing or regulatory events occur; however, current data rarely provide sufficient
resolution for dynamic network modeling [28]. A single protein chain or a com-
plex with a given structure can also be seen as a graph with amino acids (or
atoms) being vertices and edges drawn based on the proximity between pairs of
amino acids. A geometric representations of proteins (using the 3D coordinates
of each atom in its structure) can be useful for the application of techniques
from computer vision; e.g. geometric hashing [24].

We can also look at proteins as time series data. An example could be a
hydropathy profile [19] or a measurement of gene expression data at several time
points. Methods that can integrate a variety of evidence in principled ways are
more likely to achieve good performance. However, the knowledge of biology and
technology used to interrogate biological systems should not be underestimated.

Perhaps the previous discussion can be interpreted in a way that protein
function prediction is simple because we only need to apply a few string, graph,
or time-series algorithms and integrate them to perform statistical inference. It
is actually more complex than that. A single gene sometimes can encode mul-
tiple proteins through events such as alternative splicing or post-translational
processing of proteins. In alternative splicing different exons in a genomic se-
quence are stitched together differently at the mRNA level to produce different
protein forms (called isoforms, perhaps incorrectly). Similarly, a protein can
be processed upon translation. These events include chopping proteins into
functional fragments and/or chemically modifying various amino acid residues,

that “biocuration is bedrock of computational function prediction”. He insisted that foundation
was too weak a term.



’ Database \ Link \ Comment

UniProtKB uniprot.org Sequence, functional annotation
Pfam pfam.sanger.ac.uk Sequence families
PDB pdb.org Structures
ModBase | modbase.compbio.ucsf.edu Predicted structures
12D ophid.utoronto.ca Protein-protein interactions
GEO ncbi.nlm.nih.gov/geo Gene expression data
PRIDE www.ebi.ac.uk/pride Mass-spectrometry data

Table 1: Summary of main biological databases that can be used for function
prediction. A number of other databases can also be useful. For structural clas-
sification see SCOP and CATH; for human mutation data see HGMD, UniPro-
tKB, ClinVar, and OMIM; for human disease data see OMIM and HPO; for
pharmacogenetics data see PharmGKB; for chemical compounds see ChEBI
and PubChem, KEGG for pathways, etc. Protein function data can also be
found in UniProt-GOA, BioCyc, and GO databases.

thereby changing their physicochemical properties and, as a consequence, the
function of the protien. There are more than 400 post-translational modification
events such as the attachment of a phosphate group to serine (S), threonine (T),
tyrosine (Y), or histidine (H) residues in a protein (post-translational modifica-
tions effectively increase the amino acid alphabet size but can also occur in a
particular order). When you take a combinatorial look at all post-transcriptional
and post-translational events, they may produce a vast set of protein forms that
are all encoded by the same gene and have exactly the same canonical amino
acid sequence. This is one of the big challenges of protein function prediction.

1.4 Where is protein data?

Protein data is stored in a large collection of biomedical databases. Each year
the journal Nucleic Acids Research has a special issue devoted to presenting
new databases and updates of the existing databases. Other journals also ac-
cept submissions presenting new biological databases. However, most of these
databases are too specialized and not relevant to this summary. A few that I
think are important are highlighted in Table 1.

2 Protein Function Prediction Problem

Consider now a labeled data set Dy = {(p1,T1), (p2,T2),. ..}, where p; is the
i-th protein and T; is its (potentially incomplete) experimentally-validated func-
tional annotation from some ontology O. Each protein p; is represented by its
sequence s;, but also other information such as the species it came from, its 3D
structure, its interactions with other molecules, etc. The species information is
important as two identical proteins from different species may still be character-



ized with different functions depending upon the cellular context in that species.
The functional annotation T; corresponding to p; is required to be a consistent
subgraph of @. This means that if a term (vertex) v € T; is associated with p;,
then all ancestors of v must also be in T; up to the root(s) of the ontology. In
a slight abuse of notation, we use T; to describe both a subgraph of O and the
set of terms in this subgraph (a graph is defined as a set of vertices and a set
of edges between pairs of these vertices). Informally, we will write 7; C O to
describe consistent subgraphs of O. Finally, let D be all other data that can be
exploited in function prediction. For example, electronic medical record data
can be exploited to understand disease co-morbidity and utilized in prediction
of DO or HPO annotations, even though such data is not necessarily associated
with any biological macromolecules.

