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Abstract

Motivation: Accurate estimation of false discovery rate (FDR) of spectral identification is a central problem in mass
spectrometry-based proteomics. Over the past two decades, target-decoy approaches (TDAs) and decoy-free
approaches (DFAs) have been widely used to estimate FDR. TDAs use a database of decoy species to faithfully
model score distributions of incorrect peptide-spectrum matches (PSMs). DFAs, on the other hand, fit two-
component mixture models to learn the parameters of correct and incorrect PSM score distributions. While concep-
tually straightforward, both approaches lead to problems in practice, particularly in experiments that push instru-
mentation to the limit and generate low fragmentation-efficiency and low signal-to-noise-ratio spectra.
Results: We introduce a new decoy-free framework for FDR estimation that generalizes present DFAs while exploit-
ing more search data in a manner similar to TDAs. Our approach relies on multi-component mixtures, in which score
distributions corresponding to the correct PSMs, best incorrect PSMs and second-best incorrect PSMs are modeled
by the skew normal family. We derive EM algorithms to estimate parameters of these distributions from the scores
of best and second-best PSMs associated with each experimental spectrum. We evaluate our models on multiple
proteomics datasets and a HeLa cell digest case study consisting of more than a million spectra in total. We provide
evidence of improved performance over existing DFAs and improved stability and speed over TDAs without any per-
formance degradation. We propose that the new strategy has the potential to extend beyond peptide identification
and reduce the need for TDA on all analytical platforms.
Availabilityand implementation: https://github.com/shawn-peng/FDR-estimation.
Contact: predrag@northeastern.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A typical bottom-up proteomics pipeline consists of several experimen-
tal and computational steps, combined to interrogate the presence,
quantity, form and function of proteins in the biological mixture
(Aebersold and Mann, 2003; Choudhary and Mann, 2010; Gingras
et al., 2007; Steen and Mann, 2004). Central to all these challenges is
the task of accurately establishing the presence of peptide species in the
sample (Hubler et al., 2020; Kall et al., 2008b), a step that relies on
computational and statistical techniques to map spectra from the mass
spectrometer to peptide sequences and assign confidence scores to the
resulting peptide-spectrum matches (PSMs). Peptide identification is
often performed via a search algorithm, where experimental spectra are
scored against the theoretical spectra derived from a selected group of
candidate peptides (Kim and Pevzner, 2014; Kong et al., 2017; Perkins
et al., 1999; Tabb et al., 2007; Yates et al., 1995) or de novo, when
restricting the set of candidate peptides is problematic (Dancik et al.,
1999; Frank and Pevzner, 2005).

Despite methodological variability in practice, the core of any peptide
identification protocol is the scoring of PSMs that is intended to reflect
their likelihood of being correct assignments (Hubler et al., 2020; Li
et al., 2012). These schemes must meet both local and global require-
ments in that the ranking of PSMs for a given experimental spectrum
must prioritize the most likely peptide assignments and that the scoring of
those top-ranked PSMs over all experimental spectra must be calibrated
so that the global ranking of top-ranked PSMs is meaningful (Keich and
Noble, 2015). Well-performing search engines generally meet these
requirements, in which case the set of identified or accepted PSMs can be
reliably determined from the ranked list of top-scoring PSMs based on a
score threshold. The list of identified PSMs ideally contains a large frac-
tion of correct identifications (spectra matched to peptides they originated
from) and not more than a small fraction of incorrect identifications
(spectra matched to peptides they did not originate from).

False discovery rate (FDR) is defined as the expected proportion
of incorrect identifications among reported identifications (Burger,
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2018; Choi and Nesvizhskii, 2008; Storey, 2002). Over the past two
decades, two major approaches for estimating FDR have emerged;
i.e. target-decoy approaches (TDAs) and decoy-free approaches
(DFAs). Target-decoy techniques search both the set of peptides pos-
sibly present in the sample (target database) and a set of peptides
that are not in the sample (decoy database), where the role of the
decoy database is to faithfully model the score distribution of incor-
rect top-scoring PSMs from the target database and thus facilitate
FDR estimation (Elias and Gygi, 2007). TDAs differ in the construc-
tion of decoy sequences and search strategies such as separately or
combined with target sequences (Jeong et al., 2012). Decoy-free
techniques, on the other hand, search only the target database and
fit a generative two-component model to the set of scores corre-
sponding to all top-scoring PSMs. The two-component model the
correct and incorrect score distributions, typically using some com-
bination of Gaussian, Gumbel and Gamma distributions. For ex-
ample, Keller et al. (2002) model the score distribution of the
correct top PSMs using a Gaussian distribution and incorrect top
PSMs using a Gamma distribution. An expectation-maximization
(EM) algorithm is applied to estimate the parameters of these distri-
butions (Dempster et al., 1977).

Each search strategy comes with pros and cons. Owing to its
simplicity, TDA with a concatenated database search has dominated
bottom-up proteomics, even if the benefits of competing decoy pep-
tides with target peptides for experimental spectra are incompletely
understood. In fact, the usefulness of TDA has been continuously
challenged on several grounds (Cooper, 2011, 2012; Danilova et al.,
2019; Gupta et al., 2011; Kall et al., 2008a; Kim et al., 2008),
including the construction of decoy sequences, choice of FDR esti-
mators and run time. Current practices generally rely on peptide re-
versal within each protein to construct decoys, based on empirical
characterizations against the alternatives (Elias and Gygi, 2007).
TDAs estimate FDR as the fraction of the number of decoy top
PSMs and the number of target top PSMs above the threshold.
While this approach is reasonable with large datasets, it is theoretic-
ally problematic as it can lead to FDR estimates above 1 and pos-
sibly even infinity. TDAs also consider protein databases twice in
size, which can be computationally expensive for identifying post-
translationally modified peptides or cross-linked peptides (Ji et al.,
2016; Rinner et al., 2008). On the other hand, DFAs are not without
problems either. While theoretically pleasing, these methods suffer
from restrictive modeling assumptions as well as difficulties in
resolving overlapping score distributions, especially when the frac-
tion of correct PSMs is small (Ma et al., 2012). They also lead to
inconsistencies, such as ones where Gaussian-Gamma distributions
give best fits on average yet the component densities have different
supports and can lead to pathological situations; e.g. low-scoring
PSMs might have a probability of 1 to be correct (Li, 2008). This is
particularly problematic in experiments where distinguishing correct
and incorrect PSMs is challenging.

