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Abstract
Motivation: Cross-linking tandem mass spectrometry (XL-MS/MS) is an established analytical platform used to determine distance constraints 
between residues within a protein or from physically interacting proteins, thus improving our understanding of protein structure and function. To 
aid biological discovery with XL-MS/MS, it is essential that pairs of chemically linked peptides be accurately identified, a process that requires: 
(i) database search, that creates a ranked list of candidate peptide pairs for each experimental spectrum and (ii) false discovery rate (FDR) estima-
tion, that determines the probability of a false match in a group of top-ranked peptide pairs with scores above a given threshold. Currently, the only 
available FDR estimation mechanism in XL-MS/MS is the target-decoy approach (TDA). However, despite its simplicity, TDA has both theoretical 
and practical limitations that impact the estimation accuracy and increase run time over potential decoy-free approaches (DFAs).
Results: We introduce a novel decoy-free framework for FDR estimation in XL-MS/MS. Our approach relies on multi-sample mixtures of skew 
normal distributions, where the latent components correspond to the scores of correct peptide pairs (both peptides identified correctly), partially 
incorrect peptide pairs (one peptide identified correctly, the other incorrectly), and incorrect peptide pairs (both peptides identified incorrectly). 
To learn these components, we exploit the score distributions of first- and second-ranked peptide-spectrum matches for each experimental 
spectrum and subsequently estimate FDR using a novel expectation-maximization algorithm with constraints. We evaluate the method on ten 
datasets and provide evidence that the proposed DFA is theoretically sound and a viable alternative to TDA owing to its good performance in 
terms of accuracy, variance of estimation, and run time.
Availability and implementation: https://github.com/shawn-peng/xlms

1 Introduction
Cross-linking mass spectrometry (XL-MS) proteomics has 
emerged as a key technique in molecular and structural biology, 
particularly for an exploration of protein assemblies and pro-
tein–protein interactions under native cellular conditions (Sinz 
2003, 2006, Yu and Huang 2018, Piersimoni et al. 2021). In a 
typical experiment, a chemical reagent (linker) capable of form-
ing covalent bonds with side chains of specific residues (e.g. ly-
sine) on each end, is first introduced to the protein mixture. 
The sample is then digested and processed using liquid chroma-
tography (LC) coupled with tandem mass spectrometry (MS/ 
MS) to identify pairs of inter- or intra-protein cross-linked pep-
tides. Since the chemically linked residues must be located 
within the distance of the spacer arm of the linker (e.g. 10– 
30Å), the experiment provides a set of distance constraints that 
can be key to resolving protein structure and interaction sites, 
often in combination with other techniques (Rappsilber 2011, 
Piersimoni et al. 2021). However, XL-MS also offers distinct 
advantages including the rapid interrogation of protein iso-
forms, post-translationally modified proteins, membrane pro-
teins, and disordered proteins (Piersimoni et al. 2021). The 
digestion step in XL-MS/MS further removes restrictions on the 
protein size, localization, or conformational landscape, al-
though the dynamic range of modern analytical instrumenta-
tion still limits the studies to relatively abundant proteoforms.

Despite its promise, XL-MS/MS has not fully matured and 
a number of challenges remain (Piersimoni et al. 2021). One 

key challenge is related to the data processing pipelines, par-
ticularly the computational and statistical difficulties associ-
ated with the identification and quantification of cross-linked 
peptides (Yang et al. 2012). XL-MS/MS peptide identifica-
tion follows a similar workflow to the traditional MS/MS 
(Steen and Mann 2004). The first step is database search 
(Yates et al. 1995, Perkins et al. 1999, Kim and Pevzner 
2014, Kong et al. 2017), where the experimental spectra 
from the instrument are searched against a database of theo-
retical spectra of peptides (peptide pairs in XL-MS/MS) 
whose mass (sum of masses, including the linker), is within 
the instrument’s tolerance of the measured mass. This produ-
ces a ranked list of peptides (peptide pairs) for each experi-
mental spectrum, or peptide-spectrum matches (PSMs), with 
only the top-ranked PSM eligible for downstream identifica-
tion if its score is sufficiently large. The second step is a pro-
cedure devised to control the error rate of identifications 
(Storey 2002, Choi and Nesvizhskii 2008, Aggarwal and 
Yadav 2016, Burger 2018), with the objective of determining 
the threshold above which all top PSMs will be considered 
identified with the false discovery rate (FDR) below a prede-
termined value, e.g. FDRà 1%.

In XL-MS/MS, both steps add complexity to the traditional 
pipeline. For example, an XL-MS/MS search engine must 
scan a database of peptide pairs instead of single peptides 
(Rinner et al. 2008, Hoopmann et al. 2015, Ji et al. 2016, 
Netz et al. 2020), thus increasing the run time (quadratically) 
and the competition for each experimental spectrum. 
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Similarly, FDR control is more difficult in part because the 
incorrect identifications include PSMs where both peptides in 
a pair are incorrectly identified and also PSMs where one 
peptide is correctly identified and the other is not 
(Walzthoeni et al. 2012). Depending on the fragmentation 
patterns and the search engine, these so-called partially incor-
rect identifications can have relatively high scores. Overall, 
the increased search space and the complexity of error con-
trol both contribute to the smaller fraction of identified spec-
tra compared to the traditional MS/MS, for the same 
estimated FDR (Piersimoni et al. 2021).

