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ABSTRACT The recent advances in the prediction of intrinsically disordered proteins and the use of protein disorder
prediction in the fields of molecular biology and bioinformatics are reviewed here, especially with regard to protein function.
First, a close look is taken at intrinsically disordered proteins and then at the methods used for their experimental
characterization. Next, the major statistical properties of disordered regions are summarized, and prediction models developed
thus far are described, including their numerous applications in functional proteomics. The future of the prediction of protein dis-
order and the future uses of such predictions in functional proteomics comprise the last section of this article.

INTRODUCTION

Until the early 1990s, a widely, almost exclusively accepted

concept of protein function was the well-known protein

sequence/structure/function paradigm. According to this

concept, a protein can achieve its biological function only

upon folding into a unique, structured state, which represents

a kinetically accessible and an energetically favorable

conformation (usually the global energy minimum for the

whole protein) determined by its amino acid sequence. This

specific conformation has been referred to as the native state

of the protein. Ample experimental evidence has been

accumulated since the 1890s to support this view. Some

representative supportive examples include theoretical

models postulated by Pauling (1), Fischer’s lock-and-key

hypothesis (2), the first crystal structures of globular proteins

(3,4) and of enzymes (5), and the studies that supported the

refoldability proteins into their functional states (6,7), in

which a protein was shown to regain its function if the

necessary environmental conditions were restored after the

initial perturbation. The state in which a protein loses its

function, known as the denatured state, has been associated

with the loss of the specific three-dimensional structure (8,9),

which can lead to either monomeric conformational ensem-

bles (both compact and noncompact) under some denaturing

conditions or to insoluble aggregates under others.

Occasional counterexamples to the general view presented

above have been observed over many years, but these were

mostly ignored and largely overshadowed by the success of the

studies of proteins with specific three-dimensional structures,

or what we call ordered proteins. However, recent discoveries

of intrinsically disordered proteins (IDPs) (10) (known also as

natively disordered (11), natively unfolded (12), and intrinsi-

cally unstructured (13) proteins) have significantly broadened

the view of the scientific community and increased the number

of groups systematically studying these intriguing members

of the protein world. Bioinformatics has been very helpful in

transforming the disparate collection of counterexample pro-

teins into a de facto subfield of protein science.

What is an intrinsically disordered protein?

In an ordered protein region, the Ramachandran angles and

backbone atoms of each residue undergo nonisotropic small-

amplitude motions relative to their local neighborhood and are

characterized by the equilibrium positions defined by the time-

averaged values. The atom fluctuations are caused by two

factors, random thermal motion and small cooperative confor-

mational changes of the local sequence neighborhood, and these

fluctuations are known to be influenced by local residue packing

(14). In contrast to ordered protein regions, ID regions are not

characterized by the atom equilibrium positions and dihedral

angle equilibrium values around which the residue spends most

of the time. ID regions exist instead as dynamic ensembles in

which atom positions and backbone Ramachandran angles vary

significantly over time with no specific equilibrium values. The

conformational changes of ID regions are typically noncoop-

erative and random. Thus, the view of disorder as dynamic

ensembles does not exclude the temporary presence of local

secondary structure that fluctuates in absence of stabilizing

forces. Associating IDPs and ID regions with structural

ensembles remains a qualitative description because the degree

of structural change and the number of distinct structures in the

ensemble are likely to vary over a wide range for different IDPs.

Slightly ,1/3 of the crystal structures in the Protein Data

Bank (PDB) are completely devoid of disorder (15). Also, ID

can be manifested in a variety of contexts, affecting various

levels of protein structure: functional disordered segments

can be as short as only a few amino acid residues, or they can
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occupy rather long loop regions and/or protein ends. Proteins

can be partially or even wholly disordered, even large ones

(16), so we define an IDP as a protein that contains at least one

disordered region. However, in practice, very short disordered

regions have typically been ignored, since these regions were

not determined with high confidence and were not associated

with particular functions. Hence, our definition of an IDP will

be somewhat loose due to the experimental problems in

characterizing disorder with high precision. Our current

interest focuses on those regions that are sufficiently long to

be readily characterized, and especially on those that have

been associated with function by experiment.

Experimental characterization of disorder

The disorder in IDPs has been detected by several physico-

chemical methods elaborated to characterize protein self-

organization. The list includes but is not limited to x-ray

crystallography (17), NMR spectroscopy (11,18–21), near-

ultraviolet circular dichroism (CD) (22), far-ultraviolet CD

(23–26), ORD (23,26), Fourier transform infrared (26), Raman

spectroscopy and Raman optical activity (27), different fluo-

rescence techniques (28,29), numerous hydrodynamic tech-

niques (including gel-filtration, viscometry, small angle x-ray

scattering (SAXS), small angle neutron scattering (SANS),

sedimentation, and dynamic and static light scattering) (28,29),

rate of proteolytic degradation (30–34), aberrant mobility in

SDS-gel electrophoresis (35,36), low conformational stability

(28,37–40), H/D exchange (29), immunochemical methods

(41,42), interaction with molecular chaperones (28), electron

microscopy or atomic force microscopy (28,29), and the charge

state analysis of electrospray ionization mass-spectrometry

(43). (For more detailed reviews on methods used to detect

intrinsic disorder, see (11,19,29,44).)

Functions of intrinsically disordered regions

Although it can be argued that IDPs occupy a continuum of

structural forms, there are two major views on categorization

of the form of IDPs. Dunker and Obradovic (45) proposed

that functional intrinsically disordered regions may exist in

two different structural forms: molten globule-like (col-

lapsed) and random coil-like (extended) forms, whereas

Uversky suggested existence of another extended form, the

pre-molten globule (44), which appears to be distinct

category between fully extended and molten-globular con-

formations and which is distinguishable by the presence of

unstable secondary structure. Together with the ordered

form, these ID categories form the basis of the protein trinity

(45) or the protein-quartet (44) hypothesis. It follows that

protein function is associated with any of the three (or four)

distinct forms or with transitions between them, where

conformational changes associated with function may also

be brought about by alterations in environmental or cellular

conditions. In short, IDPs and ID regions are typically

involved in regulation, signaling and control pathways

(16,46,47) and thus complement the functional repertoire

of ordered regions, which in our view have evolved mainly

to carry out efficient catalysis. Of course, enzymes such as

kinases and phosphatases also participate in regulation,

signaling, and control pathways, but for disordered proteins

these activities are the direct result of their actions, whereas

for enzymes these activities occur as a result of the changes

brought about by the catalytic events. Indeed, it is interesting

that catalytic events associated with regulation or signaling

often occur in IDPs or ID regions (48) as discussed below.

Using literature searches, 90 proteins with functionally

annotated IDPs and ID regions were found (48). These IDPs

were shown to be involved in 28 specific functions, which

were organized into four functional classes: 1), molecular

recognition; 2), molecular assembly; 3), protein modification;

and 4), entropic chain activities (49). The first three functions

result from interactions between disordered regions and their

partners. Molecular recognition is primarily represented in

signaling. Protein modifications are another way of increasing

the functional diversity of the proteome, in which protein

modification sites can either be directly recognized by other

molecules or can introduce allosteric changes that trigger a

series of downstream effects. Molecular assembly is a func-

tional class represented by proteins involved in assembly of

viruses, ribosomes and the cytoskeleton. In these three func-

tional categories, disordered regions typically undergo tran-

sitions from unfolded to folded forms. On the other hand, the

functions of the fourth category, namely entropic chain acti-

vities, arise directly from the unfolded state. Common re-

presentatives of this category are linkers, spacers, bristles,

springs and clocks, but it is expected that other functions

depending on the unfolded state will be found as well.