The objective of this study is to introduce and explore new
decoy-free FDR estimation procedures that combine the strengths of
TDAs and DFAs. Specifically, we consider a two-sample approach,
where the top or best-scoring PSMs are used in a manner similar to
conventional DFA searches, and the second-best PSMs, much like
decoy PSMs, are used to improve modeling of the incorrect top
PSMs. We model the set of component densities using a relatively
new family of skew normal distributions that offer desirable flexibil-
ity within the unimodal family yet provide elegant update rules for
an EM-based optimization. We evaluate the new systems against
both TDAs and DFAs on NIST spectral libraries from four species,
ten additional PRIDE datasets from six species as well as an in-
house case study using nanogram levels of total HeLa cell digest to
demonstrate the potential for applications in high-sensitivity proteo-
mics profiling. We demonstrate that leveraging the extra search in-
formation increases the accuracy and the stability of estimates, in
particular in experiments where low amounts of biological material
limit the quality and the number of spectra (Budnik et al., 2018; Li
et al., 2015). Overall, we believe that the new algorithms have a po-
tential to generalize beyond peptide identification to all types of
search problems involving analytical platforms.

2 Background

2.1 Terminology and notation
Let X ¼ fxig be a set of spectra collected from a mass spectrometer
and P ¼ fpjg a set of candidate peptides that are possibly present in
the biological sample. A search engine produces a set of triplets
ðx;p; sÞ 2 X $ P $R, where s is the score assigned to the PSM (x,
p). The higher the score, the more likely that the spectrum x was
generated from p.

Let now x be generated from some (unknown) peptide q and let
ððx;p1; s1Þ; ðx; p2; s2Þ; . . .Þ be a ranked list of PSMs from a search en-
gine for x such that s1 % s2 % . . . A PSM (x, p) for which p¼q is
called the correct match, whereas all other PSMs involving x are
called incorrect matches. Furthermore, given the list
ððx;p1; s1Þ; ðx; p2; s2Þ; . . .Þ, the PSM with the highest score, ðx; p1Þ, is
called the top, first or best-scoring PSM, the second-ranked PSM,
ðx;p2Þ, is called the second PSM, etc. Finally, we also distinguish
among incorrect PSMs. The highest-scoring incorrect PSM for x will
be referred to as the top, first or best incorrect PSM, whereas the
second-best incorrect PSM will be referred to as the second incorrect
PSM.

To reduce complexity, an MS/MS analysis pipeline often keeps
only top PSMs for the set of spectra X ; i.e. only the top-scoring PSM
for each spectrum x. It then determines a threshold s such that the
peptide p from each top hit (x, p) is considered identified when the
score s from (x, p, s) satisfies s % s. If, further, p¼q, p is considered
to be the correct identification. The threshold s can be set based on
experience with particular search engines although the most rigor-
ous approach is to estimate FDR for the set of identified peptides
obtained by thresholding at s. Current approaches restrict the ana-
lysis to top-scoring PSMs for each experimental spectrum. In this
study, we remove this restriction and include both top PSMs and
second-best PSMs to more confidently model the data distributions.

2.2 Skew normal family
The Gaussian family is widely used in many applications to model
real-world data. However, the symmetry of the Gaussian density
makes it an inferior choice for modeling skewed data. One approach
to account for the skewness is to use a mixture of Gaussian distribu-
tions; however, finite Gaussian mixtures are ill-equipped to model
the skewness, especially when the data is expected to be unimodal
(Jain et al., 2019). In such cases one may choose from one of the
many skewed families such as Gumbel, Gamma, Weibull and skew
normal. The use of Gumbel and Gamma distributions in the context
of FDR estimation has been extensively studied (Li, 2008). In this
article, we explore the appropriateness of the skew normal family
for FDR estimation. Skew normal family is an appealing choice for
modeling competition since the density of the maximum of two
identically distributed Gaussian random variables is exactly skew
normal (Arellano-Valle et al., 2006).

The univariate skew normal (SN) family was introduced as a
generalization of the normal family (Azzalini, 1985). It has a loca-
tion (l), a scale (x) and a shape (k) parameter, where k controls the
direction and degree of skewness. The distribution is right-skewed
when k > 0, left-skewed when k < 0 and reduces to a normal distri-
bution when k¼0. The probability density function (pdf) of a ran-
dom variable X & SNðl;x; kÞ is given by

fSNðx; l;x; kÞ ¼ 2

x
/

x' l
x

! "
U

kðx' lÞ
x

! "
; x 2 R;

where l; k 2 R; x 2 Rþ; / and U are the pdf and the cumulative
distribution function (cdf) of the standard normal distribution
Nð0;1Þ, respectively. The cumulative distribution function of X is
given by

FSNðx; l;x; kÞ ¼ U
x' l

x

! "
' 2T x' l

x
; k

! "
; x 2 R;

where T ðh; aÞ is Owen’s T function (Young and Minder, 1974). The
SN family can be alternatively parameterized by D and C instead of
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k and x, as defined in Table 1. The alternate parametrization natur-
ally arises in the stochastic representation of a SN random variable:

X & SNðl;x; kÞ ) X¼d lþ DT þ C1=2U; (1)

where T & TNð0;1;RþÞ, the standard normal distribution trun-
cated below 0; U & Nð0;1Þ, the standard normal distribution; and
¼d reads as ‘equal in distribution’. The stochastic representation is
useful for deriving many properties of the skew normal distribution
and is also used in an EM-based maximum likelihood estimation
(Lin et al., 2007). The algorithms for the skew normal mixture mod-
els derived in this article also exploit this stochastic representation.