To control for FDR, traditional MS/MS platforms rely on 
both target-decoy (TDA) and decoy-free (DFA) approaches, 
with TDAs being the preferred option. TDAs typically search a 
database of peptides that are potentially present in the sample 
(target sequences) together with an equal-sized set of peptides 
that cannot be present in the sample (decoy sequences; often 
reversed target sequences). The high-scoring decoy PSMs are 
then used to estimate the number of false target identifications 
(Elias and Gygi 2007, Jeong et al. 2012). In contrast, DFAs 
typically fit two-component mixture models to the distribution 
of top PSM scores, where one of the latent components corre-
sponds to the correct and the other to incorrect identifications. 
The expectation-maximization (EM) algorithm is then used to 
resolve the component distributions using parametric families 
such as Gaussian, gamma, or skew normal (SN) (Keller et al. 
2002, Li 2008, Peng et al. 2020). In contrast, TDA is an exclu-
sive error control mechanism in XL-MS/MS (Walzthoeni et al. 
2012) and the absence of DFAs may be due to the fact that the 
set of top-ranked PSM scores cannot be easily modeled using 
parametric two-component mixtures, especially the heteroge-
neous distribution of incorrect PSMs.

Despite their simplicity and prevalence in a standard work-
flow, TDAs exhibit important theoretical and practical limi-
tations (K�all et al. 2008a,b, Gupta et al. 2011, Cooper 2011, 
2012, He et al. 2015, Danilova et al. 2019, Peng et al. 2020). 
Theoretically, FDR estimates can be >1, and likewise, the 
strategy of competing target with decoy peptides for the 
available experimental spectra is problematic and may lead 
to biased estimates. Practically, the search time for TDA is in-
creased, it cannot be applied to de novo searches (Dancik 
et al. 1999, Frank and Pevzner 2005), it shows high-variance 
of the score cutoffs at low FDR (Peng et al. 2020), and the es-
timation is inaccurate for the samples with low amounts of 
biological material (Li et al. 2015, Budnik et al. 2018, Peng 
et al. 2020). The problems with run-time are further ampli-
fied in XL-MS/MS, quadrupling the search times over those 
that could be achieved with DFAs.

To address these problems, this study introduces a novel 
DFA for FDR estimation in XL-MS/MS. We exploit the score 
distributions of top-ranked and second-ranked PSMs, and 
model them as five-component mixtures (with shared param-
eters) from the SN family. We then devise a multi-sample EM 
algorithm with constraints to resolve the latent components. 
Our results show that this method holds promise for enhanc-
ing the accuracy and reliability of XL-MS/MS studies and is 
an attractive alternative to TDAs.

2 Background
2.1 Terminology and notation
Let X à fxig be a set of spectra collected from a mass spec-
trometer and P à fÖpα;pβÜjg a set of candidate pairs of 

(sorted) peptides. A search engine produces a set of triplets 
Öx; Öpα; pβÜ; sÜ 2 X ×P ×R, where s is the score assigned to 
the PSM Öx; Öpα;pβÜÜ. The higher the score, the more likely 
that the spectrum x was generated from Öpα;pβÜ.

Let now x be generated from an unknown peptide pair 
Öqα;qβÜ and let ÖÖx; Öpα; pβÜ1; s1Ü; Öx; Öpα;pβÜ2; s2Ü; . . .Ü be a 
ranked list of PSMs from a search engine for x such that 
s1 ≥ s2 ≥ and so on. A PSM Öx; Öpα;pβÜÜ for which Öpα;pβÜ à
Öqα;qβÜ is called the correct match. If only one of the peptides 
matches the ground truth, we refer to these as partially incor-
rect matches, whereas all other PSMs involving x are called 
incorrect matches. Furthermore, given the ranked list of 
PSMs, the PSM with the highest score, Öx; Öpα;pβÜ1Ü, is called 
the top-ranked or first PSM, Öx; Öpα;pβÜ2Ü is called the 
second-ranked or second PSM, etc. We similarly distinguish 
between partially incorrect and incorrect PSMs.

An MS/MS analysis pipeline looks at top-ranked PSMs and 
determines a threshold τ such that the pair of peptides 
Öpα;pβÜ from each top hit Öx; Öpα;pβÜÜ is considered identified 
when the score s from Öx; Öpα;pβÜ; sÜ satisfies s ≥ τ. If, further, 
Öpα;pβÜ à Öqα;qβÜ, it is considered to be the correct identifica-
tion. The threshold τ must be established to satisfy a desired 
estimated FDR for the biological study.

2.2 Skew normal distributions
Azzalini (1985) introduced the SN family of distributions as 
a generalization of the normal family that allows for skew-
ness. It has a location (μ), a scale (σ), and a shape (λ) parame-
ter, where λ controls for skewness. The distribution is right 
skewed when λ>0, left skewed when λ<0, and reduces to a 
normal distribution when λ à 0. The probability density 
function (pdf) of a random variable S ⇠ SNÖμ; σ; λÜ is 
given by 

f Ös; μ; σ; λÜ à 2
σ ϕ s − μ

σ

✓ ◆
Φ λÖs − μÜ

σ

✓ ◆
; s 2 R;

where μ; λ 2 R, σ 2 Rá, ϕ, and Φ are the pdf and the cumula-
tive distribution function (cdf) of NÖ0; 1Ü, respectively. 
Alternatively, SN family can be parameterized by Δ and Γ 
(Table 1), instead of λ and σ. The alternate parametrization 
naturally arises in the following stochastic representation of a 
SN random variable (Henze 1986) 

S ⇠ SNÖμ; σ; λÜ) Sàd μáΔTáΓ1=2U; (1) 

where T ⇠ TNáÖ0; 1Ü, the standard normal distribution is 
truncated below 0; U ⇠ NÖ0;1Ü; àd reads as “equal in distri-
bution”. The stochastic representation is exploited in devel-
oping EM algorithms for maximum likelihood estimation of 
SN distributions and their mixtures (Lin et al. 2007, 
Lin 2009).

Table 1. Relationship between the alternate and canonical 
SN parameters.