The involvement of IDPs and ID regions in molecular

recognition probably results from a number of capabilities

enabled by this protein form (16,47) including the following:

1), decoupling of specificity and affinity due to the free energy

penalty paid to fold the disordered state; 2), binding diversity in

which one region folds differently to recognize differently

shaped partners by different structural accommodations at the

various binding interfaces; 3), binding commonality in which

multiple, distinct sequences fold differently yet each recognize

a common binding surface; 4), the formation of large

interaction surfaces as the disordered region wraps-up or

surrounds its partner; 5), faster rates of association by reducing

dependence on orientation factors and by enlarging target sizes;

and 6), faster rates of dissociation by unzippering mechanisms.

Computational approaches to predicting
intrinsically disordered regions

In addition to laboratory experiments, a key argument about

the existence and distinctiveness of ID regions came from

computational analysis. Statistical comparisons of amino

acid compositions and sequence complexity indicated that
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disordered and ordered regions are different to a significant

degree. These sequence biases were then exploited to predict

disordered regions with high accuracy and to estimate the com-

monness of IDPs and ID regions in the three kingdoms of life.

Finally, in the latest wave, it has been shown that the functional

repertoire, including the mechanistic properties of molecular

binding show specific characteristics for disordered regions that

are considerably different from the characteristics of ordered

regions. We begin this section by a discussion of the public

repositories of IDPs and then address the various computa-

tional approaches to ID prediction.

Database of intrinsically disordered proteins

The first public resource containing disordered protein regions

was developed by Sim et al. (50). However, the ProDDO

database was not curated, its contents were limited to the PDB

entries only, and it did not provide information about type of

disorder nor the function of disordered regions. These limita-

tions are being overcome by DisProt, which is a database

containing experimentally characterized IDPs and ID regions

and their biological functions (51,52). The database contains

numerous examples of IDPs characterized by several exper-

imental techniques and includes functional information for

many of the IDPs and regions. Therefore, DisProt links

structure and function information for IDPs and ID regions in a

systematic way. This database was developed to facilitate IDP

research by collecting and organizing knowledge regarding the

experimental characterization and the functional associations

of IDPs. In addition to being a unique source of biological

information, DisProt opens the door for bioinformatics studies.

In its first public release of February 2004, DisProt contained

154 proteins (190 disordered regions), whereas in August 2006

the database contained 460 proteins (1103 disordered regions).

The database can be accessed at http://www.disprot.org.

Sequence biases of disordered protein regions

Ordered and disordered regions were shown to possess distinct

sequence biases. Based on the analysis of 150 IDPs and ID

regions, amino acid residues were grouped into order promot-

ing, disorder promoting and neutral (10). To illustrate this

finding, Fig. 1 presents relative amino acid compositions of ID

regions available in the DisProt database (51). The amino acid

compositions were compared using a profiling approach (10).

This figure compares the compositions of the 460 proteins

currently available in the database with the compositions of the

152 proteins present in DisProt in July 2002, with the amino

acids arranged in order for the larger database. Based on the

new amino acid compositions of IDPs and ID regions, and

using a fractional difference of 0.1 to separate the amino acid

classes, the order-promoting residues are C, W, Y, I, F, V, L, H,

T, and N, the disorder-promoting residues are D, M, K, R, S, Q,

P, and E, and the neutral residues are A and G. Note that H,

T, N, and D are borderline by the 0.1 fractional difference

criterion, which is rather arbitrary, and so these residues could

also be considered neutral.

Disordered regions of different length show statistical dif-

ferences (53), as suggested in an earlier study (54). In addition,

more rigid and less rigid regions of structured proteins also

show compositional differences. Pairwise comparisons among

four structural classes, namely low B-factor ordered regions,

high B-factor ordered regions, short disordered regions, and

long disordered regions, show each class to have a different

amino acid composition from the other three, with short

disordered regions and high B-factor regions having the most

similar compositions. Furthermore, the compositions of these

two groups were both closer to the composition of long dis-

ordered regions than to that of more rigid ordered regions (53).

Particularly interesting was the analysis of charge, which

showed that the short disordered and high B-factor regions

were more negatively charged, whereas long disordered re-

gions were either positively or negatively charged, but on aver-

age nearly neutral.

In addition to the first-order statistics, more recent studies

also addressed higher-order patterns. Lise and Jones (55)

investigated sequence patterns that are statistically overrep-

resented in disordered regions. They examined the patterns

in amino acid sequence space and also analyzed the space of

various physicochemical properties. Their analysis confirmed

FIGURE 1 Amino-acid composition, rela-

tive to the set of globular proteins Globular-

3D, of intrinsically disordered regions 10

residues or longer from the DisProt database.

Dark gray indicates DisProt 1.0 (152 pro-

teins), whereas light gray indicates DisProt

3.4 (460 proteins). Amino acid compositions

were calculated per disordered regions and

then averaged. The arrangement of the amino

acids is by peak height for the DisProt 3.4

release. Confidence intervals were estimated

using per-protein bootstrapping with 10,000

iterations.
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that disordered sequences characterized to date were en-

riched in proline and contained both positively and nega-

tively charged patterns.

Prediction of disordered protein regions

The first predictor of intrinsically disordered regions was

constructed in 1997 by Romero et al. (54), based only on 67

disordered regions (1,340 residues) and a number of ordered

regions (16,543 residues) manually extracted from PDB

(56). Based on these data, a two-layer feed-forward neural-

network was constructed that achieved a surprising accuracy

of ;70%. This work was significant because it for the

first time indicated that the lack of fixed protein three-

dimensional structure is predictable from the amino acid

sequence alone. In addition, it not only provided the first

clues into the compositional differences between ordered and

disordered protein regions, but it also indicated that disor-

dered regions of different lengths (short, medium and long)

are compositionally different from each other. The predictive

model was later extended into the VLXT predictor (57), a

combination of an interior disordered region predictor (VL1)

and a separate predictor trained only at protein termini, XT

(58). The VLXT predictor was later named the Predictor Of

Natural Disordered Regions VLXT (PONDR VLXT).

Interestingly, the existence of a significant difference in

the compositional complexity between the globular and

nonglobular regions of protein sequences was recognized

more than a decade ago (59), several years before the first

order/disorder predictor. The sequences corresponding to the

crystal structures in PDB were shown to differ only slightly

from randomly shuffled sequences in the distribution of

statistical properties such as local compositional complexity.

On the other hand, ;¼ of the residues in the SWISS-PROT

database was shown to occur in segments of nonrandomly

low complexity (59,60). Several classes of proteins with

known, experimentally defined nonglobular regions have

been analyzed, including coiled-coils, elastins, histones,

nonhistone proteins, mucins, proteoglycan core proteins and

proteins containing long single solvent-exposed a-helices.

Based on the results of these analyses it was concluded that

globular and nonglobular regions of these sequences can be

effectively discriminated using the difference in their com-

positional complexity (60). All this led to the development of

a computational method, the SEG algorithm, which aimed to

divide sequences into contrasting segments of low- and high-

complexity (60–63).