3 Materials and methods

In this section, we introduce two generative models and derive cor-
responding EM algorithms for parameter estimation. Let S1 denote
the set of the first scores and S2 denote the set of the second scores
of a tandem mass spectrometry (MS/MS) search. The first model
relies solely on the score distributions of the top PSMs and thus only
S1 is used for parameter estimation. The second model is an exten-
sion when first and second PSMs are both considered and uses S1

and S2 to estimate the parameters. The dataset sizes jS1j and jS2j
need not be equal.

We assume in both models that the scores corresponding to a
correct match and all incorrect matches follow skew normal distri-
butions. Technically, we introduce C, I1 and I2 to denote the ran-
dom variables corresponding to the scores of the correct match, the
first incorrect match and the second incorrect match, respectively, as

C & SNðhcÞ I1 & SNðh1Þ; I2 & SNðh2Þ; (2)

where h denotes the skew normal parameters l, x and k.
Sections 3.1 and 3.2 present only update rules of the proposed

EM algorithms. We direct the reader to Supplementary Materials
for additional details. Specifically, Supplementary Section S2 of
Supplementary Materials shows the derivation of the algorithms
and Supplementary Section S1 gives proofs of the supporting
lemmas.

3.1 Top score skew normal mixture
The top score skew normal mixture, referred to as 1SMix model, is
the conventional decoy-free model in which both component distri-
butions are in the skew normal family. More formally, we model the
first score S1 as a mixture of the correct and first incorrect scores,
each being a skew normal random variable; i.e.

S1 & aSNðhcÞ þ ð1' aÞSNðh1Þ:

The triple f ¼ ða; hc; h1Þ gives the parameters of the model. We
obtain the maximum likelihood estimates of f from S1 using the EM
algorithm for finite skew normal mixture estimation in Lin et al.
(2007). For completeness, we give a derivation of the algorithm for
the two-component mixture case in Supplementary Section S3.
Using € and – to accent the new and old parameters, respectively,
the parameter update equations of the EM algorithm are as follows:

€a ¼ 1

jS1j
X

s12S1

p1ðs1Þ;

€lc ¼
P

s12S1
pcðs1Þmc s1;Dc

# $
P

s12S1
pcðs1Þ

;

€l1 ¼
P

s12S1
p1ðs1Þm1 s1;D1

# $
P

s12S1
p1ðs1Þ

;

€Dc ¼
P

s12S1
pcðs1Þdc s1; €lcð ÞP

s12S1
pcðs1Þwðs1; hcÞ

;

€D1 ¼
P

s12S1
p1ðs1Þd1 s1; €l1ð Þ

P
s12S1

p1ðs1Þwðs1; h1Þ
;

€Cc ¼
P

s12S1
pcðs1Þgc s1; €lc; €Dc

# $
P

s12S1
pcðs1Þ

;

€C1 ¼
P

s12S1
p1ðs1Þg1 s1; €l1; €D1

# $
P

s12S1
p1ðs1Þ

;

where m); d); g) and w) () ¼ c or 1) are as defined in Table 2.
Quantities pC and p1 are defined as

pcðs1Þ ¼
afSNðs1; hcÞ

afSNðs1; hcÞ þ ð1' aÞfSNðs1; h1Þ
;

p1ðs1Þ ¼
ð1' aÞfSNðs1; h1Þ

afSNðs1; hcÞ þ ð1' aÞfSNðs1; h1Þ
:

(3)

The algorithm stops when the log-likelihood (Supplementary
Materials) difference per data point falls under 10'8. FDR at a
threshold value s is thereafter estimated as

FDRðsÞ ¼ ð1' aÞpðI1 > sÞ
pðS1 > sÞ

¼est ð1' aÞ 1' FSNðs; h1Þð Þ
a 1' FSNðs; hcÞð Þ þ ð1' aÞ 1' FSNðs; h1Þð Þ

:

(4)

To practically compute FSNðs; hÞ, we use an approximation of
Owen’s T function by Young and Minder (1974).

3.1.1 Parameter initialization
The initial parameters for the EM algorithm are estimated by parti-
tioning the data and using the method of moments estimators for SN
distributions (Supplementary Materials). Precisely, S1 is first parti-
tioned into two sets separated by its median. The points below the me-
dian are then used to obtain a method of moments estimator of h1 and
the points above the median are used for hc. Empirically, we observed
that the signs of D1 and Dc do not change during the execution of the
algorithm. To ensure that the entire parameter space is searched for an
optimal fit, we run the algorithm four times covering all possible com-
binations of signs of D1 and Dc, with the best fit chosen according to
the value of the likelihood function. Parameter a is initialized at 0.5.

3.2 Top-two score skew normal mixture
In the top-two score approach, referred to as 2SMix model, we
model both first and second PSM score distributions as skew normal
mixtures. Since the second score, S2, can come from the correct, first
incorrect or second incorrect match, we model its density as a three-
component mixture. The complete model is specified as follows.

S1& aSNðhcÞ þ ð1' aÞSNðh1Þ;
S2& aSNðh1Þ þ ð1' a' bÞSNðh2Þ þ bSNðhcÞ;

where a; b 2 ½0; 1+ and aþ b , 1. The quintuple f ¼ ða;b; hc; h1; h2Þ
gives the parameters of the model. Observe that the two mixtures
are tied via a shared parameter a because the fraction of the first in-
correct PSMs in S2 must be identical to the fraction of correct PSMs
in S1. The fractions of correct PSMs in S1 and S2 are further

Table 1. Alternate parametrization for the skew normal distribution

Alternate parametrization Related quantities

Canonical! alternate Alternate! canonical

D ¼ xd

C ¼ x2 ' D2

k ¼ signðDÞ
ffiffiffiffiffiffiffiffiffiffiffi
D2=C

q

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ D2

p
d ¼ kffiffiffiffiffiffiffiffi

1þk2
p

Note: Update equations of the algorithm are better formulated in terms of

the alternate parameters. The table gives the relationship between the alter-

nate and the canonical parameters as well as additional related quantities.
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restricted by the fact that the total number of correct PSMs cannot
exceed the sample size; i.e. aþ b , 1.