We can now formulate the protein function prediction (PFP) problem as
follows: given data set of labeled proteins Dy, all additional data D, and a
previously unseen protein p, find a consistent subgraph T C O that is most
likely to be this protein’s experimeal (but unknown) annotation 7. In other
words, we seek to predict the true annotation T as

T = argmax {Pr(P|p)},
PCO

where Pr(P|p) is the posterior distribution over all consistent subgraphs P in the
ontology (note that owing to the fact that the number of consistent subgraph
in the ontology is finite, Pr(P|p) is a probability mass function). In reality,
computational models cannot predict T exactly. Therefore, we usually require
them to output a score associated with each term or consistent subgraph in the
ontology. The expectation is that a good decision threshold can be applied to
balance precision and recall (see later for a formal definition) according to the
needs of a particular user. An illustration of the protein function prediction
problem is shown in Figure 2.

We shall distinguish this problem formulation from the one that we will refer
to as the cadidate gene prioritization (CGP) problem. The gene prioritization
problem emerged as a means of computationally guiding biological experiments
to identify genes involved in disease [21]. In this framework, we have a labeled
data set D, = {(¢1,T1), (92,T2),...}, where g; is the i-th gene and v € Tj;
that is each protein in associated with a particular term in the ontology O (we
use g instead of p only to distinguish between the two problem formulations).
We also have a set of genes Uy = {g;};~, that are not known to be associated
with v and, as before, some additional data D. The goal of the candidate gene
prioritization algorithm is to determine which gene from Uy is the most likely
to be associated with term v and, therefore, should be the next in line to be
experimentally studied. We seek to determine the best candidate gene as

g = argmax {Pr(v|g)},
geUs

where Pr(v|g) is the posterior probability that gene g is associated with term
v € 0. As we just saw, in protein function prediction we are provided with



Protein function prediction problem
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DNA translocase activity

Figure 2: Illustration of the protein function prediction problem. The blue
nodes in the ontology represent the predicted function of ths input protein.
Note that the two leaf annotation nodes, one of which is “DNA translocase
activity”, uniquely identify the entire consistent subgraph.

a protein, and the goal is to predict the totality of its ontological annotation.
In the gene prioritization scenario we are given a particular term v in the on-
tology, and the goal is to rank genes (or proteins) according to their likelihood
of being associated with this particular term [21]. In the case when statistical
inferene algorithms are capable of accurately estimating the posterior probabili-
ties Pr(P|p) and Pr(v|g), the PFP and CGP problems are equivalent. However,
this situation is not highly likely and, thus, the two problems are different in
practice.

Let us briefly discuss the major differences between the two problem formula-
tions. In the protein function prediction problem, we are given an unannotated
protein and the space of possible outputs is the set of all consistent subgraphs
in the ontology. Given the current sizes on biomedical ontologies, the space
of all possible outputs (consistent subgraphs of O) is vast. In the gene pri-
oritization scenario, we are given a functional term in the ontology and asked
to rank a relatively small set of candidate genes (at most equal to the size of
genome). Due to the difference in problem formulation, the natural way to con-
sider protein function prediction is the structured output learning framework or
at the very least a multi-label classification. On the other hand, the candidate
gene prioritization is an instance of a standard binary classification where one
needs to find the probability that a gene is associated with a functional term.
Finally, these two scenarios are very different when it comes to method eval-
uation. While in the protein function prediction scenario one needs to reason
about graph similarity to assess accuracy of computational models, candidate
gene prioritization is simple to evaluate using the well-understood metrics from
binary classification.