Subsequent studies indicate that sequence regions with

low complexity nearly always correspond to nonfolding

segments, or to proteins and regions that form fibrous or

extended structures (57), whereas IDPs or ID regions do not

always possess low sequence complexity (57,64). Overall,

both SEG analysis for complexity and order-disorder

prediction are useful and complementary in the analysis of

protein sequences. These two approaches have been recently

combined into a single plot, which provides an important

new method for characterizing IDPs and ID regions (65).

In 2000, Uversky et al. (26) noticed that proteins

disordered over their entire lengths can be separated from

ordered proteins by considering their average net charge and

hydropathy. A separation line in the charge-hydropathy

phase space was determined, indicating that a protein is more

likely to be entirely disordered than ordered if H . (R 1

1.151)/2.785, where H is its mean hydropathy (66) and R is

its mean absolute net charge over the entire sequence (R was

calculated as the absolute value of the difference between the

number of lysines and arginines and the number of aspartic

and glutamic acids, normalized by the sequence length). In

its original form, the charge-hydropathy plot (CH-plot) did

not have the sensitivity to predict disordered regions on a per

residue basis, but recently charge-hydropathy analysis has

been modified and extended to identify local ID regions

using a sliding window approach (67).

Several of the predictors developed in the early 2000s

used different definitions of disordered regions. For example,

there are three versions on the DisEMBL server (68), trained

on three proposed types of disorder: 1), loops/coil, i.e.,

structured regions missing regular secondary structure of

helix and strand; 2), hot-loops, i.e., structured regions other

than helix or strand, but having high Ca B-factors; and 3),

remark465, i.e., regions with missing electron density from

PDB. The predictor of NORS regions by Liu et al. (69,70)

used a similar definition to that of loops/coil type to predict

regions devoid of secondary structure. Indeed, NORS stands

for NOn-Regular secondary Structure. Throughout this

review, all regions that have fixed three-dimensional struc-

ture are considered to be ordered regions, regardless of their

B-factor values or secondary structure assignments.

In time, more sophisticated methods based on various

statistical and machine learning techniques have emerged

(71,72). It is worth mentioning that in addition to the method

by Uversky et al. (26), some other approaches also exploited

the ideas of reduced sets of amino acids (73) or physico-

chemical properties, e.g., hydropathy scale only (74) or

expected number of contacts per residue (75), to predict

disordered regions without significant loss of accuracy. The

development of different ID predictors was dramatically

stimulated by including disorder prediction as a separate

category in the CASP experiments (76,77). As a result, more

than 20 different ID predictors have been developed, with

many of them being recently reviewed (78). The list of these

predictors includes but is not limited to: several PONDR

models (15,53,79–81); DISOPRED models (82–84); Glob-

Plot (85); DisEMBL (68); NORS (69; 70); IUPred (86; 87);

FoldIndex (67); RONN (88); PreLink (89); DISpro (90);

SPRITZ (91), Wiggle (92), etc.

The predictors developed so far have been based on a

spectrum of computational approaches relying on amino acid

compositions, derived properties (such as secondary struc-

ture prediction) or simple physicochemical properties (such
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as charge) of the local sequence neighborhood. Almost all of

the above-mentioned predictors are available as web servers.

Links to these servers, when available, can be found in

DisProt (51,52). The relevant information regarding these

models is summarized in Table 1. We selected only those

models that were scientifically novel and/or published and

that are readily accessible. Various other predictors may exist

at other private or commercial web sites.

Protein-protein interactions: surface area,
interface area, and binding-induced folding

The structures of protein complexes formed by binding-induced

folding differ from structures of complexes formed by the

association of structured monomers. Disorder in the unbound

state leads to bound-state structures with larger normalized

monomer surface areas and with larger normalized interface

areas compared to the same features for complexes assembled

from structured monomers. Indeed, if the normalized monomer

surface area is plotted against the normalizing interface area, a

simple straight line separates complexes arising from structured

proteins from those arising from the binding-induced folding of

intrinsically disordered proteins (93).

Besides the fact that the monomer surface area versus inter-

face area plot clearly distinguishes between the two classes of

proteins, the disordered proteins, with variable extended shapes

and with variable interface areas, are observed to distribute

sparsely over the plot. On the other hand, ordered proteins, being

globular, compact, and rather similar to each other, occupy a

more localized region on the plot. The authors emphasized that

TABLE 1 Summary of the web servers offering prediction of intrinsically disordered proteins

Server name URL Approach References

VLXT (PONDR) http://www.pondr.com Feed-forward neural network with separate

N-/C-terminus predictor. Based on amino-acid

compositions and physicochemical properties.

(54,57,58)

FoldIndex http://bip.weizmann.ac.il/fldbin/findex Charge/hydrophobicity score based on a

sliding window.

(26,67)

NORSp http://rostlab.org/services/NORSp/ Rule-based using a set of several

neural-networks. Amino acid compositions

and sequence profiles used as features.

(69,70)

VL2/VL3 http://www.ist.temple.edu/disprot/predictor.php Ordinary least-squares linear regression (VL2)

and bagged feed-forward neural-network

(VL3).

(15,72,79)

http://www.pondr.com All models use amino-acid compositions and

sequence complexity. VL3 series uses

sequence profiles.

DISOPRED http://bioinf.cs.ucl.ac.uk/disopred/ Feed-forward neural network (DISOPRED) and

linear support vector machine (DISOPRED2)

based on sequence profiles.

(82–84)

GlobPlot http://globplot.embl.de/ Autoregressive model based on amino-acid

propensities for disorder/globularity.

(85)

DisEMBL http://dis.embl.de/ Ensemble of feed-forward neural networks. (68)

IUPred http://iupred.enzim.hu/index.html Linear model based on the estimated energy of

pairwise interactions in a window around a

residue.

(86,87)

PreLink http://genomics.eu.org/spip/PreLink Rule-based. Ratio of multinomial probabilities

(for linker and structured regions) combined

with the distance to the nearest

hydrophobic cluster.

(89)

RONN http://www.strubi.ox.ac.uk/RONN Feed-forward neural network in the space of

distances to a set of prototype sequences of

known fold state.

(88)

DISpro http://www.igb.uci.edu/servers/psss.html Recursive neural network based on sequence

profiles, predicted secondary structure and

relative solvent accessibility.

(90)

VSL http://www.ist.temple.edu/disprot/predictorVSL2.php Logistic regression (VSL1) and linear support

vector machine (VSL2) based on sequence

composition, physicochemical properties and

profiles. Combination of short and long

disorder predictors.

(80,81)

DRIP-PRED http://www.sbc.su.se/;maccallr/disorder/ Kohonen’s self-organizing maps based on

sequence profiles.

—

SPRITZ http://protein.cribi.unipd.it/spritz/ Nonlinear support vector machine based on

multipally aligned sequences. Separate

predictors for short and long disorder regions.

(91)
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this approach, being structure-based, can be extended to proteins

with homology-modeled structures. Finally, they pointed out

that their finding can be utilized for the de novo design of stable

monomeric proteins and peptides (93).

Recently, as shown in Fig. 2 (94), the monomer area

versus interface area plot has been used to test for the

presence of binding-induced disorder-to-order transitions in

a set of polypeptides having molecular recognition features

(MoRFs). These are short, intrinsically disordered peptides

that undergo disorder-to-order transitions upon partner rec-

ognition (94,95). As Fig. 2 shows, almost all of the MoRFs

in the dataset collected from PDB were on the intrinsic dis-

order side of the boundary that was developed in the original

study using a completely different set of proteins (93). These

results suggest that these peptides responsible for recognition

are likely to be disordered in isolation, which was further

supported by high disorder predictions in regions flanking

the MoRFs of these polypeptides (94).