Alternate parametrization Related
Canonical ! alternate Alternate ! canonical Quantities

Δ à σδ  

Γ à σ2−Δ2

λ à signÖΔÜ
ÅÅÅÅÅÅÅÅÅÅÅÅ
Δ2=Γ

p

σ à
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
ΓáΔ2
p

δ à λÅÅÅÅÅÅÅÅ
1áλ2
p
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2.3 Target-decoy FDR estimation
In a TDA, the spectra X are searched against a concatenated 
database of target and decoy sequences. To estimate the FDR 
at a threshold τ, Walzthoeni et al. (2012) derived the follow-
ing expression 

FDRÖτÜ àest TDÖτÜ− DDÖτÜ
TTÖτÜ ;

where TTÖτÜ is the number of (top) PSMs matched to target 
sequences for both peptides, TDÖτÜ is the number of PSMs 
with exactly one peptide matched to decoy sequences, and 
DDÖτÜ is the number of PSMs with both peptides matched to 
decoy sequences.

3 Data and database search
We downloaded ten XL-MS/MS datasets from the 
PRoteomics IDEntifications (PRIDE) database (Perez-Riverol 
et al. 2022), as shown in Table 2. The data were downloaded 
as raw spectra. We used ProteoWizard to convert the raw 
spectra into peaks files in the .mzML format. After the peaks 
were identified, we used OpenPepXL (Netz et al. 2020) to 
run a search for each file against the protein sequence data-
base as described in the original paper. For each file, we ran 
two searches, one with decoy sequences for TDA experiments 
and another without decoy sequences for DFA experiments. 
To run a TDA search, we concatenated the original database 
with reversed protein sequences. The search parameters for 
each dataset were also identical to those in the origi-
nal papers.

After the search was completed, we extracted the scores for 
the top two PSMs corresponding to each experimental spec-
trum. If a spectrum only matched one candidate peptide pair, 
we marked the second score as missing. If the top two candi-
dates for one spectrum had the same peptides but differed on 
the position of cross-linked residues, we retained only the top 
one and promoted the third scoring peptide pair, if available, 
to the second position.

4 Methods
4.1 Approach
To estimate the FDR in an XL-MS/MS search, we build on 
our mixture approach for the traditional LC-MS/MS search 
(Peng et al. 2020). The proposed method uses a mixture of 
SN distributions to model the PSM scores not only for the 

top hits but also for the second hits to improve the estimation 
of the latent components.

Let S1 and S2 be random variables giving the top and sec-
ond PSM scores for a spectrum, respectively, where S1 and S2 
could be coming from a correct match (the two chains 
matched to the correct peptide pair), partially incorrect 
match (only one chain matched to the correct peptide) and an 
incorrect match (both chains matched to incorrect peptides). 
We define C as the random variable giving the score corre-
sponding to the correct match; J1 and J2 as those for the high-
est- and second-highest-scoring partially incorrect matches, 
respectively; I1 and I2 as those for highest- and second- 
highest-scoring incorrect matches, respectively. Note that S1 
and S2 are observed in the data, whereas C, J1, J2, I1, and I2 
are not observed (latent). Our approach for FDR estimation 
relies on modeling S1 and S2 as mixtures of C, J1, J2, I1, and 
I2 as latent components, and fitting the data to uncover their 
distributions. As justified by our experimental results, incor-
porating the second score has advantages over a model based 
on the top score only. We model each latent variable using a 
SN distribution, i.e. C ⇠ SNÖθCÜ, J1 ⇠ SNÖθJ1

Ü, J2 ⇠ SNÖθJ2
Ü, 

I1 ⇠ SNÖθI1Ü, and I2 ⇠ SNÖθI2Ü, where θY à ÖμY; σY; λYÜ con-
tains the SN parameters, for Y 2 Y à fC; J1; J2; I1; I2g.

We next describe our model and estimation algorithm fo-
cusing on the approach that uses both top- and second- 
ranked PSMs. In Section 5, however, we evaluate this algo-
rithm against a one-sample model that only relies on the top- 
ranked PSMs and TDA.

4.2 Two-sample statistical model
We model S1 as a mixture distribution of SNÖθCÜ, SNÖθJ1

Ü, 
and SNÖθI1Ü as components, since the top score can only 
come from the correct match (C), top-scoring partially incor-
rect match (J1), or the top-scoring incorrect match (I1). Now, 
S2 may also come from C (when S1 6à C), J1 (when S1 6à J1), 
and I1 (when S1 6à I1). However, it can alternatively come 
from J2 (when S1 à J1 and J2 is greater than C; I1 and I2) or 
I2 (when S1 à I1 and I2 is greater than C; J1 and J2). Hence, 
we model it as a mixture of SNÖθCÜ, SNÖθJ1

Ü, SNÖθJ2
Ü, 

SNÖθI1Ü, and SNÖθI2Ü. Formally, 

S1 ⇠ wCSNÖθCÜáwJ1
SNÖθJ1

ÜáwI1SNÖθI1Ü;
S2 ⇠ vCSNÖθCÜá vJ1

SNÖθJ1
Üá vJ2

SNÖθJ2
Ü

á vI1 SNÖθI1Üá vI2 SNÖθI2Ü;

where wX >0 and 
P

X wX à 1 for X 2 fC; J1; I1g and vX > 0 
and 

P
X vX à 1 for X 2 fC; J1; J2; I1; I2g give the mixing pro-

portions (weights) of the components within the mixtures. 
The sharing of SNÖθCÜ, SNÖθJ1

Ü, and SNÖθI1Ü between the two 

Table 2. Summary of datasets and search parameters used in this study.