Unlike the top score only model, the parameters for the two
score model cannot be obtained by using the existing skew normal
mixture estimation methods because of parameter sharing between
the two mixtures. We derive a novel EM algorithm for the max-
imum likelihood estimation of f from S1 and S2. Using€and – to ac-
cent the new and old parameter, respectively, the parameter update
equations of the EM algorithm are as follows.

€a ¼
P

s12S1
pcðs1Þ þ

P
s22S2

r1ðs2Þ
jS1jþ jS2j

;

€b ¼
P

s22S1
rcðs2Þ

jS2j
;

€lc ¼
P

s12S1
pcðs1Þmc s1;Dc

# $
þ
P

s22S2
rcðs2Þmc s2;Dc

# $
P

s12S1
pcðs1Þ þ

P
s22S2

rcðs2Þ
;

€l1 ¼
P

s12S1
p1ðs1Þm1 s1;D1

# $
þ
P

s22S2
r1ðs2Þm1 s2;D1

# $
P

s12S1
p1ðs1Þ þ

P
s22S2

r1ðs2Þ
;

€l2 ¼
P

s22S2
r2ðs2Þm2 s2;D2

# $
P

s22S2
r2ðs2Þ

;

€Dc ¼
P

s12S1
pcðs1Þdc s1; €lcð Þ þ

P
s22S2

rcðs2Þdc s2; €lcð ÞP
s12S1

pcðs1Þwðs1; hcÞ þ
P

s22S2
rcðs2Þwðs2; hcÞ

;

€D1 ¼
P

s12S1
p1ðs1Þd1 s1; €l1ð Þ þ

P
s22S2

r1ðs2Þd1 s2; €l1ð Þ
P

s12S1
p1ðs1Þwðs1; h1Þ þ

P
s22S2

r1ðs2Þwðs2; h1Þ
;

€D2 ¼
P

s22S2
r2ðs2Þd2 s2; €l2ð Þ

P
s22S2

r2ðs2Þwðs2; h2Þ
;

€Cc ¼
P

s12S1
pcðs1Þgc s1; €lc; €Dc

# $
þ
P

s22S2
rcðs2Þgc s2; €lc; €Dc

# $
P

s12S1
pcðs1Þ þ

P
s22S2

rcðs2Þ
;

€C1 ¼
P

s12S1
p1ðs1Þg1 s1; €l1; €D1

# $
þ
P

s22S2
r1ðs2Þg1 s2; €l1; €D1

# $
P

s12S1
p1ðs1Þ þ

P
s22S2

r1ðs2Þ
;

€C2 ¼
P

s22S2
r2ðs2Þg2 s2; €l2; €D2

# $
P

s22S2
r2ðs2Þ

;

where quantities m);d); g) and w () ¼ c; 1 or 2) are as defined in
Table 2; pc;p1 are the same as those defined in Equation 3 and rc; r1

and r2 are as defined below.

rcðs2Þ ¼
bfSNðs2; hcÞ

afSNðs2; h1Þ þ ð1' a ' bÞfSNðs2; h2Þ þ bfSNðs2; hcÞ
;

r1ðs2Þ ¼
afSNðs2; h1Þ

afSNðs2; h1Þ þ ð1' a ' bÞfSNðs2; h2Þ þ bfSNðs2; hcÞ
;

r2ðs2Þ ¼
ð1' a ' bÞfSNðs2; h2Þ

afSNðs2; h1Þ þ ð1' a ' bÞfSNðs2; h2Þ þ bfSNðs2; hcÞ
:

As before, FDR is estimated according to Equation 4.

3.2.1 Parameter initialization
Similar to the parameter initialization for the top score mixture
model, the top score is partitioned into two sets separated by its me-
dian and the points below the median are used to obtain a method
of moments estimator of h1 and the points above the median are
used for hc. The points of the second score corresponding to the top
scores below the median, are used to obtain the initial estimate of
h2. To ensure that the entire parameter space is searched for an opti-
mal fit, we run the algorithm eight times covering all possible combi-
nations of signs of Dc, D1 and D2, with the final fit selected based on
the value of the likelihood function. Parameters a and b are both ini-
tialized at 0.5.

4 Experiments and results

The experiments in this study were designed to investigate the prop-
erties and performance of the new methods. We first look at the ac-
curacy of FDR estimation using the spectral libraries from NIST.
We further use the libraries from NIST and datasets from PRIDE to
evaluate the quality of the fit of the generative models and quantify
the stability of FDR estimation. Finally, we use an in-house experi-
ment with diluted lysate of HeLa cells, with the total amount of
digested protein ranging from 0.1 to 100 ng per analysis, to assess
the robustness of FDR estimation to uncertainty and noise resulting
from reduced levels of biological material and reduced levels of
analytes.

4.1 Datasets
We used public and in-house data for model evaluation. The public
data consisted of 4 ion trap datasets across 4 species from NIST
spectral libraries (Stein, 1990) and 10 datasets across 6 species from
the PRIDE database (Vizcaino et al., 2016). All datasets are sum-
marized in Table 3. The protocols for generating in-house data and
all relevant experimental details are described in Section 4.6.