Prediction of disorder in computer-aided
functional proteomics

In this section we review various applications of the predictors

of IDPs and ID regions. We distinguish three major situations

in which ID predictors were used: 1), to improve estimation of

commonness of disorder and its functional repertoire; 2), to

facilitate or improve prediction of other protein features such

as protein post-translational modification sites or other types

of binding regions; and 3), as a tool to gain insight into

structural and dynamic properties of the proteins of interest,

both in individual and high-throughput experiments.

Estimation of commonness of disorder and its
functional repertoire

The first application of the predictors appeared as soon as the

first model was trained. Romero et al. (96,97) estimated the

commonness of protein disorder in the Swiss-Prot database

(98) with the finding that 25% of proteins in Swiss-Prot had

predicted ID regions longer than 40 consecutive residues and

that at least 11% of residues in Swiss-Prot were likely to be

disordered. Given the existence of a few dozen experimen-

tally characterized disordered regions at the time, this work

had significant influence on the recognition of the importance

of studying disordered proteins. If indeed 25% of all proteins

contained long disordered regions, the natural question to ask

was, what biological functions are carried out by these IDPs?

Vucetic et al. (72) developed a supervised clustering

algorithm in an attempt to discover possible types or

‘‘flavors’’ of disorder and applied these flavor-specific pre-

dictors to 28 available genomes from the three kingdoms of

life. First, this work revealed that there indeed were distinct

types of disorder (three flavors were found) and even more

interestingly that various types of disorder could be respon-

sible for different protein functions. In addition, even though

archaea and bacteria seemed to have similar relative fre-

quency of disordered proteins, the distribution of the flavor of

their disorder was largely different. Confirming the initial

analysis by Garner et al. (99) and Dunker et al. (10), it has been

shown that disordered proteins were involved in protein-

nucleic acid and protein-protein binding and that different

flavors were associated with different types of molecular

functions (72).

Ward et al. (83) have refined and systematized such an

analysis and concluded that the fraction of proteins containing

disordered regions of 30 residues or longer (predicted using

DISOPRED) were 2% in archaea, 4% in bacteria, and 33% in

eukarya. In addition, a complete analysis of the yeast pro-

teome with respect to the three Gene Ontology (GO) cate-

gories was performed (100). In terms of molecular function,

transcription, kinase, nucleic acid and protein binding activity

were the most distinctive signatures of disordered proteins.

The most overrepresented GO terms characteristic for the

biological process category were transposition, development,

morphogenesis, protein phosphorylation, regulation, tran-

scription, and signal transduction. Finally, with respect to

cellular component, it appeared that nuclear proteins were

significantly enriched in disorder, whereas terms membrane,

cytosol, mitochondrion and cytoplasm were distinctively over-

represented in ordered proteins (100).

Recently, a novel data-mining tool that identifies ID-

correlated functional keywords in the Swiss-Prot database has

been elaborated (101–103). An application of this method to a

set of over 200,000 Swiss-Prot proteins revealed that out of

711 functional keywords associated with at least 20 proteins,

262 keywords were found to be strongly positively correlated

with predictions of long, intrinsically disordered regions,

whereas 302 keywords were strongly negatively correlated

with such regions. A significant fraction of these predictions

were verified by comparing the inferred correlations to

information found in the literature. That is, at least one

illustrative example of functional disorder or functional order

FIGURE 2 Surface and interface area normalized by the number of resi-

dues in each chain for MoRF and the ordered complexes datasets. Modified

from Mohan et al. (94).
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was found for a large majority of the keywords showing the

strongest positive or negative correlation with predicted in-

trinsic disorder, respectively (101–103).

In the next few years, with further improvement of the

existing computational approaches and the development of

novel bioinformatics tools, we anticipate that prediction of

disorder-dependent functions will be made for the proteomes

of all the model organisms and for proteins from all major

databases. This initial work will be followed by laboratory

experiments to verify or disprove these prediction-based

annotations. Using prediction to guide experiments will

become especially important for accelerating the character-

ization of IDPs and ID regions (19).

Prediction of functional sites and sites of
post-translational modifications

Molecular recognition features

Various predictors of intrinsic disorder have been used to

facilitate prediction of functional properties of proteins. The

first use of a disorder predictor to find protein-binding sites

was performed by Garner et al. (104) who noticed that sharp

dips in disorder prediction could indicate short loosely

structured binding regions that undergo disorder-to-order

transitions upon binding to a partner. Interestingly, these dips

in disorder prediction were originally noticed for the 4E

binding protein (4EBP1, see Fig. 3) (104), which had been

shown to be completely disordered by NMR (105). How-

ever, a short stretch of 4EBP1 undergoes a disorder-to-order

transition upon binding to eukaryotic translation initiation

factor 4E (106). A different example of the same process is

shown in Fig. 4, which represents the disorder-to-order

transition in a disordered region of Bad (ribbon) induced by

its binding to Bcl-XL (globular). The commonness of such

interactions is supported by Fig. 2 and the associated work

leading to this figure (94).

Additional work has further validated the use of these

distinctive downward spikes in VLXT curves to locate

functional binding regions. The follow-up study by Oldfield

et al. led to the development of a predictor of short helical

regions, termed Molecular Recognition Elements (MoREs)

(95) or Molecular Recognition Features (MoRFs) (94). A

large decrease in conformational entropy that accompanies

disorder-to-order transition uncouples specificity from bind-

ing strength. This phenomenon has the effect of making

highly specific interactions easily reversible, which is bene-

ficial for cells, especially in the inducible responses typically

involved in signaling and regulation. A recent computational

study of such binding illustrated that the disordered partner

contains a ‘‘conformational preference’’ for the structure it

will take upon binding, and that these so-called ‘‘preformed

elements’’ tend to be helices (107). This research validates

previous findings for individual protein-protein interactions,

such as p27Kip1 (108,109) and p53 (110), both of which have

disordered regions containing significant helical content and

with the likely result that these transient a-helices become

stabilized upon binding to their partners. Several MoRFs or

downward spikes have been first noticed by prediction and

later confirmed by experiment to be involved in protein-

protein interactions (111–113).

Recently, by searching PDB, 1,261 MoRFs were found that

were clustered into 372 families by sequence similarity (94).

Based on the structure adopted upon binding, at least three

basic types of MoRFs were found: a-MoRFs, b-MoRFs, and

i-MoRFs, which form a-helices, b-strands, and irregular

secondary structure when bound, respectively (94). Further-

more, the details of the MoRF-partner interactions were

compared with other types of protein-protein interactions and

several very significant differences were found (114). One of

the most striking differences is that MoRF-partner interfaces

have a much higher fraction of hydrophobic side chains as

compared to interfaces between structured domains. This

result is remarkable and interesting because, in the unbound

state, MoRF sequences are significantly depleted in hydro-

phobic groups compared to the sequences of globular proteins

(94). Thus, overall a very high percentage of the hydrophobic

groups in MoRFs become involved in the binding interfaces

with protein partners. These higher numbers of hydrophobic

groups and their specific sequence patterns within predicted

or experimentally identified regions of intrinsic disorder

FIGURE 3 Example of a binding region and its positions relative to the

regions of predicted order (PONDR VLXT score) and a-MoRF. Eukaryotic

initiation factor (yellow) and the binding region of 4EBP1 (dark red) are

shown above the PONDR VLXT plot for 4EBP1, where the binding region

and the predicted a-MoRF region are shown as dark red and blue bars,

respectively. Modified from Oldfield et al. (95).
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should provide the basis for the development of predictors of

MoRFs from sequence. When combined with experiment,

these future predictors will be especially helpful in identifying

the subregions within longer ID regions that are involved in

binding to partners.