Name PRIDE ID Organism Cross-linker Precursor tolerance Fragment tolerance Number of spectra

ALott PXD032037 H. sapiens DSS 10 ppm 20 ppm 505791
Alinden PXD031985 H. sapiens BS3 20 ppm 20 ppm 301826
CPSF PXD031242 H. sapiens DSS 10 ppm 20 ppm 198385
D1810 PXD013470 A. thaliana DSS 10 ppm 20 ppm 360259
MS2000225 PXD022119 H. sapiens BS3 10 ppm 20 ppm 53918
QE PXD014738 C. thermophilum DSS 10 ppm 50 ppm 187039
RPA PXD028637 S. cerevisiae BS3 5 ppm 5 ppm 8826
Alban PXD033409 H. sapiens DSS 10 ppm 20 ppm 31659
Ecoli PXD003381 E. coli DEST 5 ppm 5 ppm 277748
Peplib PXD014337 S. pyogenes DSS 10 ppm 20 ppm 98070

All datasets are available from PRIDE (Perez-Riverol et al. 2022).
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mixtures allows incorporating information from both scores 
to learn the parameters θC, θJ1

, and θI1 . The additional com-
ponents, SNÖθJ2

Ü and SNÖθI2Ü, in the second mixture and the 
differing mixing proportions allow capturing the distribu-
tional differences between S1 and S2.

4.3 Constraints
In addition to the mixture formulation with parameter shar-
ing, we incorporate inequality constraints on the mixing pro-
portions (weights) that naturally emerge due to the latent 
structure between the top two scores. Additionally, we incor-
porate intuitive constraints between the density functions of 
the latent variables.

4.3.1 Weight constraints
Due to the nature of the relationship between the top two 
scores from the same spectra, they cannot come from the 
same component. Furthermore, the second score can be J2 or 
I2 only if the top score comes from J1 or I1, respectively. 
These observations lead to several inequality constraints be-
tween the mixing proportions. For example, when the top 
score comes from C, the second score has to come from I1 or 
J1 and cannot be I2 or J2 because they are lower than I1 and 
J1, respectively. This implies that the proportion of C in the 
top score is upper bounded by the sum of the proportions of 
J1 and I1 in the second score, i.e. wC ≤ vI1 á vJ1

. The con-
straint set A below was derived in this manner. 

Constraint set A
wC ≤ vJ1

á vI1

wJ1
≤ vCá vJ2

á vI1

wI1 ≤ vCá vJ1
á vI2

vC ≤ wJ1
áwI1

vJ1
≤ wCáwI1

vI1 ≤ wCáwJ1

vJ2
≤ wJ1

vI2 ≤ wI1

Constraint set B
wC ≤ v0J1

á v0I1
á vΦ

wJ1
≤ v0Cá v0J2

á v0I1
á vΦ

wI1 ≤ v0Cá v0J1
á v0I2

á vΦ

v0C ≤ wJ1
áwI1

v0J1
≤ wCáwI1

v0I1
≤ wCáwJ1

v0J2
≤ wJ1

v0I2
≤ wI1 ; v0Y à Ö1 − vΦÜvY 

In our implementation, we modify the constraint set A to 
account for the cases where the search gives only a single 
match for a spectrum; i.e. when the second score is missing. 
We, however, observed that the second scores are not missing 
at random. Missing second scores occur preferentially at the 
left tail of the top-score distribution; see Supplementary 
materials. Due to non-random missingness of the second 
score, the constraint set A becomes invalid. To address this is-
sue, we derive the constraint set B which gives a set of valid 
constraints, irrespective of the non-random nature of the 
missing second scores (derivation in Supplementary materi-
als). The constraints explicitly incorporate the proportion of 
the spectra with missing second scores, vΦ, as a constant. All 
second-score mixing proportions are scaled and included as 
v0Y à Ö1 − vΦÜvY; 8Y 2 Y, for brevity. We will incorporate the 
constraint set B in our algorithm.

4.3.2 Density constraints
In addition to the constraints between mixing proportions, we 
also enforced constraints between the density functions of the 
components in a pairwise manner. Since the correct scores have 
higher values than partially incorrect scores on average, we ex-
pect the mode of the C density to be higher than that of J1. We 
similarly expect C (J1) to have a higher density at any given point 

in its right (left) tail compared to J1 (C); we also expect such rela-
tionships between other pairs of densities such as C and I1, J1 
and I1, J1 and J2 and I1 and I2. We formalize such constraints 
between a pair of densities, f and g, using a strict partial order 
f � g (f dominates g) defined by the following constraints 

modeÖf Ü>modeÖgÜ
f ÖxÜ> gÖxÜ; 8x>modeÖf Ü
gÖxÜ> f ÖxÜ; 8x<modeÖgÜ;

where modeÖf Ü à argmaxxf ÖxÜ is the mode of density f. We 
enforce the following pairwise constraints in our approach 

fC � fJ1
; fJ1

� fJ2
; fJ2

� fI1 ; fI1 � fI2 :

Due to transitivity of the strict partial order, the following or-
dering of the densities holds: fC � fJ1

� fJ2
� fI1 � fI2 :

4.4 Algorithm
We derive an EM algorithm-based maximum likelihood estima-
tion with several weight and density constraints to capture the 
structure inherent to XL-MS/MS data. To enforce the weight 
constraints we convert the so-called Q-function in the maximi-
zation step of the EM algorithm into a Lagrangian function 
with additional terms and parameters for the constraints. The 
density constraints are enforced in each step by performing a bi-
nary search between the old and the new parameters.