4.2 Database search
All searches were carried out using MS-GFþ (Kim and Pevzner,
2014), with search parameters identical to those from the publica-
tions associated with each dataset. Each dataset was searched
against the corresponding species’ proteomics database downloaded
from UniProtKB (Bairoch, 2004). We carried out two searches. The
first run was a TDA, where the decoy database was constructed by
reversing tryptic peptides as proposed by Elias and Gygi (2007) and
then concatenating these peptides to the target database. FDR at a
score threshold s was estimated as FDRðsÞ ¼ nDðsÞ

nT ðsÞ, where nDðsÞ is
the number of top-scoring PSMs above s that came from the decoy
database and nTðsÞ is the number of top-scoring PSMs above s that
came from the target database. The second search was performed
using the target database only and retaining up to 10 highest-scoring
PSMs for each experimental spectrum. The results of these searches
were used for decoy-free FDR estimation, as described in Section 3.

Table 2. Useful quantities

Quantities

m)ðx;DÞ ¼ x' vðx; h)ÞD

d)ðx; lÞ ¼ vðx; h)Þðx' lÞ

g)ðx; l;DÞ ¼ ðx' lÞ2 ' 2Dvðx; h)Þðx' lÞ þ D2wðx; h)Þ

vðx; hÞ ¼ E½Tx+

wðx; hÞ ¼ E½T2
x +

Tx&TNðd=xðx' lÞ; 1' d2;RþÞ

Note: The parameter update equations are given in terms quantities defined

below. The quantities accented with – have f, the current estimate of the

model parameters, as an implicit parameter. f contains all the model parame-

ters: a and/or b and the parameters for the skew normal components, h); de-

pending upon the model, * can take values c; 1 and 2. h contains skew normal

parameters l;x and k. Parameters d;D and C are related to x and k as per

Table 1. TNðl; r2;RþÞ represents truncated normal distribution truncated

below 0. E represents the expectation operator. The expectations of the first

two moments of the TN random variable can be computed as shown in

Supplementary Lemma S1 in Supplementary Materials.

i748 Y.Peng et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i745/6055912 by guest on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa807#supplementary-data
Predrag Radivojac



4.3 Quality of FDR estimates
We searched NIST spectral libraries to establish the accuracy of
FDR estimation. For each species and instrument platform, a NIST
library consists of a set of consensus spectra, each associated with a
peptide sequence, that can be considered as ground truth for our
evaluation. After completing a search for which we estimated FDR,
we computed the fraction of identified PSMs that did not match
peptides from the NIST database as the true FDR and compared the
two FDR values. This approach, however, has limitations. First,
some peptides from NIST were not present in UniProtKB ensuring
incorrect identifications in our searches whenever such a peptide
received a sufficiently high score. Second, a peptide-spectrum pair in
the NIST library may not always be a correct assignment in the first
place because MS/MS searches may repeatedly lead to the same in-
correct identifications due to database issues, peculiarities of the
search parameters and software, or random chance. Third, we used
the precursor mass tolerance of 25 ppm that may be too stringent
for the instrument types. This precursor tolerance was chosen to
demonstrate the proof-of-principle of the developed approaches and
show its potential applicability to data generated by different types
of mass analyzers. Additionally, in some cases k different peptides
may be tied for the top score. We counted a k'1

k fractional error in
these cases if the correct peptide was among the k peptides; other-
wise, we counted a full error, regardless of the presence of the cor-
rect peptide in UniProtKB. An example of such a situation are
peptides with leucine-to-isoleucine substitutions.

Figure 1 shows the estimated versus true FDR averaged over
four species from NIST in logarithmic and linear scale. We observe
that the one-sample DFAs underestimate FDR, whereas the TDA
and the two-sample DFA (2SMix) generates a curve closer to the di-
agonal line. Based on these results we conclude that the performance
of TDA and the two-sample DFA is comparable, with the two-
sample DFA having a slightly better performance in the low FDR
range (0.001–0.01) and TDA having a slightly better performance in
the high FDR range (0.01-0.1).

4.4 Quality of the fit
Spectral libraries from NIST were also used to evaluate quality of
the fit of the three DFAs. To do so, we plot the estimated pdfs
against the empirical score distributions in Figure 2. For each data-
set, we evaluate the log-likelihood of the mixture sample S1 and
measure the cumulative distribution function (cdf) fit by computing
dCDF as the unnormalized distance by Yang et al. (2019), with p¼1,
between the empirical and estimated cdfs. For the two-sample DFA,
we also evaluate the log-likelihood of the combined samples S1 and

S2 and additionally compute dCDF for S2. The distance between two
cdfs was computed using the discrete cdf vectors of length jS1j or
jS2j, as applicable.

One-sample skew normal DFA improved the quality of the fit
over Gamma-Gaussian DFA both in terms of log-likelihood and
dCDF (Supplementary Materials). The log-likelihood values have
been normalized by the sample size thus making the differences ap-
pear smaller than they are, whereas the dCDF measure appeared to
be more in line with the visual inspection of the pdf fit. The two-
sample skew normal DFA has somewhat reduced quality on S1 com-
pared to the one-sample skew normal DFA in both measures, but
the high-quality fitting on S2 compensates for the difference. In add-
ition, the quality of the fit of the second scores suggests that S2 in-
deed plays a role similar to that of the decoy database.

Datasets from PRIDE were additionally used to evaluate quality
of the fit of the DFAs and to compare the cutoff values with TDA.
The results of these experiments are summarized in Supplementary
Materials for each of the 10 PRIDE datasets. Supplementary Table
S1 gives summaries over these datasets. The findings on these data-
sets mirror those from NIST spectral libraries and increase confi-
dence in strong performance of the two-sample DFA.