Calmodulin binding targets

Calmodulin (CaM), a ubiquitous Ca21 sensor (115), is a highly

conserved intracellular protein, which is heavily involved in

numerous regulatory processes (116–118). CaM is known to be

recruited by at least 180 different proteins and enzymes (119),

by which these target proteins express Ca21 sensitivity in their

biological functions (120,121). Based on the analysis of the

solved structures of CaM associated with several of its binding

targets, the distinctive binding mechanism of CaM, and the

significant trypsin sensitivity of the binding targets, it has been

concluded that the process of association likely involves

coupled binding and folding for both CaM and its binding

targets (122). To further validate this hypothesis, a set of 287

MoRFs that were known to be CaM binding targets (CaMBTs)

has been recently collected (122). Based on this dataset, a

predictor of CaMBTs was developed in which the prediction of

disorder was used as an input feature to the system. Feature

selection has isolated disorder as one of the dominant

characteristics of CaMBTs, in addition to the high helical

propensity, aromaticity and positive charge (122). Per residue

accuracy of this predictor reached 81%, which, in combination

with a high recall/precision balance at the binding region level,

suggests high predictability of CaM-binding partners. Appli-

cation of this predictor to yeast and human proteomes revealed

that CaMBTs are highly abundant in various activators and

repressors, nuclear proteins, DNA- and RNA-binding proteins,

helicases, ribosomal proteins, coiled coils, homeobox proteins,

protein involved in transcription regulation, development and

ATP binding, variants produced by alternative splicing, and

proteins with activities regulated by phosphorylation (122).

Sites of post-translational modifications

Recently, various studies showed the importance of intrinsic

disorder prediction for the prediction of protein post-

translational modification sites. Iakoucheva et al. (123)

used prediction of intrinsic disorder to predict phosphoryl-

ation sites, whereas Daily et al. (124) used a similar approach

to identify protein methylation sites. Our experiments also

reveal that protein ubiquitination sites are located within

disordered regions and that prediction of disorder was found

useful for this important modification (P. Radivojac and

L. Iakoucheva, unpublished data).

In all three of the above-mentioned applications, prediction

of disorder was used simply as an input feature to the system

and was shown to be useful, increasing the accuracy by 2-3

percentage points. However, disorder prediction can also be

used in other ways. For example, Radivojac et al. (125) used a

predictor of intrinsically disordered regions to cluster protein

residues into two groups (disordered and ordered) and then

used different thresholds on the raw scores to assign phos-

phorylated residues. This approach eliminated many false

positives that were otherwise found in ordered protein

regions. In addition, Beltrao and Serrano (126) showed that

SH3 binding domains prefer binding targets that are located

within intrinsically disordered regions and showed that an

analysis of conservation of linear peptide sequences in com-

bination with prediction of intrinsic disorder can be used to

screen for protein-protein interactions.

How does disorder prediction in the above-described

problems improve the prediction accuracy? In other words,

why would generalized disorder prediction improve accuracy

for models specifically trained on their own, problem-specific

datasets? We believe that the main reason for this phenomenon

results from the small dataset sizes for each of these problems

coupled with the ‘‘prior knowledge’’ that disorder is related to

each of these functions. For example, in predicting protein

phosphorylation sites, only 136 tyrosine and 141 threonine

sites had been retained for the predictor construction after

redundancy removal (123). On the other hand, predictors of

disorder were trained on more than 20,000 nonredundant

residues (15). If indeed intrinsic disorder is related to protein

phosphorylation, then disorder propensity could be expected to

significantly reduce the number of false positive predictions. In

this way the datasets used for prediction of disorder are

indirectly contributing to the increased accuracy of prediction

of other phenomena. In the early stages when only a small

number of experimentally verified positive sites or binding

regions is available, predictors of disordered regions can be ex-

pected to play an important role for those processes for which

prior knowledge indicates that disorder is important.

We anticipate that an important future direction will be to

combine sequence motif-based prediction, which is com-

monly used to identify potential binding sites or potential

sites of protein modification (127), with disorder-based

prediction to improve annotations of the proteomes of

various model organisms. If a binding sequence motif or a

sequence-motif-based identification of a posttranslational

FIGURE 4 Illustration of disorder-to-order transition

upon binding. This example shows the binding of a dis-

ordered region of Bad (ribbon) binding to Bcl-XL (globular).

Modified from Oldfield et al. (95).
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modification site is experimentally characterized to reside in

intrinsically disordered regions, then disorder predictions

can be used to help focus efforts on experiments that are

more likely to be productive. Although in our view pre-

diction of disorder will become increasingly useful for func-

tional proteomics (19), in the end, laboratory experiments

will always be essential for unambiguously identifying the

sites or regions of interest.

Prediction of disorder as a tool in determining
protein structural and dynamic properties

ID, protein crystallization, and structural genomics projects

Due to rapid DNA sequencing, the number of translated

protein sequences is growing substantially faster than the

number of determined three-dimensional structures. That is,

whereas the number of translated protein sequences has

surpassed the 4,000,000 mark, the number of protein

structures in PDB is nearing the much lower 40,000 number,

corresponding to only ;1% of currently determined protein

sequences. The discrepancy between these two figures can be

partly attributed to the time-intensive and difficult process of

producing a protein crystal and then the subsequent labor-

intensive process of interpreting the resulting diffraction

pattern. Furthermore, a number of bottlenecks have been

identified in structural genomic high throughput pipelines

(128). A major challenge results from the finding that ;70%

of selected targets are predicted to be unsuitable for structural

determination using current methods (129). Application of

methods that account for protein disorder can greatly reduce

these bottlenecks. Close examination of sequences that failed

to crystallize may reveal intrinsically disordered regions

interspersed with regions of order. Thus, accounting for

protein disorder can improve target selection and prioritiza-

tion. In fact, implicit ID predictions have been used by

structural genomics centers to prioritize target selection. For

example, proteins with low complexity, coil-coil proteins or

very long proteins are typically assigned low priority in

structure determination (130). However, IDPs and ID regions

are not necessarily low-complexity nor do all multi-domain

proteins contain a disordered region. Oldfield et al. (131)

explicitly utilized predictions of protein disorder to pre-screen

71 proteins in the pipeline from Arabidopsis thaliana. The

authors showed clear benefits of using disorder predictions in

the analysis as compared to simple sequence complexity

analysis. This result is especially important in light of the fact

that an emphasis in structural determination is given to the

discovery of new folds. Alternative analyses of disordered

protein regions, for example by identifying regions of low

sequence conservation, have been used by crystallographers

for many years to change expression constructs in attempts to

avoid difficult-to-crystallize protein regions.

