
Software

CAFA-evaluator: a Python tool for benchmarking
ontological classification methods
Damiano Piovesan 1,�, Davide Zago2, Parnal Joshi 2,3, M. Clara De Paolis Kaluza4,
Mahta Mehdiabadi1, Rashika Ramola4, Alexander Miguel Monzon 5, Walter Reade6,
Iddo Friedberg 3, Predrag Radivojac 4, Silvio C.E. Tosatto 1

1Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
2Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, United States
3Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
4Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
5Department of Information Engineering, University of Padova, 35121 Padova, Italy
6Kaggle, San Francisco, CA, United States
�Corresponding author. Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35121 Padova, Italy. E-mail: damiano.piovesan@unipd.it
Associate Editor: Cecilia Arighi

Abstract
We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchi
cal concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed
acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small
number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function
Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accu
racy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software.
Availability and implementation: https://pypi.org/project/cafaeval

1 Introduction
Translating experimental data into biological knowledge
remains a slow process despite the rapid accumulation of data
in modern biology. Manually curated databases are the primary
source of such knowledge due to their thorough standardiza
tion of integrated information, often organized into ontological
annotations (The Gene Ontology Consortium 2019). The auto
mated prediction of ontological annotations has become widely
adopted in knowledge bases. As a result, ensuring a reliable
evaluation of the predicted information remains crucial.

The Critical Assessment of protein Function Annotation
(CAFA) initiative provides a well-defined framework for
managing hierarchical data and independently evaluates
Gene Ontology (GO) prediction methods (Radivojac et al.
2013, Jiang et al. 2016, Zhou et al. 2019). Since its first edi
tion, the CAFA experiment has stimulated a number of theo
retical studies about GO prediction and its evaluation (Clark
and Radivojac 2013, Peng et al. 2018).

Despite the significant impact of CAFA, the development
of novel function prediction methods suffers from the lack of
an easy-to-use tool for internal benchmarking. Existing solu
tions are problematic due to missing documentation, hamper
ing their maintenance, portability, development, and use by
the scientific community. Moreover, these solutions are tai
lored specifically for GO terms and the CAFA challenge, in
corporating numerous hard-coded parameters.

The CAFA-evaluator package addresses these issues by be
ing easy to use and maintain, fully documented, fast, and ge
neric. It can be used with any type of ontology and
annotation, and the dataset processing is entirely separated
from the evaluation stage. Additionally, the input format is
straightforward. The software has been tested against
CAFA2 and CAFA3 data, replicating the exact results pro
vided in their corresponding publications (Jiang et al. 2016,
Zhou et al. 2019). CAFA-evaluator has been recently
adopted as the official evaluation tool for the CAFA5 chal
lenge hosted on Kaggle.

The CAFA-evaluator software is open source and freely
available for download from GitHub and PyPI. The GitHub
repository also includes a detailed Wiki section that offers a
comprehensive explanation of the algorithm. This Wiki pro
vides valuable insights into the software and offers concrete
examples that demonstrate the impact of selecting different
parameters during the final evaluation. It serves as a valuable
resource for understanding the software and its functionality.

2 Implementation
The CAFA-evaluator repository includes a Python library
and a user-friendly command-line interface for generating all
evaluations and a Python notebook for plotting the results.
The evaluation module calculates the F-measure, weighted

Received: November 20, 2023; Revised: February 2, 2024; Editorial Decision: March 6, 2024; Accepted: March 12, 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2024, 00, vbae043
https://doi.org/10.1093/bioadv/vbae043
Advance Access Publication Date: 14 March 2024
Application Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/4/1/vbae043/7628618 by guest on 08 April 2024

https://orcid.org/0000-0001-8210-2390
https://orcid.org/0000-0001-6689-3858
https://orcid.org/0000-0003-0362-8218
https://orcid.org/0000-0002-1789-8000
https://orcid.org/0000-0002-6769-0793
https://orcid.org/0000-0003-4525-7793
https://pypi.org/project/cafaeval

F-measure, and semantic distance (S-score), as well as precision–
recall and remaining uncertainty–misinformation curves, as de
scribed in Jiang et al. (2016). The package requires only three
standard Python libraries: Numpy, Pandas, and Matplotlib,
with the latter being necessary only for generating plots.

