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A Derivation of constraint set B

Let rC, rJ1
and rI1 be the proportaion of the top scores with missing second score that come from C, J1

and I1, respectively, where, for X ∈ X = {C, J1, I1}, rX > 0 and
∑

X rX = 1. The proportion of top
scores coming from X and having a second score is wX − rXvΦ. The proportion of observed second scores
coming from Y (Y ∈ Y = {C, J1, I1, J2, J1}) among all observed and missing second scores is (1 − vΦ)vY.
Uptading the contraint set A by replacing all occurances of wX and vY by wX − rXvΦ and (1 − vΦ)vY
we get an updated constraint set based only on the spectrum where both the scores are available. For
example, wC ≤ vJ1

+ vI1 is replaced by wC − rCvΦ ≤ (1 − vΦ)(vJ1
+ vI1) and vC ≤ wJ1

+ wI1 is replaced
by (1 − vΦ)vC ≤ wJ1 + wI1 − (rJ1 + rI1)vΦ. Since rX is an unknown quantity, we further modify the new
constraints by using rX = 1 (rX = 0) when it appears on the left (right) hand side, since it minimizes
(maximizes) wX−rXvΦ, making the constraints looser and valid wihtout any assumptions on the ditribution
of top scores with missing second score. The two contraints in the example above get transformed to
wC − vΦ ≤ (1− vΦ)(vJ1

+ vI1) and (1− vΦ)vC ≤ wJ1
+ wI1 . All the constraints modified in this manner are

given as constraint set B with v′Y = (1− vΦ)vY.

B Monotonicity of the ECM algorithm and the binary search

The ECM algorithm based component parameter updates are derived by optimizing the Q(ζ|ζ̄) one param-
eter at a time. When optimizing Q(ζ|ζ̄) w.r.t. component Y parameters, θY = {µY,∆Y,ΓY}, the other
components’ parameters and the weight parameters in ζ can be ignored as they appear in additive terms,
constant w.r.t. θY. However, note that all parameters in the current parameter set ζ̄ still play a role in com-
ponent Y parameter updates. In effect optimizing the Q-function w.r.t. component Y parameters reduces
to the optimization of Q(µY,∆Y,ΓY|ζ̄) as defined below. For Y ∈ {C, J1, I1},

Q(µY,∆Y,ΓY|ζ̄) = −
1

2

∑
s1∈S1

ω̄X(s1)

(
log ΓY +

(s1 − µY)
2 − 2ξ1(s1, ζ̄)(s1 − µY)∆Y + ξ2(s1, ζ̄)(∆

2
Y + ΓY)

ΓY

)

− 1

2

∑
s2∈S2

ν̄Y(s2)

(
log ΓY +

(s2 − µY)
2 − 2ξ1(s2, ζ̄)(s2 − µY)∆Y + ξ2(s2, ζ̄)(∆

2
Y + ΓY)

ΓY

)
.

And for Y ∈ {J2, I2},

Q(µY,∆Y,ΓY|ζ̄) = −
1

2

∑
s2∈S2

ν̄Y(s2)

(
log ΓY +

(s2 − µY)
2 − 2ξ1(s2, ζ̄)(s2 − µY)∆Y + ξ2(s2, ζ̄)(∆

2
Y + ΓY)

ΓY

)
.

The new parameters µ̈Y, ∆̈Y and Γ̈Y from the ECM parameter update equations are obtained as the unique
stationary points (where the first derivative is 0) of Q(µY, ∆̄Y, Γ̄Y|ζ̄), Q(µ̈Y,∆Y, Γ̄Y|ζ̄) and Q(µ̈Y, ∆̈Y,ΓY|ζ̄)
as a single variable function of µY,∆Y and ΓY, respectively.
Q(µY, ∆̄Y, Γ̄Y|ζ̄) and Q(µ̈Y,∆Y, Γ̄Y|ζ̄) as functions µY and ∆Y, respectively, are concave, since their

second derivatives are not positive everywhere. Consequently, µ̈Y and ∆̈Y are the global maximizers.
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Now Q(µ̈Y, ∆̈Y,ΓY|ζ̄) is not a concave function of ΓY, however, it can be expressed as a difference of two
convex functions as follows.

Q(µ̈Y, ∆̈Y,ΓY|ζ̄) = −
1

2

∑
s1∈S1

ω̄X(s1)

(
log ΓY +

(s1 − µ̈Y)
2 − 2ξ1(s1, ζ̄)(s1 − µ̈Y)∆̈Y + ξ2(s1, ζ̄)(∆̈

2
Y + ΓY)

ΓY

)

− 1

2

∑
s2∈S2

ν̄Y(s2)

(
log ΓY +

(s2 − µ̈Y)
2 − 2ξ1(s2, ζ̄)(s2 − µ̈Y)∆̈Y + ξ2(s2, ζ̄)(∆̈

2
Y + ΓY)

ΓY

)

=
1

2

(∑
s1∈S1

ω̄X(s1) +
∑
s2∈S2

ν̄Y(s2)

)(
log 1/ΓY − Γ̈Y/ΓY

)
+ constant.