Researchers can utilize disorder prediction at the level of

individual proteins as well. Recently it has been shown that

crystallization trials for full-length NEIL1, a human homolog

of E. coli DNA glycosylase endonuclease VIII, failed to yield

any crystals. This inability to grow crystals was corroborated

by the fact that the protein was polydisperse regardless of the

temperature or buffer conditions used, based on dynamic light

scattering (DLS) experiments (132). To resolve this problem,

the VLXT predictor was used to indicate possible disordered

region(s) in NEIL1 that might have hindered crystallization.

The analysis showed that this protein likely had a disordered

C-terminal region (106 residues). A set C-terminal deletion

constructs were cloned and checked for expression. A NEIL1

construct missing the C-terminal 100 amino acids (NEIL1C_

100) was successfully crystallized, whereas deletions of

.100 residues did not yield any protein expression (132).

This study clearly illustrates the usefulness of serious con-

sideration of ID for successful crystallization of proteins and

protein fragments. With the set of tools to be developed in the

near future, researchers will be able to identify those proteins

or portions of proteins which are more likely to be soluble

(133) and which are more likely to crystallize (134), with

higher accuracy.

As a further illustration of the use of disorder prediction,

based on previous reports that many viral proteins have a

modular organization containing hydrophobic and disordered

regions that are often not compatible with the crystallization

process (135,136), the ‘‘viral enzyme module localization’’

(VaZyMolO) tool was recently developed which serves to

define and classify viral protein modularity (137). Among

different attributes used by VaZyMolO to produce modules

suitable for crystallization, protein regions that may contain

hydrophobic (peptide signal, hydrophobic domain and trans-

membrane) or natively disordered patterns were precisely

defined. In the absence of three-dimensional data, a system-

atic bioinformatics analysis was performed to define globular

and disordered regions. Disordered regions were identified

by combining the results from the analysis of the mean

hydrophobicity/mean charge ratio (26), as well as from VLXT

(57) and DisEMBL (68) predictions.

Besides the crucial role of the prediction of intrinsic

disorder in finding new targets for structural analysis, various

disorder predictors have proved their usefulness for gaining

insight into structural and dynamic properties of different

proteins and protein families and for better understanding

protein function. This is truly an exploding field with several

studies describing new usage of intrinsic disorder published

each week. A few illustrative examples are outlined below.

IDPs in DNA repair and cancer

One of the first applications of the disorder predictors for

structural characterization of proteins is exemplified by the

analysis of the Xeroderma pigmentosum group A (XPA)

DNA repair protein using the VLXT predictor, limited

proteolysis and mass-spectrometry (138). The disorder pre-

dictions indicated that XPA carries extended disordered
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regions on its N- and C-termini with an ordered central core.

These predictions agreed well with the partial proteolysis

results; the trypsin cleavage sites were observed in XPA

termini but not within its internal region despite the presence

of 14 possible cut sites in this region. Furthermore, the NMR

structure of the internal core confirmed the prediction of order

for this segment. Thus, disorder analysis helped provide a

better insight into structural properties of this important DNA

repair protein. In agreement with this example, it has been

established that ID is also very common in cancer-associated

proteins. Of cancer-associated proteins, 79% contain pre-

dicted regions of disorder of 30 residues or longer (46). In

contrast, only 13% of a set of proteins with well-defined

ordered structures contained such long regions of predicted

disorder. In experimental studies, the presence of disorder has

been directly observed in several cancer-associated proteins,

including p53 (110), p57kip2 (139), Bcl-XL and Bcl-2 (140),

c-Fos (141), and most recently, a thyroid cancer associated

protein, TC-1 (142).

IDPs and human papillomaviruses

A recent comparison of the proteomes of the oncogenic and

benign types of human papillomaviruses (HPV) provided

additional evidence of a correlation between ID and cancer

(143). In humans, there are more than 100 different types of

HPVs. Some of them are the causative agents of benign

papillomas/warts, whereas other HPVs are cofactors in the

development of carcinomas of the genital tract, the head and

neck, and the epidermis. Specific types of HPV play causal

role in cervical cancer, a major cause of women’s death

worldwide, with ;200,000 women dying of this disease

each year (144–146). With respect to their association with

cancer, HPVs are grouped into two classes, known as low-

(e.g., HPV-6 and HPV-11) and high-risk (e.g., HPV-16 and

HPV-18) types (144,147).

The papillomaviruses (PV) are small nonenveloped icosa-

hedral viruses found in many animals as well as in man. These

viruses have a circular double stranded DNA genome of ;8 kb

that encode eight to nine proteins, including six nonstructural

proteins [E1, E2, E4, E5, E6 and E7 (the latter two are known to

function as oncoproteins in the high-risk HPVs)] and two

structural proteins (L1, and L2) (145,146,148). Similar to other

DNA viruses, these viruses are dependent upon the cellular

machinery to replicate their nucleic acid and complete a pro-

ductive life cycle. HPVs achieve the proper cellular environ-

ment by inducing cells to enter S phase (146,148).

To understand whether ID plays a role in the oncogenic

potential of different HPVs and thus to differentiate the cancer-

related and benign HPVs, a detailed bioinformatics analysis of

proteomes of high-risk and low-risk HPVs was performed with

the major focus on the E6 and E7 oncoproteins (143). This

analysis indicates that high-risk HPVs are characterized by a

significantly increased amount of predicted intrinsic disorder

in transforming proteins E6 and E7 (143). The results of ID

prediction in E7 oncoprotein are consistent with the solution

structure recently determined for this protein from the high-risk

HPV-45 (149), as both the NMR analysis and the predicted

disorder distribution showed that the N-terminal fragment of

E7 (residues 1-54) is completely disordered.

IDPs in cardiovascular disease

The high abundance of ID in proteins associated with car-

diovascular disease (CVD), which has been recognized as the

No. 1 killer in the United States, has been recently established

using the bioinformatics analysis of a dataset of 487 CVD-

related proteins extracted from the Swiss-Prot using keyword

searches (150). This analysis suggests that CVD-related

proteins are depleted in major order-promoting residues (W,

F, Y, I, and V) and are enriched in several disorder-promoting

residues (R, Q, S, P, and E). The application of several ID

predictors (including VLXT, CH-plot, CDF analysis, and

a-MoRF indicator) revealed that CVD-related proteins are

highly enriched in intrinsic disorder, with many proteins

being predicted to be wholly disordered (150). This high level

of ID could be important for the functions of CVD-related

protein and for the control and regulation of processes

associated with CVD. In agreement with this hypothesis, 198

a-MoRFs were predicted in 101 proteins from CVD dataset.

A comparison of disorder predictions with the experimental

structural and functional data for a subset of the CVD-

associated proteins indicated good agreement between pre-

dictions and observations (150).

ID in PEST proteins

PEST sequences, which have been indicated to be protein

degradation targeting signals, are enriched in proline (P),

glutamic acid (E), serine (S), and threonine (T). PEST se-

quences were first observed in rapidly degraded, eukaryotic

intracellular proteins (151) and are believed to confer rapid

instability to many proteins (151,152). Various experimental

approaches including deletion, transfer, and mutation of

PEST sequences have shown the role and importance of PEST

regions for the stability of proteins (153,154). There are the

two major protein degradation pathways that are implicated in

PEST-mediated proteolysis, the ubiquitin-proteasome degra-

dation and the calpain cleavage (155,156).