2.1 Why is protein function prediction challenging?

There are a number of biological and computational challenges that make pro-
tein function prediction difficult. Let me enumerate a few good ones.

Biologically, protein function is determined in the context of the organism
and is rarely, if ever, fully determined by any single experiment or publication. In
addition, some experiments cannot be performed in some organisms for a variety
of biological, budgetary, or ethical reasons. Some experiments are performed in
vitro and may not faithfully reflect the protein’s activity in vivo.? For example,
if a protein is modified post-translationally, it might not carry out its function
in vitro, because the modifying enzyme that activates the protein is missing.
The available function data may also contain errors caused by misinterpretation
of experiments, curation errors, experimental biases, and so on [7, 37, 38]. In
short, the data provided in biological databases is (seriously) incomplete, biased,
and noisy. In fact, because experimental annotations are incomplete, it is fair
to question the reliability of the ground truth on which we evaluate predictors.
To make things worse, current biological databases are gene-centric. That is,
they list functions of all protein forms corresponding to their parent gene as one
entry. At this time it is difficult to disentangle which protein form has what
function.

Computationally, one can view protein function prediction as a multi-label
classification problem or as an instance of structured-output learning in which
the goal is to output a consistent subgraph () of a graph (©). Another chal-
lenge comes from the data integration perspective, where diverse biological data
(sequence, structure, interactions, etc.) need to be dealt with. For example, for
mice we can find a lot of gene expression data because a mouse is a reason-
ably reliable model organism for cancer study. We are also given a mouse PPI
network (not as complete as yeast or human, but still good), or a number of
mass-spectrometry data sets. On the other hand, we do not have such good
volume and diversity of data for most other organisms. This makes statistical
learning on one species and making inferences about another difficult. Finally,
performance evaluation involves developing good similarity functions between
pairs of consistent subgraphs in the ontology. It is not entirely clear how this
should be done given that there are underlying relationships between terms in
the ontology and differences in resolution with respect to which function is de-
scribed in different branches of the ontology. The ontologies are large; there are
about 40,000 terms in MFO, BPO, and CCO combined. Yet a typical protein
is annotated by only a small number of terms. Even worse, the number of GO
terms a protein is experimentally annotated with appears to have a scale-free-
like distribution [8]. Understanding which proteins are annotated with many
terms and which are annotated with only a few is very important.?

3A colleague one mine Yanay Ofran once started his comment at a coference with “We all
know that what happens in vitro stays in vitro”. A pretty good way to summarize it!

41t may be tempting to call proteins that carry out many functions “jacks of all trades”, but
there is really no evidence that they are 'masters of none’. It is plausible that these proteins
are jacks of all trades and masters of them all. Life is not fair.



2.2 Why is protein function prediction important?

If we are to understand life at a molecular level we must understand how pro-
teins carry out their function. This is also important for understanding the
molecular mechanisms of disease, because alterations of protein function are
responsible for many diseases. Here is one example: consider hemoglobin from
Figure 1 and mutation of residue E into V at position 6 in its beta subunit (HBB
gene in Swiss-Prot). This mutation is well-known to cause sickle cell disease, a
disorder initiated by a binding event between multiple hemoglobin tetramers.
This binding event, in turn, produces amyloid fibrils which disrupt the shape
and function of a red blood cell, ultimately causing painful episodes and anemia.
Computational function prediction can thus be used to formulate biological hy-
potheses and guide wet lab experiments through prioritization. It could also
be used for rational drug design or to inform studies of molecular evolution.
Unless new high-throughput functional assays become available (which I highly
doubt!), it will not be possible to fill the gap between experimentally annotated
proteins and the vast amount of sequence data already available (Figure 3).

Currently, there are about 7,000 sequenced genomes with about 21,000 in
progress [26]. In addition, various efforts have catalogued about 1 million species
on Earth and have estimated the existence of 10-100 million species in total.
This data suggests a deepening of the gap between annotated and unannotated
sequences and places computational annotation at the forefront.