4.5 Stability of FDR estimates
The stability of the FDR estimates was investigated using bootstrap-
ping (Efron and Tibshirani, 1986). In each of the B¼200 bootstrap
iterations, the spectra entering the search were sampled with re-
placement into an equal-sized set. After the database search, the 1%
FDR score threshold s was estimated for each bootstrapped set using

Table 3. Datasets from Arabidopsis thaliana, Drosophila melanogaster, Escherichia coli, Homo sapiens, Mus musculus, Saccharomyces cer-
evisiae and Caenorhabditis elegans used for evaluation

Dataset PXD Species Spectra PSM Precursor

tolerance

Instrument Fragmentation method Missed

cleavages

PXD001179 A.thaliana 116 487 80 894 10 ppm LCQ/LTQ CID or by detection 1

PXD006080 D.melanogaster 181 749 72 240 25 ppm Orbitrap/FTICR/Lumos CID or by detection 1

PXD001481 E.coli 59 765 43 217 10 ppm LCQ/LTQ CID or by detection 1

PXD012755 H.sapiens 48 754 48 451 25 ppm Orbitrap/FTICR/Lumos CID or by detection 1

PXD011988 H.sapiens 35 358 35 176 25 ppm Orbitrap/FTICR/Lumos CID or by detection 1

PXD013092 M.musculus 86 139 55 312 15 ppm Q-Exactive HCD 2

PXD001054 M.musculus 69 198 66 113 15 ppm Q-Exactive HCD 2

PXD001054 M.musculus 57 701 55 312 15 ppm Q-Exactive HCD 2

PXD001928 S.cerevisiae 39 284 38 890 10 ppm Q-Exactive CID or by detection 2

PXD001928 S.cerevisiae 37 087 36 402 10 ppm Q-Exactive CID or by detection 2

NIST Ion Trap C.elegans 67 470 67 308 25 ppm LCQ/LTQ CID or by detection 2

H.sapiens 340 351 339 857 25 ppm LCQ/LTQ CID or by detection 2

M.musculus 149 453 149 325 25 ppm LCQ/LTQ CID or by detection 2

S.cerevisiae 92 608 92 507 25 ppm LCQ/LTQ CID or by detection 2

Note: MS-GFþ automatically sets the fragment ion tolerance based the chosen fragmentation method.

Fig. 1. Fraction of mismatches in NIST library versus estimated FDR. The closer to
the identity line, the more accurate the estimation. Each curve is averaged over four
NIST datasets, with the bands showing 68% confidence intervals. On the left, we
show the log-scale to emphasize the range of more practical interest, while on the
right we use linear scale
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TDA and three DFAs. The variability in s was then used to quantify
stability of the estimates.

The stability of the four FDR estimation methods is compared in
Figure 3 on four representative datasets from PRIDE. The results
show that the TDA is generally less stable than any of the DFAs.
This result is not entirely surprising given that the estimates of low
FDR are often made based on a small number of decoy PSMs.
Among DFAs, we find that one-sample DFAs were less stable than
the two-sample DFA, suggesting that the two-sample DFA was able

to capitalize on the existence of S2 to both improve and stabilize the
estimate.

4.6 HeLa cell digest experiments
4.6.1 Experimental setting
To mimic the experiments requiring proteomic profiling of limited
biomedical samples, we analyzed digested total lysate of cultured
HeLa cells, which was selected as a representative high-complexity
model sample. Sample aliquots were diluted to the desired concen-
tration levels that corresponded to the total amount of digested pro-
tein ranging from 0.1 to 100 ng per analysis. The resulted specimens
were analyzed using the conventional nano-flow liquid chromatog-
raphy coupled with tandem mass spectrometry (nanoLC-MS/MS)-
based approach, involving the separation conducted on a conven-
tional 75 lm inner diameter (ID) in-house bead-packed column.
According to our estimates, the injected sample amounts corre-
sponded to approximately 1–1000 HeLa cells. The generated
nanoLC-MS/MS data files were subjected to the analysis of spectral
data, using the approach described next.

4.6.2 LC-MS/MS proteomics analysis
HeLa protein digest standard (P/N 88328, Thermo Fisher Scientific,
Waltham, MA) was resuspended in 2% formic acid to desired con-
centration levels. 0.1, 1, 10, 50 and 100 ng of the HeLa digest ali-
quots were subjected to LC-MS/MS-based proteomics profiling. At
least three technical replicates (i.e. replicate LC-MS/MS analyses of
the same sample amount) were used across the whole study. The
sample was loaded with the autosampler directly onto a self-packed
column, which was made from a 75 lm ID 360 lm OD fused-silica
capillary tubing (Molex, Polymicro Technologies, Phoenix, AZ)
with a pulled tip filled with 20 cm of 1.9 lm ReproSil-Pur 120 C18-
AQ (Dr. Maisch, Ammerbuch, Germany). Peptides were eluted at
150 nl/min from the column using an UltiMate 3000 HPLC system
(Thermo Fisher Scientific) with a 60 min linear gradient from 1%

Fig. 2. Model fitting on four NIST datasets. (a) One-sample Gamma-Gaussian DFA estimation as proposed by Keller et al. (2002), (b) one-sample skew normal mixture 1SMix
and (c, d) two-sample skew normal mixture 2SMix. Histograms show score distributions S1 (light blue) and S2 (light green), as a function of E-value. Purple densities superim-
pose estimated mixtures and their component distributions (yellow ¼ top incorrect, blue ¼ second-best incorrect orange ¼ correct). Estimated cdfs are shown in dotted black
lines which that are mostly overlapping with the empirical cdfs shown in solid black lines. Distances dCDF, log-likelihoods and 1% FDR thresholds are summarized in
Supplementary Table S1, Supplementary Materials