P, E, S, and T are among the disorder-promoting amino

acids (Fig. 1), thus sequences rich in these amino acids

would be expected to be intrinsically disordered. This was

validated in a recent study (157), which showed that PEST

motifs are associated disordered regions more often than

with globular proteins. Furthermore, analysis of representa-

tive PDB entries revealed very few structures containing PEST

sequences, with the vast majority of the PEST-containing

regions of PDB entries being characterized by the lack of

ordered secondary structure. Other important findings based on

a proteome-wide analysis included the following observations:
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1), PEST proteins are prevalent in eukaryotic proteomes; 2),

they comprise a large fraction of the unfolded proteome in com-

pletely sequenced eukaryotes; and 3), the PEST-containing

proteins show an over- and an underrepresentation in func-

tions related to regulation and metabolism, respectively

(157). More recently, the disorder of the PEST motif of the

suppressor of cytokine signaling SOCS3 has been confirmed

experimentally by NMR (158).

ID in nuclear localization signals

A nuclear localization signal (NLS) is a short amino-acid

sequence that mediates transport of nuclear proteins into the

nucleus of the cell. The classical NLS was first discovered in

the simian virus 40 (SV40) T-antigen and consisted of a

string of seven basic amino-acid residues (PKKKRKV)

(159). The discovery of the bipartite NLSs soon followed.

The bipartite NLSs comprise two strings of basic amino acid

residues separated by a short intervening sequence (reviewed

in (160)). These classical NLSs bind the adaptor protein Kapa,

which forms a heterodimer with Kapb1, which in turn medi-

ates nuclear import (161).

In addition to the previous examples, many of the proteins

imported into the nucleus do not utilize such an adaptor but rather

bind directly to a Kapb. These proteins contain a more complex

and diverse set of NLS sequences. In humans ten distinct import

Kapbs carry a diverse set of macromolecular substrates into the

nucleus, and each Kapb appears to bind distinct sets of substrates

(162). The very large sequence diversity among various

substrates together with a limited number of substrates that

have been identified for most import Kapbs has so far prevented

identification of NLSs for most Kapbs.

A recent study for import by one of the karyopherins,

Kapb2, led to three rules for this protein’s NLS recognition: 1.

NLSs are structurally disordered in free substrates; 2. they have

overall basic character; and 3. they contain a set of consensus

sequences (163). Application of these three rules was used to

first computationally identify and then to biochemically con-

firm NLSs in seven known Kapb2 substrates (163). Further-

more, 81 new candidate import substrates for Kapb2 were

predicted, and five of them were confirmed to bind Kapb2

through the predicted NLS. This example demonstrates how

disorder predictions aided in understanding the mechanism of

substrate recognition by Kapb2 and supports our thesis that the

combination of disorder prediction and biophysical experi-

ments to confirm the disorder provides a new avenue for the

understanding of regulation, signaling and control.

IDPs in apicomplexan parasite proteomes

Malaria, being present in areas where ;40% of the world’s

population lives and causing up to 2.7 million deaths each

year, remains a major and growing threat to the public health

(164). Malaria is caused by infection with the apicomplexan

parasite Plasmodium falciparum, the sequencing of which has

been completed recently (165). The abundance of IDPs in P.

falciparum and several apicomplexan parasites, together with

the variation in the IDP content associated with four stages of

the life cycle of P. falciparum were analyzed using the

DisEMBL predictor (166). The apicomplexan species are

extremely enriched in proteins containing long disordered

regions. Furthermore, the disorder contents in mammalian

Plasmodium species were higher than in most other apicom-

plexan parasites. Finally, the proteome of the P. falciparum
sporozoite was shown to be distinct from the other life

cycle stages in having an even higher content of disordered

proteins (166).

ID in voltage-activated potassium channels

Voltage-activated potassium channels (known also as Kv

channels) are modular proteins composed of several domains

including a ball-and-chain inactivation domain, a tetrameri-

zation (T1) domain, membrane-spanning voltage-sensor and

pore domains, and an intracellular C-terminal segment. Kv are

allosteric pore-forming proteins that undergo conformational

transitions between closed and open states thus underlying

many fundamental biological processes (167–169). The

crucial role of ID and high conformational flexibility in the

functioning of a ball-and-chain inactivation domain was

recognized long ago (16). Specifically, a ‘‘ball’’ on the end of

a flexible (disordered) polypeptide ‘‘chain’’ was suggested to

plug the open channel, thereby converting the channel from

the open to the inactive state (170–175). Furthermore, the

length and flexibility of a disordered polypeptide ‘‘chain’’

were shown to be responsible for the control of the rate of

channel inactivation (174).

In addition to this well-established role of ID in the in-

activation/activation cycle of the Kv channels, the C-terminal

segments of Kv channels have been suggested recently to be

disordered as indicated by CH-plots and the FoldIndex

predictor. The ID at the C-terminus is suggested to enable K1

channel binding to scaffold proteins by means of an inter-

molecular, fishing rod-like mechanism (176).

ID and histones

The core (H2A, H2B, H3, H4) and linker (H1 family)

histones are the major protein components of chromatin

fibers (177,178). The nucleosome core particle represents the

elemental subunit in the hierarchy of DNA packaging in

chromatin. The eukaryotic core nucleosome contains eight

histone proteins, two dimers of H2A–H2B that serve as

molecular caps for the central (H3–H4)2 tetramer. The

sequence of a given type of histone is highly conserved from

yeast to mammals, but there is minimal sequence identity, at

the level of 4–6%, between the histone proteins (179). Linker

histones comprise a family of nucleosome-binding proteins

that stabilize condensed chromatin and regulate genome

function (177,180). The linker histones of most eukaryotes

have a very simple domain organization, consisting of a

central winged helix fold, a short N-terminal extension, and a
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long basic C-terminal domain, which is ;100 residues in

length, enriched in K, A, and P, and unstructured in aqueous

solution (181). Simple bioinformatics analysis using CH-

plots and FoldIndex predictor revealed that bovine core

histones H2A, H2B, H3, and H4 are also significantly

enriched in intrinsic disorder. This prediction was corrobo-

rated by subsequent experimental analysis showing that the

bovine core histones are natively unfolded proteins in

solutions with low ionic strength due to their high net

positive charge at pH 7.5 (182). The N-terminal ‘‘tail’’

domains (NTDs) of the core histones and the C-terminal tail

domain (CTD) of linker histones are intrinsically disordered,

and this property likely facilitates their binding to many

different macromolecular partners in chromatin (183).

ID and hub proteins

The crucial role of intrinsic disorder for the function of several

individual hub proteins (i.e., proteins with a high degree of

connectivity) with known disordered regions was recently

reviewed (16,47,184). Furthermore, recent systematic compu-

tational analysis of proteins with various numbers of interacting

partners from four eukaryotic organisms (C. elegans, S.
cerevisiae, D. melanogaster, and H. sapiens) revealed that

for all four studied organisms, hub proteins, defined as those

that interact with $10 partners, were significantly more

disordered than end proteins, defined as those that interact

with just one partner (185). A study by Ekman et al. reports a

similar finding in which the difference between hubs and

nonhubs is created predominantly by the date hubs (as opposed

to the party hubs), thus suggesting the importance of ID in

transient binding (186). Two other recent studies indicate that

ID is an important property for enabling hub proteins to interact

with many partners (187,188). These various results provide

strong support for the hypothesis that ID represents a distinctive

and common characteristic of hub proteins, likely serving as an

important determinant of protein interactivity.