4.4.1 Derivation of the Q-function
We first write the log-likelihood function for the model as 

LÖfÜ à
P

s12S1 log
⇣P

X2X wXfSNÖs1; θXÜ
⌘

á
X

s22S2

log
⇣X

Y2Y
vYfSNÖs2; θYÜ

⌘
;

(2) 

where X à fC; J1; I1g and Y à fC; J1; J2; I1; I2g. Variable f à
ffwXgX2X; fvYgY2Y; fθYgY2Yg contains all model parameters. 
Next, we introduce the hidden variables for the EM framework. 
Let fWXÖs1ÜgX2X and fVYÖs2ÜgY2Y be two sets of binary varia-
bles giving the source component for s1 and s2, respectively. If s1 
(s2) comes from component X (Y), WXÖs1Ü à 1 (VYÖs2Ü à 1), 
otherwise WXÖs1Ü à 0 (VYÖs2Ü à 0). Each score, given its com-
ponent affiliation, is an SN variable and consequently has an as-
sociated TNáÖ0; 1Ü variable from its stochastic representation 
(Section 2.2), one for each component it may come from. Let 
fTXÖs1ÜgX2X and fTYÖs2ÜgY2Y be the set of such TNáÖ0; 1Ü
variables for s1 and s2, respectively. Omitting s1 and s2 as argu-
ments of WXÖs1Ü;VYÖs2Ü;TXÖs1Ü and TYÖs2Ü, the complete data 
log-likelihood up to an additive constant in f is given by 

LcmpÖfÜ à
X

s12S1

X

X2X
WX log wX − qÖs1;TX;T2

X; θXÜ
2

✓ ◆

á
X

s22S2

X

Y2Y
VY log vY − qÖs2;TY;T2

Y; θYÜ
2

✓ ◆
;

where qÖs; t; τ; θÜ à log Γá Ös − μÜ2 − 2Ös − μÜΔtáÖΔ2 áΓÜτ
Γ . The 

Q-function for the EM algorithm is defined as the conditional 
expectation of LcmpÖfÜ given the observed data (S1;S2), com-
puted using the current estimate of the parameters, f. The hid-
den variables fWXÖs1ÜgX2X, fVYÖs2ÜgY2Y, fTXÖs1ÜgX2X, and 
fTYÖs2ÜgY2Y are the random quantities in LcmpÖfÜ. Thus, the 
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expectation is taken with respect to their conditional distribu-
tion given S1 and S2. The current parameters, f, are only used 
for taking the expectation and they do not replace the parame-
ters in the expression for LcmpÖfÜ. Consequently, the Q-function 
is a function of both f and f. It is given by 

QÖfjfÜ à
X

s12S1

X

X2X
ωXÖs1Ü log wX − QÖs1; θX; θXÜ

2

✓ ◆

á
X

s22S2

X

Y2Y
νYÖs2Ü log vY − QÖs2; θY; θYÜ

2

✓ ◆
;

where QÖs; θ; θÜ à qÖs; ξ1Ös; θÜ; ξ2Ös; θÜ; θÜ; ξ1Ös; θÜ and ξ2Ös; θÜ
are the first and second moments of a truncated normal distri-
bution, respectively, as defined in Table 3; ωXÖs1Ü (νXÖs2Ü) is 
the probability that s1 (s2) comes from X (Y) under the cur-
rent parameters (Table 3). The EM approach relies on finding 
new parameters, �f, at each iteration, that increase the Q-func-
tion, i.e. QÖ�fjfÜ≥QÖfjfÜ, to indirectly increase the log- 
likelihood (Equation 2).

4.4.2 Component parameter updates
To update the component parameters fθYgY2Y, we adopt the 
Expectation Conditional Maximization (ECM) approach of 
optimizing QÖfjfÜ one parameter at a time, as it leads to sim-
pler closed-form update equations without compromising the 
monotonicity of the Q-function and the log-likelihood (Meng 
and Rubin 1993); see Supplementary materials. Taking the 
partial derivative of QÖfjfÜ with respect to μY;ΔY and ΓY and 
equating them to 0, gives update equations below. 
For Y 2 fC; J1; I1g, 

�μY à

X

s12S1

ωYÖs1ÜmYÖs1;ΔYÜá
X

s22S2

νYÖs2ÜmYÖs2;ΔYÜ
X

s12S1

ωYÖs1Üá
X

s22S2

νYÖs2Ü

�ΔY à

X

s12S1
ωYÖs1ÜdYÖs1; �μYÜá

X

s22S2
νYÖs2ÜdYÖs2; �μYÜ

X

s12S1

ωYÖs1Üξ2Ös1; θYÜá
X

s22S2

νYÖs2Üξ2Ös2; θYÜ

�ΓY à

X

s12S1
ωYÖs1ÜgYÖs1; �μY; �ΔYÜá

X

s22S2
νYÖs2ÜgYÖs2; �μY; �ΔYÜ

X

s12S1

ωYÖs1Üá
X

s22S2

νYÖs2Ü
;

where mYÖs;ΔÜ;dYÖs; μÜ and gYÖs; μ;ΔÜ are defined in  
Table 3. For Y 2 fJ2; I2g, 

�μY à
P

s22S2 νYÖs2ÜmYÖs2;ΔYÜP
s22S2 νYÖs2Ü

�ΔY à
P

s22S2 νYÖs2ÜdYÖs2; �μYÜP
s22S2 νYÖs2Üξ2Ös2; θYÜ

�ΓY à
P

s22S2 νYÖs2ÜgYÖs2; �μY; �ΔYÜP
s22S2 νYÖs2Ü

:

The new component parameters are guaranteed to not de-
crease the Q-function; see Supplementary materials. Note 

that for each component Y, its three parameters should be 
updated in the order, �μY ! �ΔY ! �ΓY, due to dependencies 
among the equations.

4.4.3 Pairwise density constraints
To enforce the pairwise density constraints we developed a 
binary search procedure (Supplementary materials) which 
is applied whenever a component density parameter 
(μY;ΔY or ΓY) is being updated with the new parameter 
from Section 4.4.2 as a candidate. Specifically, in case of 
μY, if the new parameter, �μY, violates a pairwise density 
constraint involving component Y, a binary search is per-
formed on the line segment connecting μY, and �μY to find a 
feasible point, μ̂Y (not violating the constraints), closest to 
�μY. A binary search is similarly performed when updating 
ΔY and ΓY. This approach is guaranteed to give feasible 
parameters at each iteration provided the first set of com-
ponent parameters are feasible; see Supplementary materi-
als and Section 4.4.5. The parameters obtained from the 
binary search are also guaranteed to not decrease the 
Q-function; see Supplementary materials. Pairwise density 
constraints are efficiently evaluated as described in 
Supplementary materials. Note that if �μY ( �ΔY) is not feasi-
ble, then the feasible μ̂Y (Δ̂Y), from the binary search, is 
used in the subsequent parameter updates of ΔY and ΓY in 
Section 4.4.2.