Fig. 3. Stability of FDR estimates on four select datasets from PRIDE. The stability
of estimates was evaluated using 200 bootstrapping iterations and measuring the
1% FDR threshold in each of the iterations, as shown in the y-axis of each plot. The
larger dispersion of established thresholds corresponds to lower stability of
estimates
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solvent B to 20% solvent B (100% acetonitrile, 0.1% formic acid)
mixed with solvent A (0.1% formic acid in water). The eluent com-
position was changed from 20 to 80% of solvent B over 2 min and
held constant for 3 min. Finally, the elution solvent composition was
changed from 80% solvent B to 99% solvent A over 1 min, and then
held constant at 99% of solvent A for 15 min. The application of a
2.3 kV distal voltage electrosprayed the eluting peptides directly into
an Orbitrap Fusion LumosTM mass spectrometer equipped with a
Nanospray Flex Ion Source (both Thermo Fisher Scientific). Mass
spectrometer-scanning functions and HPLC gradients were

controlled by the Xcalibur software (Thermo Fisher Scientific,
v.4.1.50). The temperature of the ion transfer tube was set to
275-C. The mass spectrometer was set to scan MS1 at 120 000 reso-
lution at m/z 200 with an Automatic Gain Control (AGC) target set
at 4e5 and for maximum injection time 50 ms. The RF lens was set
to 30%. The scan range was m/z 375–1500. Monoisotopic precur-
sor selection mode was set to ‘Peptide.’ For MS2, data-dependent ac-
quisition mode was used. MS/MS spectra were acquired in the linear
ion trap (rapid scan mode, HCD) with an AGC target of 3e4 and a
maximum injection time (IT) at 35 ms. The highest abundance peaks
were analyzed by MS2 for a cycle time of 3 s and injecting ions using
parallelization mode. Peptides were isolated with an isolation win-
dow of m/z 1.6 and fragmented at higher-energy collisional dissoci-
ation energy of 28%. Only ions with a charge state of two through
seven were considered for MS2. Dynamic exclusion was set at 30 s.
The conversion of LC-MS .raw files to .mgf files was done using
MSFileReader (v.2.2.62) and RawConverter v.1.1.0.23 (He et al.,
2015). The default conditions for conversion were used, with one
exception, charge states from two through seven were used. The
datasets were deposited in PRIDE (PXD020322).

4.6.3 Results on HeLa cell experiments
Figure 4 shows a significantly improved fit of one- and two-sample
skew normal mixtures compared to the Gamma-Gaussian mixture.
Figure 5 further visualizes stability of the 1% FDR threshold in a
bootstrapping experiment (as described in Section 4.5), suggesting
that the two-sample skew normal mixture (2SMix) offers an attract-
ive combination of fit and stability. Finally, Figure 6 shows the num-
ber of identified PSMs as a function of estimated FDR in each of the
experiments. It is worth noting here that the comparisons in
Figure 6 are not straightforward because each method estimates its
own FDR and does so with different accuracy. However, we have
previously demonstrated that TDA and the 2SMix DFA have com-
parable quality of FDR estimates (Fig. 1). In that light, we can more
confidently infer an increased number of PSM identifications for the

Fig. 4. Model fitting on four select HeLa cell datasets. (a) One-sample Gamma-Gaussian DFA estimation as proposed by Keller et al. (2002), (b) one-sample skew normal mix-
ture 1SMix and (c, d) two-sample skew normal mixture 2SMix. Histograms show score distributions S1 (light blue) and S2 (light green), as a function of E-value. Purple den-
sities superimpose estimated mixtures and their component distributions (yellow ¼ top incorrect, blue ¼ second-best incorrect orange ¼ correct). Estimated cdfs are shown in
dotted black lines which that are mostly overlapping with the empirical cdfs shown in solid black lines. Distances dCDF, log-likelihoods and 1% FDR thresholds are summar-
ized in Supplementary Table S1, Supplementary Materials

Fig. 5. Stability of FDR estimates on four select datasets from the HeLa cell experi-
ments. The stability of estimates was evaluated using 200 bootstrapping iterations
and measuring the 1% FDR threshold in each of the iterations, as shown in the y-
axis of each plot. The larger dispersion of established thresholds corresponds to
lower stability of estimates
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2SMix DFA compared to TDA. Specifically, 687 more identifica-
tions for 0.1 ng (þ331%), 2309 for 1 ng (þ168%), 3488 for 10 ng
(þ47%) and 2469 for 100 ng (þ18%) when averaged over the three
replicates of each experiment.

Deep proteomic profiling of scarce biological and clinical sam-
ples is still a major challenge. The ability to qualitatively and quanti-
tatively characterize thousands of proteins and their post-
translational modifications present in limited samples (e.g. rare cell
populations, microneedle biopsies, microsampled liquid biopsies
and even individually isolated single cells) is immensely important
for getting new information in fundamental biology research and
enabling novel diagnostic and prognostic studies (Huffman et al.,
2019; Li et al., 2015, 2018; Lombard-Banek et al., 2019; Shao et al.,
2018; Zhu et al., 2018). However, the conventional nanoLC-MS/
MS techniques fail to generate highly informative data at such sam-
ple levels. Since protein-derived analytes are at very low amounts in
limited samples, the resulting MS and MS/MS spectra are generally
sparse and low intensity. Interpretation of MS/MS fragmentation
patterns resulting in correct peptide sequence identification and ul-
timately in in-depth protein and proteome characterization becomes
a challenge using such low signal-to-noise-ratio and low
fragmentation-efficiency spectra. Therefore, nanoLC-MS/MS ana-
lysis of limited samples typically results in a low conversion effi-
ciency from tandem MS spectra to high-quality PSMs and a high
FDR in peptide and protein identification, which in turn lead to lim-
itations in quantitative analysis. We believe that the methodology
proposed in this work improves the analysis of such samples.

5 Conclusions

Accurate FDR estimation has been one of the major computational
challenges in bottom-up proteomics (Aggarwal and Yadav, 2016;
Nesvizhskii, 2010) and is a key component of both peptide and pro-
tein identification (Li and Radivojac, 2012; Serang and Noble,
2012). Although several approaches have been widely evaluated and
used (Elias and Gygi, 2007; Jeong et al., 2012; Kall et al., 2008a;
Keller et al., 2002), questions remain about their modeling assump-
tions, accuracy, stability, rigor and speed. The new types of experi-
ments with low-amount analytes from limited samples, as the HeLa
studies from our work, exemplify these challenges and require
improved estimators. To address these challenges we proposed and
evaluated new decoy-free methods for FDR estimation. Our meth-
ods rely on mixtures of skew normal distributions designed to model
all component distributions. Importantly, our approaches eliminate
the need to use a decoy database and, with it, the competition be-
tween peptides potentially present in the biological sample with
those that are not. This is particularly evident in our two-sample
DFA that relies on the score distribution of second-best PSMs

associated with each spectrum and also models some level of de-
pendence between first and second score distributions via parameter
sharing and constraints.