2.1 Input and calculation
The CAFA-evaluator workflow is shown in Fig. 1. The soft
ware requires three inputs: an ontology OBO file, a ground
truth file, and the path to the folder containing the prediction
file(s). Optionally, it also accepts an information accretion
file, which triggers the generation of weighted measures such
as weighted precision, recall, F-measure, and S-score.

All input files undergo internal parsing, and predictions are
filtered to include only those targets present in the ground
truth and those terms that are part of the input ontology.
When terms are associated with a “namespace,” also called
“aspect” or “sub-ontology,” different namespaces are treated
as independent ontologies, and both the ground truth and
predictions are split accordingly. Namespaces with multiple
roots are managed without problems and it is possible to ex
clude root terms from the evaluation.

The algorithm stores three sparse matrices in memory: the
ontology graph as an adjacency matrix, a Boolean n � m ma
trix, where n is the number of targets and m is the number of
ontology terms, representing the ground truth, and a matrix
of the same size (or smaller if some targets are missing) in
cluding the prediction scores. Multiple prediction files, each
corresponding to a different method, are processed one by
one to release the memory associated with the third matrix.

Both the predictions and the ground truth annotations are
always propagated up to the ontology root(s). By default,
however, prediction scores are propagated without overwrit
ing parents’ scores, as in CAFA. Optionally, the maximum
score over all direct children terms can be propagated to their
common parent term. The ontology graph is topologically
sorted at the parsing time, allowing the propagation to be cal
culated in linear time, solely depending on the size of the

ontology, which is always the same for all prediction files and
is loaded in memory at the beginning.

Confusion matrices are calculated per target and per
threshold, i.e. separately by considering predicted terms with
a score above the threshold. By default, 100 evenly spaced
cutoffs in the range [0–1) are considered, but more cutoffs
can be set by the user; e.g. to capture all unique score predic
tions for a method. Calculation time depends on the number
of threshold cutoffs. The software is parallelized so that
blocks of thresholds can be calculated in different threads.

The tool incorporates both macro- and micro-averaging
techniques. The macro-averaging approach follows the tradi
tional CAFA method, where metrics are calculated individually
for each target (confusion matrix) and then averaged across all
targets. Conversely, the micro-averaging approach involves av
eraging the confusion matrices over the number of targets be
fore calculating the metrics. These two approaches provide
different perspectives on the evaluation process and offer a
comprehensive analysis of the software’s performance.

Additionally, the user can decide whether to normalize
considering all ground truth targets, i.e. penalizing methods
with low coverage, or considering only the predicted targets.
By default, the program normalizes the recall by the number
of ground truth targets and the precision by the number of
predicted targets, as in CAFA.

When the information accretion file is provided, the confu
sion matrix is calculated after the terms are weighted by their
information accretion. This approach avoids returning the
simple count as in the confusion matrix when calculating the
graph intersection. Other options control the inclusion or ex
clusion of root (orphan) terms from the evaluation and limit
the number of processed terms per protein and namespace.
The latter is particularly useful when prediction methods in
clude a large number of predicted terms per target and when
the number of targets is large. In any case, the number of con
sidered terms does not affect the computation or memory us
age. More information about the impact of the parameters, a
detailed workflow of the algorithm along with explanatory

Figure 1. CAFA-evaluator workflow. Gray boxes represent input files, while yellow boxes represent output files. Optional input files are outlined with a
dashed line. Internal data structures are depicted as matrices and vectors, with example values provided. Arrows indicate logical processes, often
corresponding to code functions. At the end of the workflow, image files are generated using a Jupyter Notebook (plot.ipynb), which takes the output of
the CAFA-evaluator library as input.

2 Piovesan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/4/1/vbae043/7628618 by guest on 08 April 2024

examples are provided in the Wiki of the CAFA-evaluator
GitHub repository.