Protein function prediction is also important from a statistical and compu-
tational perspective, because solutions found in computational biology may be
helpful in other domains where ontological annotations are or will be assigned
to objects. The data available in computational biology also provides opportu-
nities for method development on incomplete, biased and highly heterogenious
data.

2.3 Evaluation of protein function prediction algorithms

In the CAFA experiment organized in 2010-2011, we used two major types of
evaluation: (i) protein-centric evaluation and (i) term-centric evaluation [30].
The protein-centric evaluation is more related to the protein function prediction
mode, whereas the term-centric evaluation is more appropriate for the gene
prioritization scenario.

In the protein function prediction mode, we assume that the output of a
predictor is a score for each term in the ontology. We will assume that the
scores range between 0 and 1, with higher scores indicating more confident
predictions. Thus, a decision threshold 7 must be applied to determine the set of
predicted terms P(7).5 Similarly, a set of experimentally determined terms will
be denoted as T. To determine the quality of prediction, a similarity function
must be calculated between P(7) and T for each protein in an evaluation set.

5Technically, we assumed that a parent cannot have a score lower than any of its children
nodes in the ontology. This can be taken care of during evaluation by assigning each parent
the score that equals the maximum between its score and scores of all of its descendants.

10
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Figure 3: Growth of biological databases in the past decade or so. The Protein
Data Bank plot shows the number of protein structures available over the years.
Swiss-Prot lists the number of curated sequences that can be used as proxy to
the growth of functional information. In August 2013 there were about 26,000
sequences annotated with at least one experimentally validated MFO term,
about 40,000 sequences annotated with at least one BPO term, and another
40,000 sequences with at least one CCO term. These sets are overlapping; in
total, there are only about 55,000 proteins in Swiss-Prot with at least a single
experimental term in any of the three ontologies. The TrEMBL curve shows
the growth of the number of uncurated protein sequences in UniProtKB.
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For each protein ¢ and threshold 7, we define its precision as

Yoeo I(v € P(T) Av € T))
>veo L(v € Pi(T))

pri(7) =

and recall as
Yoveo (v e P(1) Av e Ty)
Z'UGO I('U € T‘Z) ’

where I(-) is an indicator function. Using a database of N proteins, we can
determine the average precision from individual scores over a set of m(1) < N
proteins on which at least one prediction was made above threshold 7 as

rei(T) =

The average recall, on the other hand, is calculated as

1
re(r) = 7 - D_reiln)

=1
on the entire set of N test proteins. This evaluation penalizes methods that do
not make predictions on all proteins (each such protein is assigned a recall of 0
for all thresholds). While such evaluation is useful, I believe it is also important
to evaluate each method using only the subset of proteins for which the method
has made predictions. In other words, the number of proteins IV in the previous
expression can in such case be determined as N = max{m(r)}.

T

When all possible thresholds are considered, a prediction model is charac-
terized by a precision-recall curve (pr(7),rc(r)).. To provide a single-score
evaluation of computational models, we used the maximum F-measure over all
thresholds. Specifically,

Fiax = max
T

{2 pr(r) - re(r) } .

pr(r) +re(7)

It is important to note that the F-measure, as a harmonic mean between pr(r)
and rc(7), places equal emphasis on precision and recall. An experimental
biologist, however, is more likely to be interested in predictions with high recall,
because the knowledge of shallow terms in the ontology is not very informative
for a detailed understanding of a protein’s activity.