4.4.4 Weight updates under constraints
We update the weight parameters, fwXgX2X and fvYgY2Y, 
by optimizing QÖfjfÜ under the weight constraint set B and 
the standard mixture constraints, 

P
X2X wX à 1 and P

Y2Y vY à 1. Using the Karush–Kuhn–Tucker (KKT) ap-
proach for constrained optimization leads to the following 
Lagrangian objective. 

Table 3. Useful quantities for the parameter update equations.

ωXÖs1Ü à wXfSNÖs1 ;θXÜP
X2X

wXfSNÖs1 ;θXÜ

νYÖs2Ü à vYfSNÖs2 ;θYÜP
Y2Y

vYfSNÖs2 ;θYÜ

mYÖs;ΔÜ à s−ξ1Ös; θYÜΔ

dYÖs; μÜ à ξ1Ös; θYÜÖs−μÜ

gYÖs; μ;ΔÜ à Ös−μÜ2−2Δξ1Ös; θYÜÖs−μÜáΔ2ξ2Ös; θYÜ

For Ts ⇠ TNá α à δ
σ s−μÜ;ψ2 à 1−δ2Ü;
�⇣

ξ1Ös; θÜ à EâTsä à αáψ ϕ
Φ Öα=ψÜ

ξ2Ös; θÜ à EâT2
s ä à α2áψ2áαψ ϕ

Φ Öα=ψÜ

The quantities accented with have the current estimates of all parameters, 
contained in f, as an implicit argument. Component specific quantities are 
subscripted by the component placeholder X or Y. X 2 X à fC; J1; I1g and 
Y 2 Y à fC; J1; J2; I1; I2g. Parameters δ;Δ, and Γ are related to the 
canonical SN parameters σ and λ as per Table 1. TNáÖα;ψ2Ü represents 
truncated normal distribution truncated below 0; α and ψ2 are the location 
and scale parameters, respectively. E represents the expectation operator. 
ϕ
Φ α=ψÜÖ is the ratio of the pdf and the cdf of NÖ0;1Ü evaluated at α=ψ.
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OÖf; c; gÜ à QÖfjfÜá γ1Ö
P

X2XwX − 1Üá γ2Ö
P

Y2YvY − 1Ü
á η1ÖwJ1

áwI1 − v0CÜá η2ÖwCáwI1 − v0J1
Ü

á η3ÖwCáwJ1
− v0I1
Üá η4ÖwJ1

− v0J2
Ü

á η5ÖwI1 − v0I2
Üá η6Öv

0

J1
á v0I1

á vΦ − wCÜ
á η7Öv

0

Cá v0J2
á v0I1

á vΦ − wJ1
Ü

á η8Öv
0

Cá v0J1
á v0I2

á vΦ − wI1Ü;
(3) 

where v0Y à Ö1 − vΦÜvY; c à fγ1; γ2g and g à fηig
8
ià1 are the 

KKT multipliers for the equality and inequality constraints, 
respectively. The KKT conditions lead to the following 
equations. 

P
s12S1

ωCÖs1Ü
wC

á γ1á η2á η3 − η6 à 0

P
s12S1

ωJ1
Ös1Ü

wJ1

á γ1á η1á η3á η4 − η7 à 0

P
s12S1

ωI1Ös1Ü
wI1

á γ1á η1á η2á η5 − η8 à 0

P
s22S2

νCÖs2Ü
vC

á γ2 − η1á η7á η8 à 0

P
s22S2

νJ1
Ös2Ü

vJ1

á γ2 − η2á η6á η8 à 0

P
s22S2

νI1Ös2Ü
vI1

á γ2 − η3á η6á η7 à 0

P
s22S2

νJ2
Ös2Ü

vJ2

á γ2 − η4á η7 à 0

P
s22S2

νI2Ös2Ü
vI2

á γ2 − η5á η8 à 0

wCáwJ1
áwI1 à 1

vCá vJ1
á vJ2

á vI1 á vI2 à 1
η1ÖwJ1

áwI2 − v0CÜ à 0
η2ÖwCáwI2 − v0J1

Ü à 0
η3ÖwCáwJ1

− v0I2
Ü à 0

η4ÖwJ1
− v0J2
Ü à 0

η5ÖwI2 − v0I2
Ü à 0

η6Öv
0

J1
á v0I1

á vΦ − wCÜ à 0
η7Öv

0

Cá v0J2
á vI1 á vΦ − wJ1

Ü à 0
η8Öv

0

Cá v0J1
á vI2 á vΦ − wI1Ü à 0:

As per the KKT theory, the solution, â �w; �v;�c; �gä, to the 
above system of equations gives the optimum mixing propor-
tions, â �w; �vä, maximizing QÖfjfÜ and also satisfying the con-
straint set B and the standard mixing proportion constraints. 
Note that the last eight equations, arising from the inequality 
constraints, require special consideration. For example, 
η1ÖwJ1

áwI2 − v0CÜ à 0 implies that one of the two equations, 
η1 à 0 and wJ1

áwI2 − v0C à 0, are satisfied. η1 à 0 inacti-
vates v0C ≤ wJ1

áwI2 . It covers the case when the inequality 
v0C ≤ wJ1

áwI2 does not need to be enforced explicitly. The 
optimal feasible solution lies in the interior region of the in-
equality and already satisfies it. η1 6à 0 activates 
v0C à wJ1

áwI2 . It covers the case when the optimal feasible 
solution lies on the boundary of the inequality and conse-
quently, it is enforced as an equality constraint. A practical 
implementation would require first solving the equations 
with η1 à 0. If a feasible solution is obtained, it is optimal. If 
it violates the inequality, then the correct solution should lie 
on the boundary and consequently, wJ1

áwI2 − v0C à 0 is in-
cluded in the system of equations to be solved.