ID in serine/arginine-rich splicing factors

In a recent study (189) a disorder predictor was used to

estimate the disorder content of proteins involved in RNA

splicing. Serine/arginine-rich (SR) splicing factors are essen-

tial for both constitutive and alternative splicing of pre-

mRNAs. These proteins have modular organization, consist-

ing of RNA recognition motifs (RRMs), located on their N-

terminus, and an arginine-serine-rich (RS) domain, located on

the C-terminus. Both domains have a broad binding speci-

ficity, e.g., they are involved in numerous protein-protein and

protein-RNA interactions. The previous structural knowledge

about SR proteins has been limited to only RRM domains.

The application of the disorder predictor showed that the

members of this protein family belong to a class of intrin-

sically disordered proteins. The amino acid composition and

sequence complexity of SR proteins are very similar to those

of disordered protein regions. Furthermore, the RS domains

and the Gly-rich regions of these splicing factors are predicted

to be completely disordered, whereas RRM domains are

predicted to be ordered in agreement with previous structural

studies. The disorder of RS domains may play an important

role in several functions of SR proteins such as binding to

multiple partners (proteins and RNA), in mediating interac-

tions of spliceosome components during the assembly pro-

cess, and in facilitating post-translational modifications that

are abundant in the RS domains.

Intrinsic disorder of 14-3-3 proteins partners

The application of various disorder predictors with the aim of

gaining biologically important insights is reflected in yet

another recent study (190). The authors discovered that the

distinctive feature of seemingly unrelated binding partners of

the 14-3-3 proteins is high disorder content. Based on the

results from three different disorder predictors (VL3H,

VLXT, and DISOPRED2), .90% of 14-3-3 binding partners

were indicated to contain disordered regions. Since almost all

14-3-3 proteins bind to a specific phosphoserine/phospho-

threonine-containing peptide motif within their targets, the

analysis also demonstrated that the binding sites of 14-3-3

proteins were located inside disordered regions. Also, the

structures of two peptides bound to 14-3-3 exhibit extended

backbones with their backbone hydrogen bonds largely

formed by interactions with the side chains of 14-3-3 but

with slightly different hydrogen bonding patterns for the two

different peptides (191). These structures are entirely consis-

tent with the peptides being unfolded before binding to 14-3-

3. Thus, the mode of interaction between 14-3-3 proteins and

their targets is proposed to involve disorder-to-order transi-

tion upon binding (190).

ID and transcription factors

Transcription factors (TFs) regulate the activation of transcrip-

tion via the recognition of specific DNA sequences coupled

with the recruitment and assembly of the transcription

machinery. This implies that both protein-DNA and protein-

protein recognition play key roles in TF function. Available

experimental data points to a central role of ID in the function of

TFs (192). For example, it has been reported that protein-

protein and protein-DNA interactions are typically accompa-

nied by a local folding of TF molecules (192). Furthermore, the

high degree of backbone mobility of the lac repressor was

shown to facilitate its association with nonspecific DNA,

whereas the binding to specific DNA was accompanied by a

considerable decrease in the backbone mobility (193). In

addition to these instances, several other well-characterized

examples of the individual ID proteins involved in transcrip-

tional regulation have been described in the literature

(184,194). The overwhelming prevalence of ID in TFs was

been recently established using a set of ID predictors (195).

This analysis revealed that .90% of transcription factors might

possess extended regions of ID. Furthermore, the analysis of ID
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distribution in different TFs and their domains revealed that

the eukaryotic TFs are essentially more enriched in ID and

a-MoRFs that prokaryotic TFs. Interestingly, the AT-hooks

and basic regions of TF DNA-binding domains where pre-

dicted to be highly disordered, whereas the degree of disorder

in transactivation regions was even higher (195).

The abundance of ID in TF has been further confirmed by

the detailed comparison of the human transcriptional regula-

tion factors (including activators, repressors, and enhancer-

binding factors) with their prokaryotic counterparts (196).

These comparison revealed that human and prokaryotic TFs

are different in at least two respects: the average TF sequence

in human is more than twice as long as that in prokaryotes,

whereas the fraction of sequence aligned to domains of known

structure in human TFs (31%) is ,½ of that in bacterial TFs

(72%). Furthermore, it has been established that ID regions

occupy a high fraction of sequence in the eukaryotic TFs, but

not in prokaryotes (196). This suggests that the efficiency of

the well-developed gene transcription machinery of eukary-

otes relies to a significant degree on the TF flexibility.

Similar analyses have been applied to numerous other

proteins. For example, the disorder predictions aided in struc-

tural and/or functional characterization of the retinal tetraspa-

nin (197), nicotinic acetylcholine receptor (198), DBE (199),

proapoptotic BH domain-containing family of proteins (200),

transcriptional corepressor CtBP (201), colicin E9 (202),

troponin I (203), secA (204), Notch signaling pathway proteins

(205) and many others.

CONCLUSIONS

In the last 10–15 years, the field of intrinsically disordered

proteins has transitioned from its infancy into an important

and dynamic field of protein science. As summarized in

previous sections, this field has grown rapidly in part due to a

potent synergy between experimental and computational

techniques. Although the importance of intrinsically disor-

dered proteins is established and will continue to grow,

especially in the fields of evolution and drug design, it is yet

to reach the textbook level and ultimate recognition. Indeed,

current biochemistry textbooks ignore disordered proteins

(206), and in our view, this omission has serious conse-

quences, leading to a significant retardation in the under-

standing of protein structure/function relationships.

A common characteristic of these disordered regions is that

functions are often carried out by a few localized residues

within the disordered regions. Independent of the biophysical,

structure-based work described herein, there has been a

substantial body of work in which functional motifs are

determined sequence analysis and molecular biology exper-

iments without biophysical structural characterization. Indeed

servers exist for using sequence comparisons to find such

functional motifs (127,208). The discovered function-asso-

ciated motifs are often short sequences, which are called

eukaryotic linear motifs (ELMs) by one research group (127),

and these function-associated motifs resemble in many ways

the functional regions found to reside within long ID regions.

The PEST (157) and NLS (163) examples discussed above

suggest a possible correlation between ID and the functional

motifs found by sequence analysis. Indeed, we anticipate that

functional ELMs and other functional motifs will usually map

to regions of disorder, whereas the same sequence motifs that

are found to be nonfunctional in some proteins will likely map

to regions of structure. Clearly, examining functional motifs

with disorder prediction followed by systematic biophysical

studies to determine the order-disorder status of the various

functional motifs should be carried out.

When looking into the future, some questions regarding the

computational techniques become legitimate. What is the

future of the prediction of intrinsic disorder? Has disorder

prediction reached its maximum accuracy or can prediction

accuracy still be improved? Our internal experiments indicate

that sequence-based prediction of intrinsically disordered

regions is indeed nearing its upper limit of ;85–90% (A.

Mohan and P. Radivojac, unpublished data). To reach this

limit, however, high quality data and possibly even novel

computational methods will be required. For example,

exploiting other types of data such as text (for use in text

mining), interaction data, expression patterns, or functional

annotation could certainly lead to even higher accuracy of

prediction. In addition, methods based on first-principles may

start gaining importance as computational power grows in the

future. For example, methods such as SnapDRAGON (207),

used in prediction of protein domains, are expected to play an

important role. Indeed, models for predicting both structural

and dynamic properties of proteins together with predictions

of interactions with partners are ambitious goals currently

being actively pursued. Prediction of disorder is likely to be an

important piece for achieving these goals.
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