In the gene prioritization mode we use term-centric evaluation metrics. A
Receiver Operating Characteristic (ROC) curve is particularly useful here (a
precision-recall curves can be calculated as well). Consider term v and a set of
N proteins on which the algorithm is evaluated. Let us define sensitivity (recall)
and specificity as

12



Zi]\il I(ve P(t)ANv eT;)
SN IweT)

sy (1) =

and

Sl 1w ¢ Pi(r) Ao ¢ Th)
Zé\;l I(v ¢ T) 7

respectively. We can denote the ROC curve for a term v as (sn,(7), spy(7)),
and use the area under the curve (AUC) as a performance measure. Note that
averaging the area under the curve over all terms may be a useful protein-centric
metric, but it has severe issues related to estimating AUCs using a small number
of positive examples associated with many terms as well as averaging scores over
terms that are not independent. At this time I do not know of any universally
accepted way to calculate and combine AUCs of individual terms to produce a
good protein-centric score.

The metrics presented above were used in CAFA 1. They are reasonable but
have their own drawbacks; for example, all terms in the ontology are treated
equally to calculate Fi, .y, but these terms are neither independent nor equally
important. There are alternative ways to evaluate function prediction. I will
only mention hierarchical precision and recall by Verspoor et al. [42] and,
shamelessly, misinformation and remaining uncertainty by Clark and myself [9].
Misinformation and remaining uncertainty are information-theoretic analogs of
precision and recall. The minimum semantic distance is calculated from the
misinformation and remaining uncertainty in a way similar to calculating F,x
from precision and recall.

spy(T) =

2.4 Protein function at a residue level

Most of the discussion here has been about function of a particular protein
as a whole molecule. Unfortunately, this does not provide a complete picture
about the machanistic aspects of its activity, the residues that are involved in
particular function, or whether changes to these residues can alter the activity
of this protein (and if so, how?). For example, let us consider a “DNA-binding
activity” as our function of interest (it indeed is a term in MFQO). With such
terms, it becomes important to understand which particular residues are DNA-
binding and how this function is impacted upon sequence variation of these or
neighboring residues.

We can assign ontological terms to individual residues in a similar way we
assign ontological terms to the entire molecules. These are not necessarily the
same ontological terms, but in the many instances they are. In addition to
DNA-binding, functional residues of interest would be catalytic residues, post-
translationally modified sites, ligand-binding residues, protein-protein interac-
tion residues, hot spots, metal-binding residues, etc. There is a large body of
literature covering computational prediction of functional residues; for some re-
view papers see [15, 14, 46]. These approaches also suggest that the prediction

13



of functional residues can be incorporated into the prediction of protein function
at the whole-molecule level [18, 27].

3 The CAFA challenge

The Critical Assessment of Functional Annotation (CAFA) is a challenge dedi-
cated to comprehensive evaluation of computational protein function prediction
methods in an unbiased manner. The idea of the challenge is simple. The
organizers (and I am one of them) provide a large set of unannotated or in-
completely annotated proteins to the community and ask the groups to predict
functional annotation for these proteins. All predictions must be uploaded at
the CAFA web site before the submission deadline, which is a period of several
months. After the submission deadline, we enter the phase of accumulation of
experimentally validated annotations in UniProtKB. After about 6 months, or
more during later re-assessments, the methods are evaluated on the proteins
that accumulated new experimentally validated terms during the target accu-
mulation phase. We as organizers have no control over the set of proteins that
will be used for benchmarking. Biocurators in UniProtKB, who map experi-
mental annotations to ontological terms, have no control over the predictions
from the community. We think that the experiment is fair albeit less than ideal
(for several reasons).

CAFA is one of many critical assessments in biomedical sciences [11]. Its
distinguishing feature, however, is that the CAFA experiment is simple. We
do not provide a data set that the predictors must use to train their data. We
allow anyone to participate and use any data they may find useful. Our goal is
just to provide a fair evaluation of the methods and gain insight into how well
we are all doing, what works the best, and what ideas have stalled.

More details about CAFA can be found at http::/biofunctionprediction.org.

3.1 The main outcomes of CAFA 1 (2010-2011)

The first CAFA experiment was conducted between September 2010 and De-
cember 2011 [30], with a preliminary evaluation in July of 2011 during the ISMB
conference in Vienna (AFP-SIG).® Computational prediction was evaluated in
MFO and BPO categories of functional annotation on a total of 866 proteins
from 11 species.