In the equation above g(ΓY) = Γ̈Y/ΓY and h(ΓY) = log 1/ΓY are convex functions, since their second derivatives
are non-negative everywhere. Now based on Definition 2.2.2 in [1], the ϵ-subdifferential of g and h at Γ̈Y is
given by

∂ϵg(Γ̈Y) =


(
−∞,− 1

ΓY
+ ϵ

(ΓY−Γ̈Y)

]
when ΓY ≥ Γ̈Y[

− 1
ΓY

+ ϵ

(ΓY−Γ̈Y)
,∞
)

when ΓY < Γ̈Y

∂ϵh(Γ̈Y) =


(
−∞,

log(Γ̈Y/ΓY)
(ΓY−Γ̈Y)

+ ϵ

(ΓY−Γ̈Y)

]
when ΓY ≥ Γ̈Y[

log(Γ̈Y/ΓY)
(ΓY−Γ̈Y)

+ ϵ

(ΓY−Γ̈Y)
,∞
)

when ΓY < Γ̈Y

Now since log
(
Γ̈Y/ΓY

)
≤ Γ̈Y

ΓY
− 1,

log
(
Γ̈Y/ΓY

)
ΓY − Γ̈Y

≤ − 1

ΓY
when ΓY ≥ Γ̈Y

log
(
Γ̈Y/ΓY

)
ΓY − Γ̈Y

≥ − 1

ΓY
when ΓY < Γ̈Y.

Thus ∂ϵh(Γ̈Y) ⊆ ∂ϵg(Γ̈Y) and, consequently from Theorem 2.3.1 in [1], g(ΓY)−h(ΓY) has a global minimizer
at Γ̈Y. It follows that h(ΓY)− g(ΓY) and conseqently Q(µ̈Y, ∆̈Y,ΓY|ζ̄), has a global maximizer at Γ̈Y.

Since µ̈Y, ∆̈Y and Γ̈Y are global maximizers of Q(µY, ∆̄Y, Γ̄Y|ζ̄), Q(µ̈Y,∆Y, Γ̄Y|ζ̄) and Q(µ̈Y, ∆̈Y,ΓY|ζ̄),
respectively,

Q(µ̄Y, ∆̄Y, Γ̄Y|ζ̄) ≤ Q(µ̈Y, ∆̄Y, Γ̄Y|ζ̄)
≤ Q(µ̈Y, ∆̈Y, Γ̄Y|ζ̄)
≤ Q(µ̈Y, ∆̈Y, Γ̈Y|ζ̄).

Thus the new component parameters from the ECM updates increase (precisely, do not decrease) the value
of the Q-function at each iteration.

The monotonicity of the Q-function can be similarly established for the parameter updates from the
binary search. Q(µY, ∆̄Y, Γ̄Y|ζ̄), Q(µ̈Y,∆Y, Γ̄Y|ζ̄) and Q(µ̈Y, ∆̈Y,ΓY|ζ̄) each have a unique stationary point
(where the first derivative is 0), µ̈Y, ∆̈Y and Γ̈Y, respectively, which is the global maximizer. Furthermore,
they do not have any singular points (where the first derivative is undefined), except for Q(µ̈Y, ∆̈Y,ΓY|ζ̄) at
ΓY = 0, which is an endpoint. Thus none of them have a local minimum and an absolute minimum only exists
at the endpoints. It follows that the three functions are unimodal with µ̈Y, ∆̈Y and Γ̈Y giving the modes.
Thus any point on the line connecting µ̄Y to µ̈Y, ∆̄Y to ∆̈Y and Γ̄Y to Γ̈Y would not decrease the value of the
corresponding Q-function. Precisely, in case of µY, binary search finds a feasible µ̂Y on the line connecting
µ̄Y and µ̈Y = argmaxµY

Q(µY, ∆̄Y, Γ̄Y|ζ̄). Thus Q(µ̄Y, ∆̄Y, Γ̄Y|ζ̄) ≤ Q(µ̂Y, ∆̄Y, Γ̄Y|ζ̄). Now to update ∆Y,

binary search finds a feasible ∆̂Y on the line connecting ∆̄Y and ∆̈Y = argmax∆Y
Q(µ̂Y,∆Y, Γ̄Y|ζ̄). Thus
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Q(µ̂Y, ∆̄Y, Γ̄Y|ζ̄) ≤ Q(µ̂Y, ∆̂Y, Γ̄Y|ζ̄). Finally, to update ΓY, binary search finds a feasible Γ̂Y on the line
connecting Γ̄Y and Γ̈Y = argmaxΓY