2.2 Output
The CAFA-evaluator software generates multiple output
objects, including a table with an evaluation row for each
method, namespace, and threshold. It also generates an ob
ject for F-measure, S-score, and weighted F-measure, report
ing the rows with the corresponding best performance. The
software also includes a function to store the output into tab
ular files. Finally, it streams basic execution information,
such as timestamps and statistics about the number of proc
essed targets and terms.

The evaluation output table can be used as input for the
Python notebook to generate curve plots. The notebook
accepts an optional file with the name of the team associated
with each prediction file. When this information is provided,
only one prediction per team and ontology is selected, as in
CAFA. Additionally, prediction files can be associated with a
different name, which will be displayed in the plots.

3 Summary
The CAFA-evaluator software is an easy-to-use, generic, and
well-documented tool designed for benchmarking function
prediction methods using any type of ontology and annota
tion. It requires an ontology OBO file, a ground truth file, a
prediction file, and can optionally accept an information ac
cretion file. The software uses internal parsing to filter predic
tions and generate multiple output files, including a table
with an evaluation row for each method, namespace, and
threshold, as well as separate files for F-measure, S-score, and
weighted F-measure. The software has been tested against
CAFA2 and CAFA3 data and has been adopted as the official
evaluation tool for the CAFA5 challenge hosted on Kaggle.

Author contributions
Damiano Piovesan (Conceptualization [lead], Funding acquisi
tion [lead], Methodology [lead], Software [lead], Supervision
[lead], Validation [lead], Writing—original draft [lead],
Writing—review & editing [lead]), Davide Zago (Investigation
[equal], Methodology [equal], Software [equal], Validation
[equal]), Parnal Joshi (Methodology [supporting], Software
[supporting]), M. Clara De Paolis Kaluza (Investigation [sup
porting], Validation [supporting]), Mahta Mehdiabadi
(Software [supporting], Validation [supporting]), Rashika
Ramola (Software [supporting], Validation [supporting]),

Alexander Miguel Monzon (Investigation [supporting],
Validation [supporting]), Walter Reade (Investigation [support
ing], Validation [equal], Writing—review & editing [support
ing]), Iddo Friedberg (Investigation [equal], Methodology
[equal], Writing—review & editing [equal]), Predrag Radivojac
(Investigation [equal], Methodology [equal], Validation [equal],
Writing—original draft [equal], Writing—review & editing
[equal]), and Silvio C.E. Tosatto (Methodology [supporting],
Validation [supporting])

Conflict of interest
None declared.

Funding
This publication was partially based upon work from COST
Action ML4NGP (CA21160), supported by COST
(European Cooperation in Science and Technology). This
work was supported by the European Union through
ELIXIR, the research infrastructure for life-science data.
NextGenerationEU, PNRR project ELIXIRxNextGenIT
(IR0000010) and National Center for Gene Therapy and
Drugs based on RNA Technology (CN00000041). Italian
Ministry of Education and Research through the
NextGenerationEU fund PRIN 2022 project: PLANS
(2022W93FTW). Funding for open access charge: University
of Padova.

References
Clark WT, Radivojac P. Information-theoretic evaluation of predicted

ontological annotations. Bioinformatics 2013;29:i53–61.
Jiang Y, Oron TR, Clark WT et al. An expanded evaluation of protein

function prediction methods shows an improvement in accuracy.
Genome Biol 2016;17:184.

Peng Y, Jiang Y, Radivojac P et al. Enumerating consistent sub-graphs
of directed acyclic graphs: an insight into biomedical ontologies.
Bioinformatics 2018;34:i313–22.

Radivojac P, Clark WT, Oron TR et al. A large-scale evaluation of com
putational protein function prediction. Nat Methods 2013;
10:221–7.

The Gene Ontology Consortium. The Gene Ontology Resource: 20
years and still GOing strong. Nucleic Acid Res 2019;47:D330–8.

Zhou N, Jiang Y, Bergquist TR et al. The CAFA challenge reports im
proved protein function prediction and new functional annotations
for hundreds of genes through experimental screens. Genome Biol
2019;20:244.

CAFA-evaluator 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/4/1/vbae043/7628618 by guest on 08 April 2024

	Active Content List
	1 Introduction
	2 Implementation
	3 Summary
	Author contributions
	Conflict of interest
	Funding
	References