The major conclusions of the experiment can be summarized as follows: (i)
the algorithms for protein function prediction developed in the 2000s clearly
outperform traditional function transfer using a straightforward application of
BLAST [2]; (ii) the performance of methods in the MFO category was assessed
as useful to guide biological experiments; however, the performance in the BPO

6 AFP-SIG stands for the Automated Function Prediction Special Interest Group meeting
associated with the International Conference on Intelligent Systems for Molecular Biology
(ISMB). ISMB is the flagship conference of the International Society for Computational Biol-
ogy (ISCB).
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category was below our expectations, particularly for eukaryotic species; (iii)
for most algorithms, but excluding BLAST, the sequence similarity between
a target and the most similar protein with experimentally annotated function
is a relatively poor indicator of how good the overall prediction will be; this is
because algorithms are capable of combining information from multiple sequence
hits as well as integrating data other than sequence alignments; (iv) evaluation
of protein function prediction seems to be equally challenging as the prediction
itself. Due to data biases and incomplete experimental annotations there is no
single metric that can be definitively used to assess function prediction; (v) the
methods that performed best typically exploited multiple types of data, but
there are exceptions; and (vi) although relatively good methods already exist
for some prediction tasks, there is lack of standalone tools that are updated and
maintained on a regular basis to be practically useful in guiding experimental
biology.

The CAFA challenge was described in the main Nature Methods article [30],
with a number of useful results presented in the Supplement. In addition, a spe-
cial issue of the AFP-SIG has been published in BMC' Bioinformatics, Volume
14, Supplement 3.

3.2 What is new in CAFA 2 (2013-2014)

We are introducing several novel aspects to CAFA 2 that will enable us to expand
the challenge to new ontologies but also provide more detailed evaluation of
protein function prediction tools. In terms of new ontologies, we are expanding
CAFA 1 by adding the CCO and HPO annotations. While this may seem trivial,
there is a difference between methods developed for MFO, BPO and those used
for predicting the cellular compartment or human phenotypes. In addition to
new ontologies, we would like to provide more detailed evaluation in two aspects:
(¢) unlike in CAFA 1 where each target was not allowed to have any experimental
annotation in any of the ontologies prior to the submission deadline, in CAFA
2 targets that are partially annotated will also be considered. This will allow us
to see, for example, whether knowledge of a protein’s BPO annotation can be
used to better infer its MFO, CCO or HPO (for human proteins) annotation. It
will also allow us to better evaluate predictions on proteins that were partially
annotated in the same ontology for which the evaluation is performed. For
example, a protein may be annotated with a “zinc binding” term, and this could
be useful information for infering other MFO terms for that protein; (ii) to
better evaluate progress in function prediction, it is important to distinguish
(as much as one can) to what extent is the performance improvement (if there
is any) in CAFA 2 due to better/larger data used for model training compared
to the influence of more powerful algorithms. To attempt to reason about this,
we asked each group that participated in CAFA 1 to re-train their methods on
the data from 2013, instead of 2010 (in addition to providing predictions of their
new methods). As organizers, we will do this with the CAFA 1 baseline methods
which will facilitate at least some understanding of where the improvement is
coming from. In general, the predictions from all CAFA experiments will be
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stored for future re-assessments and over times will provide us with a good data
to track the progress of the field.

Finally, let me comment on data anonymity policy we have. Each group can
remain anonymous and even withdraw from the experiment after the prediction
submission deadline (and before the first presentation of results). We think this
is an important policy, because some methods are hastily developed or may even
have bugs. Groups that try new ideas but did not have time for internal rigorous
accuracy assessment should not be panelized in terms of their reputation if
the ideas did not work or there were problems in their code. However, we do
not think that the performance accuracy of published methods should remain
anonymized. In addition, all methods ranked in the top 10 based on the major
assessment criteria will be de-anonymized (a small price to pay if you are in the
top 10).
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