Q(µ̂Y, ∆̂Y,ΓY|ζ̄). Thus Q(µ̂Y, ∆̂Y, Γ̄Y|ζ̄) ≤ Q(µ̂Y, ∆̂Y, Γ̂Y|ζ̄). Thus, in

summary, Q(µ̄Y, ∆̄Y, Γ̄Y|ζ̄) ≤ Q(µ̂Y, ∆̂Y, Γ̂Y|ζ̄).

C Mode of SN distribution

The mode of SN(µ, σ, λ) is given by µ+σm0(λ), where m0(λ) =
√

2/πδ−(1−π/4)

(√
2/πδ

)3

1−(2/π)δ2 −
sign(λ)

2 exp(2π/|λ|)

D Evaluating a pairwise density constraint

To evaluate a pairwise density constraint, say fSN(·; θ1) ≻ fSN(·; θ2), first we compare their modes. If
mode(fSN(·; θ1)) ≤ mode(fSN(·; θ2)), then the constraint is not satisfied. If mode(fSN(·; θ1)) > mode(fSN(·; θ2)),
then we test the other two conditions. For a fast comparison, we generate a set, Sgrid, of 200 equally spaced
points between the maximum and minimum of the top scores to limit the number of points for density com-
parison. Then we test fSN(s; θ1) > fSN(s; θ2) (fSN(s; θ1) < fSN(s; θ2)) at all points s ∈ Sgrid that are above
(below) mode(fSN(·; θ1)) (mode(fSN(·; θ2))). If it is true, we consider the contraint as satisfied, otherwise it
is not satisfied.

E Binary search for density constraints

In Algorithm S1, the densityContraintsSatisfied(Y, αY, ζ̄) function is used to check if all pairwise con-
straints for component Y density would still be satified if one of its three parameters in ζ̄ is updated to a
new value αY. The pairwise density contraints are evaluated as described in Section D.

Algorithm S1 Binary search for density contraints.

Require: 1) Y ∈ Y: the component whose parameters are being updated, 2) α̈Y ∈
{
µ̈Y, ∆̈Y, Γ̈Y

}
: the new,

possibly infeasible, estimate of one of the three SN parameters of Y from the parameter update equations
in Section 4.3.2, and 3) ζ̄: the current feasible estimate of all parameters. ᾱY, the current estimate of
the same parameter as α̈Y, is contained in ζ̄.

Ensure: α̂Y: a feasible point on the line segment connecting ᾱY to α̈Y, as close to α̈Y as possible.
1: if densityContraintsSatisfied

(
Y, α̈Y, ζ̄

)
then

2: ▷ All density constraints for component Y are satisfied when α̈Y replaces the corresponding parameter
in ζ̄.

3: α̂Y ← α̈Y

4: else
5: while |α̈Y−ᾱY|

ᾱY
> 10−4 do

6: α̂Y ← ᾱY+α̈Y

2
7: if densityContraintsSatisfied

(
Y, α̂Y, ζ̄

)
then

8: ᾱY ← α̂Y

9: else
10: α̈Y ← α̂Y

11: end if
12: end while
13: α̂Y ← ᾱY

14: end if
15: return α̂Y

Note that if the current parameter, ᾱ, is feasible, the binary search is guaranteed to give a feasible solution
as it can find a value arbitrarily close to ᾱ. Consequently, if the the first set of parameters are feasible, the
approach is guaranteed to give a feasible solution at each iteration.
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F One-sample Model Update Rules

Below are the update rules for the parameters of the component skew normal distribution.

wY =

∑
s1∈S1 ω̄Y(s1)

|S1|

µ̈Y =

∑
s1∈S1 ω̄Y(s1)m̄Y

(
s1, ∆̄Y

)∑
s1∈S1 ω̄Y(s1)

,

∆̈Y =

∑
s1∈S1 ω̄Y(s1)d̄Y(s1, µ̈Y)∑
s1∈S1 ω̄Y(s1)ξ2(s1, θ̄Y)