Since there are multiple inequality constraints, finding the 
optimal solution would require an exhaustive search by solv-
ing all possible systems of equations obtained by equating 
each subset of fηig

8
ià1 to 0. This would lead to 256 different 

systems of equations. This approach is prohibitively expen-
sive since the equations are solved in each iteration of the EM 
algorithm. As a practical solution, we adopt a greedy ap-
proach, where we first solve the system of equations without 
explicitly enforcing any inequality constraint, i.e. ηi à 0, 
i à 1; 2 . . . 8. If none of the inequality constraints are vio-
lated, it gives the optimal solution. If any inequality con-
straint is violated, we run the system of equations with each 
of the violated constraints as active, separately, i.e. a single η 
parameter is non-zero. If a feasible solution is found, it gives 
the optimal solution. If no feasible solution is found, we run 
the system of equations again with two violated inequality 
constraints as active; i.e. exactly two η parameters are non- 
zero. Proceeding in this manner, we next check 3;4; . . . ; 8 ac-
tive inequality constraints, if necessary. In all our experiments 
a feasible solution was obtained with a maximum of two ac-
tive inequality constraints. Note that due to the inequality 
constraints, the updated weight parameters are not guaran-
teed to maintain the monotonicity of the Q-function and the 
log-likelihood in each iteration. However, experimentally we 
still observe the log-likelihood to increase over multi-
ple iterations.

4.4.5 Parameter initialization
To generate a diverse set of initial parameters, we adopted a 
random initialization approach. First, a normal distribution 
is fitted to the top scores, with μ and σ being the fitted param-
eters. Then five points are sampled randomly from NÖμ; σÜ
and sorted. They are used to initialize the location parameters 
μC, μJ1

, μJ2
, μI1

, and μI2 
of the five SN components, assigned 

in that order. This approach makes it likely that the modes of 
the component densities follow the ordering described in 
Section 4.3.2. The scale parameter of the Y 2 Y component, 
σY, is uniformly picked from âσ=4; σä. To initialize the skew-
ness parameters, first, a λ0 2 f1; 2; 5g is picked. Then the ab-
solute value of component Y skewness parameter, λY, is 
uniformly picked from â1=λ0; λ0ä. The sign of the λC is initial-
ized to be positive. The sign of λJ2

; λI1 and λI2 is initialized to 
be negative. λJ1 

is assigned a positive value in one initializa-
tion and a negative value in another. In this manner, two ini-
tializations with identical parameters, except the sign of λJ1

, 
are obtained. If the initial parameters thus obtained violate 
the density constraints, they are discarded and resampled. 
Varying the value of λ0 in f1;2; 5g, six initializations are 
obtained. In each initialization, the mixing proportions 
wC;wJ1 

and wI1 are set equally to 1/3. vC is set to 0.001, since 
the second score is expected to have a small number of cor-
rect hits. vJ1

; vJ2
; vI1 , and vI2 are set equally to 0.999/4. Unlike 

the density constraints, it is not necessary for the initial 
parameters to satisfy the weight constraints.

We ran the above sampling procedure 40 times, resulting 
in 240 à 40 × 6 initilaizations. After running our algorithm 
once for each initializations, we pick the solution attaining 
the maximum log-likelihood (Equation 2) among them.

4.4.6 Single-sample model
We also considered a single-sample model that only incorpo-
rates the top score as a three component mixture, i.e. 
S1 ⇠ wCSNÖθCÜáwJ1

SNÖθJ1
ÜáwI1 SNÖθI1Ü. The weight 
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constraints are not applicable to this model. However, the 
density constraints fC � fJ1 

and fJ1
� fI1 are enforced. The pa-

rameter update equations for this model are given in 
Supplementary Materials. Similar parameter initialization ap-
proach and the same number of restarts as the two-sample 
model were used for a fair comparison.

4.4.7 FDR estimation
The FDR of the fitted mixture model, at a given threshold τ, 
can be estimated as 

FDRÖτÜ à
wI1 pÖI1 > τÜáwJ1

pÖJ1 > τÜ
pÖS1 > τÜ

àest wI1 SSNÖτ; θI1ÜáwJ1
SSNÖτ; θJ1

Ü
wCSSNÖτ; θCÜáwI1SSNÖτ; θI1ÜáwJ1

SSNÖτ; θJ1
Ü ;

where SSNÖτ; θÜ à 1 − FSNÖτ; θÜ is the SN distribution survival 
function; FSNÖτ; θÜ à Φ τ − μ

σ
� �

− 2O τ − μ
σ ; λ

� �
is the SN distribu-

tion cdf; Φ is the cdf of NÖ0; 1Ü and O is Owen’s T function, 
computed approximately (Young and Minder 1974).

5 Results
We carried out experiments on ten datasets (Table 2) and in-
vestigated the quality of fit, variance of estimation, and the 
number of identified peptides as a function of esti-
mated FDR.

5.1 Quality of modeling
The quality of fit is shown in Fig. 1 for five selected datasets; for 
all datasets, please refer to the Supplementary materials. In each 
case, the first two rows show the results of the two-sample 
model, i.e. joint modeling of the distributions of the top-ranked 
PSMs (blue histogram) and the second-ranked PSMs (green his-
togram). The third row shows the one-sample approach, i.e. 
when only the distribution of top-ranked PSMs is considered. 
Overall, the fit is excellent, indicating that the SN distribution 
was a reasonable choice for modeling competition between 

PSMs, which is a theoretically grounded result (Arellano-Valle 
et al. 2006).