,

Γ̈Y =

∑
s1∈S1 ω̄Y(s1)ḡY

(
s1, µ̈Y, ∆̈Y

)
∑

s1∈S1 ω̄Y(s1)
,

G Code Availability

https://github.com/shawn-peng/xlms

Search time w/ decoys Search time w/o decoys Model run time Target database size

ALott 35 h 13 m 10.0 s 20 h 22 m 12.0 s 6 m 40.7 s 4
Alinden 192 h 10 m 52.0 s 70 h 6 m 5.0 s 8 m 17.6 s 79
CPSF 2 h 0 m 4.0 s 37 m 5.3 s 6 m 5.2 s 28
D1810 18 m 34.4 s 10 m 9.3 s 3 m 49.8 s 10
MS2000225 21 m 1.4 s 7 m 19.7 s 4 m 6.6 s 5
QE 8 m 15.2 s 5 m 14.5 s 4 m 18.1 s 2
RPA 1 h 37 m 57.3 s 25 m 26.7 s 3 m 30.3 s 480
Alban 25 m 20.3 s 7 m 48.8 s 5 m 43.3 s 20
Ecoli 37 m 26.5 s 12 m 16.1 s 11 m 0.1 s 56
Peplib 3 m 41.9 s 2 m 15.3 s 4 m 3.4 s 9

Table S1: Comparison of running time for the database search and the 2SMix model. The 2SMix run time is
reported as an average per restart. The experiments were exectued on AMD EPYC 7452 32-Core Processor
@ 2.345 GHz with 251GB RAM for single thread time.
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self-links cross-links loop-links mono-links total self-links ratio

ALott 7998 20500 659 3758 24917 0.32
Alinden 1277 2406 423 2647 5476 0.23
CPSF 414 633 126 804 1563 0.26
D1810 7 8 1 61 70 0.10
MS2000225 248 410 20 407 837 0.30
QE 0 0 0 1 1 0.00
RPA 0 16 9 57 82 0.00
Alban 84 197 21 142 360 0.23
Ecoli 112 168 28 617 813 0.14
Peplib 1662 1663 0 858 2521 0.66

Table S2: Counts of PSMs of each cross-linking type. Self-links are pairs of peptides that come from the
same protein. Cross-links are pairs of peptides that come from the same protein or from different proteins.
The total is the sum of cross-links, loop-links and mono-links. The self-links ratio is self-links/total.
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Figure S1: 1SMix and 2SMix model fits. 1SMix and 2SMix are the 1-sample and 2-sample mixture model
respectively. The top two rows show the 2SMix fit on the top scores and the second scores. The third row
shows 1SMix fit on the top scores. The empirical distributions of the top scores and the second scores are
shown as histograms. The component densities estimated by the models are displayed. Each component
density is weighted by its estimated mixture weight. The vertical solid line shows the 1% FDR threshold given
by the mixture model, while the vertical dashed line shows the 1% FDR threshold by TDA for comparison.
The average log-likelihood of the fitted model is shown in the upper right corner. For 2SMix the log-likelihood
is computed separately for the top scores and the second scores.

6



160

170

180

190

200

210

1%
 F

DR
 T

hr
es

ho
ld

ALott
TDA
1SMix
2SMix

180
190
200
210
220
230
240

Alinden

180

190

200

210

220

1%
 F

DR
 T

hr
es

ho
ld

CPSF

110

120

130

140

150

D1810

130

140

150

160

170

180

190

1%
 F

DR
 T

hr
es

ho
ld

MS2000225

140

160

180

200

QE

180

200

220

240

260

1%
 F

DR
 T

hr
es

ho
ld

RPA

160

170

180

190

200

210

Alban

TDA 1SMix 2SMix

180

190

200

210

1%
 F

DR
 T

hr
es

ho
ld

Ecoli

TDA 1SMix 2SMix

180

200

220

240

260

280

Peplib

Figure S2: Stability of the 1% FDR threshold estimation. The stability of the methods was compared using
50 bootstrap samples, on which the 1% FDR thresholds were estimated. The larger spread of a boxplot
indicates lower stability. Bootstrapping was performed on the set of original spectra.
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Figure S3: Stability of PSM identification. The stability of the methods was compared using 50 bootstrap
samples, on which the number of PSMs scoring above 1% FDR threshold were counted. The larger spread
of a boxplot indicates lower stability. Bootstrapping was performed on the set of original spectra.
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Figure S4: The number of identified PSMs as a function of FDR by 2SMix, 1SMix and TDA.
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Figure S5: Comparison of PSMs identified by 2SMix and TDA at 1% FDR. PSMs identified by both 2SMix
and TDA are in brown. Those identified by 2SMix, but not by TDA, are in green. Those identified by TDA,
but not by 2SMix, are in pink.
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Figure S6: Second scores are not missing at random. The blue histogram is for the top scores from all
spectra and the orange histogram is for the top scores whose spectra do not have a second hit. The second
scores are not missing at random, since the top scores have a larger mass to the left.
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