Compared to the TDA, the two-sample model gives com-
petitive results. The 1% FDR threshold, shown by vertical 
lines in Fig. 1, is similar in four out of ten datasets (D1810, 
Peplib, RPA, QE). For other datasets, the two-sample 
method gives a different 1% FDR threshold, which is some-
times more permissive and other times more strict than the 
TDA threshold. By visual inspection and observation of some 
MS/MS spectra, we concluded that the two-sample solution 
may in fact be advantageous. The ALott dataset is an interest-
ing case as our model leads to a more permissive FDR estima-
tion. We have inspected multiple PSM identifications and 
concluded that the FDRà1% threshold may in fact be closer 
to the one estimated by our method because, at least in some 
cases, the experimental spectra appear to be mixtures of two 
different pairs of cross-linked peptides with very similar total 
masses. Other cases of high-scoring second PSMs appear to 
correspond to the top PSMs with even higher scores. This de-
pendency in the latter case cannot be easily modeled by the 
mixtures of distributions and is a limitation of our approach.

The one-sample model provides relatively good results, of-
ten with an even better log-likelihood than the two-sample 
model; however, the lack of the second sample in parameter 
learning leads to a considerable error in distribution place-
ment and, consequently, FDR estimation. One such example 
is the Alinden data where the 1% FDR threshold of 195 is 
lower than the TDA’s threshold of 230 and the two-sample 
model’s threshold of 247. This result is problematic because 
the tail area of the score distribution of the second-ranked 
PSMs (that this model is not considering) above 195 is quite 
large and cannot be attributed to the correct PSMs. 
Therefore, this model is clearly inferior to the two-sample 
model in its quality of fit.

We used constraints to control the relative placement of 
the component distributions. For example, the correct com-
ponent should take the rightmost part of the score distribu-
tion of the top-ranked PSMs as they should have higher mean 
values than incorrect or partially incorrect matches. 

Figure 1. The quality of the fit is visualized for five datasets (columns), with the remaining ones available in the Supplement. The data is shown as 
histograms, with blue representing top-ranked and green representing second-ranked PSM scores. The mixture components are plotted separately and 
each density is weighted by its mixture weight estimated by the model as described in Section 4. 1SMix and 2SMix are the one-sample and two-sample 
mixture models, respectively. The vertical solid line is showing the 1% FDR threshold given by the mixture model, while the vertical dashed line is 
showing the 1% FDR threshold given by TDA. The average log-likelihood of the fitted model on each sample is shown on the upper right corner. FDR 
curves are shown in blue with the y-axis and its scale shown on the right.
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Similarly, when both the top hits and second hits are partially 
incorrect, they should have a similar shape of the distribu-
tion. While this was not enforced by the constraints, we ob-
served that the first and second partially incorrect 
distributions indeed have similar shapes as well as that the 
second partially incorrect distribution had a lower mean than 
the first partially incorrect distribution.

5.2 Variance of the FDR threshold
We used fifty bootstrapping (Efron and Tibshirani 1986) 
experiments to study the variance of estimated 1% FDR 
thresholds (Fig. 2). In most cases the two-sample model gives 
a stable threshold, although TDA performs well on large 
datasets such as Alinden. This is expected and is the case 
when TDA assumptions are likely to be satisfied (Elias and 
Gygi 2007). The larger variance of the 1% FDR thresholds in 
the one-sample mixture suggests an identifiability issue, 
which is mitigated by incorporating the second sample and 
the weight constraints.

5.3 Spectral identifications
Figure 3 shows the number of identified PSMs as a function 
of estimated FDR thresholds. We first observe that our model 
generates smooth curves, which is desirable. In some cases, 
the two-sample model shows great agreement with the TDA 
suggesting that decoy data may not give any information that 
is not already incorporated by the DFA. Examples of such 
cases are Ecoli and D1810 datasets. Interestingly, however, 
the bootstrapping results on these datasets show increased 
stability of DFA and suggest that the DFA should be the pre-
ferred choice for such data.

6 Discussion
Accurate false discovery rate estimation is a key to biological 
discovery (Nesvizhskii 2010, Aggarwal and Yadav 2016) and 
is integral to protein identification methodology (Li and 
Radivojac 2012, Serang and Noble 2012) and protein 

function studies (Sinz 2003, 2006). However, the field is con-
fronted with computational and statistical challenges and the 
quality of methods is difficult to evaluate owing to the lack of 
the ground truth associated with experimental spectra.

To the best of our knowledge, this work is the first to pro-
pose a decoy-free FDR estimation in XL-MS/MS. We have ac-
complished this by modeling top-ranked and second-ranked 
PSM score distributions as multi-component mixtures of (la-
tent) SN distributions with shared parameters. We formulated 
the problem as a constrained maximum likelihood optimization 
and then derived an EM algorithm to learn model parameters 
from data. We extensively evaluated this method to show that 
the low-variance quality FDR estimation can be achieved with-
out decoy data. The proposed algorithm is a nontrivial generali-
zation of the multi-sample decoy-free approaches we developed 
for traditional MS/MS (Peng et al. 2020) although the use of 
multiple components to model incorrect PSM scores in XL-MS/ 
MS required constrained optimization and a far more complex 
solution. However, as before, modeling of the score distribution 
of the second-ranked PSMs has stabilized learning, and helped 
avoid target-decoy competition, leading to an accurate inference 
procedure with significant run-time savings. The reasoning be-
hind this algorithm can be further applied to other large search- 
space MS/MS scenarios, including de novo searches (Dancik 
et al. 1999), searches of semi-tryptic (Alves et al. 2008) and 
post-translationally modified (Fu 2012) peptides, as well as to 
metaproteomics searches (Heyer et al. 2017).
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Figure 2. Stability of the 1% FDR threshold estimation on selected 
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Figure 3. Identified PSMs on selected datasets at specific FDR levels.
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