The new mixture model methodology was extensively evaluated
on public and in-house data. We show that one-sample DFAs are
slightly inferior to TDA in terms of quality of FDR estimation, al-
though they are faster and often more stable. On the other hand,
our two-sample DFA offers an equivalent level of accuracy of FDR
estimates as TDA, but with increased stability, improved speed and
slightly reduced cutoff thresholds that result in an increased number
of PSM identifications (Section 4). At the same time, the two-sample
DFA retains methodological elegance of one-sample DFAs because
skew normal distributions lend themselves to an efficient maximum
likelihood optimization using expectation-maximization (Section 3).
We believe that the new method will be applicable across a range of
FDR estimation scenarios in bottom-up proteomics and beyond; e.g.
with searches including post-translational modifications (Fu, 2012),
cross-linked peptides (Walzthoeni et al., 2012), semi-tryptic peptides
(Alves et al., 2008), de novo searches (Dancik et al., 1999; Frank
and Pevzner, 2005), small molecule searches (Scheubert et al., 2017;
Wang et al., 2018).

Acknowledgements

The authors acknowledge Thermo Fisher Scientific for their support through

a technology alliance.

Funding

This work was supported by the National Institutes of Health awards

[R01GM103725 to P.R., R01GM120272 to A.R.I., R01CA218500 to A.R.I.,

R35GM136421 to A.R.I.].

Conflict of Interest: none declared.

References

Aebersold,R. and Mann,M. (2003) Mass spectrometry-based proteomics.

Nature, 422, 198–207.
Aggarwal,S. and Yadav,A.K. (2016) False discovery rate estimation in proteo-

mics. Methods Mol. Biol., 1362, 119–128.
Alves,P. et al. (2008) Fast and accurate identification of semi-tryptic peptides

in shotgun proteomics. Bioinformatics, 24, 102–109.
Arellano-Valle,R.B. et al. (2006) A unified view on skewed distributions aris-

ing from selections. Can. J. Stat., 34, 581–601.
Azzalini,A. (1985) A class of distributions which includes the normal ones.

Scand. J. Stat., 12, 171–178.
Bairoch,A. (2004) The Universal Protein Resource (UniProt). Nucleic Acids

Res., 33, D154–159.
Budnik,B. et al. (2018) SCoPE-MS: mass spectrometry of single mammalian

cells quantifies proteome heterogeneity during cell differentiation. Genome

Biol., 19, 161.
Burger,T. (2018) Gentle introduction to the statistical foundations of false dis-

covery rate in quantitative proteomics. J. Proteome Res., 17, 12–22.
Choi,H. and Nesvizhskii,A.I. (2008) False discovery rates and related statistic-

al concepts in mass spectrometry-based proteomics. J. Proteome Res., 7,

47–50.
Choudhary,C. and Mann,M. (2010) Decoding signalling networks by mass

spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol., 11, 427–439.
Cooper,B. (2011) The problem with peptide presumption and low Mascot

scoring. J. Proteome Res., 10, 1432–1435.
Cooper,B. (2012) The problem with peptide presumption and the downfall of

target-decoy false discovery rates. Anal. Chem., 84, 9963–9967.
Dancik,V. et al. (1999) De novo peptide sequencing via tandem mass spec-

trometry. J. Comput. Biol., 6, 327–342.
Danilova,Y. et al. (2019) Bias in false discovery rate estimation in

mass-spectrometry-based peptide identification. J. Proteome Res., 18,

2354–2358.
Dempster,A.P. et al. (1977) Maximum likelihood from data via the EM algo-

rithm. J. R. Stat. Soc. B, 39, 1–38.

Fig. 6. The number of identified PSMs on the four select HeLa cell experiments at a
specific FDR, separately estimated by each of the four individual methods

i752 Y.Peng et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i745/6055912 by guest on 31 D

ecem
ber 2020

Predrag Radivojac



Efron,B. and Tibshirani,R. (1986) Bootstrap methods for standard errors, con-
fidence intervals, and other measures of statistical accuracy. Stat. Sci., 1,
54–77.

Elias,J.E. and Gygi,S.P. (2007) Target-decoy search strategy for increased con-
fidence in large-scale protein identifications by mass spectrometry. Nat.
Methods, 4, 207–214.

Frank,A. and Pevzner,P. (2005) PepNovo: de novo peptide sequencing via
probabilistic network modeling. Anal. Chem., 77, 964–973.

Fu,Y. (2012) Bayesian false discovery rates for post-translational modification
proteomics. Stat. Interface, 5, 47–59.

Gingras,A.C. et al. (2007) Analysis of protein complexes using mass spectrom-
etry. Nat. Rev. Mol. Cell Biol., 8, 645–654.

Gupta,N. et al. (2011) Target-decoy approach and false discovery rate: when
things may go wrong. J. Am. Soc. Mass Spectrom., 22, 1111–1120.

He,L. et al. (2015) Extracting accurate precursor information for tandem mass
spectra by RawConverter. Anal. Chem., 87, 11361–11367.

Hubler,S.L. et al. (2020) Challenges in peptide-spectrum matching: a robust
and reproducible statistical framework for removing low-accuracy, high-
scoring hits. J. Proteome Res., 19, 161–173.

Huffman,R.G. et al. (2019) DO-MS: data-driven optimization of mass spec-
trometry methods. J. Proteome Res., 18, 2493–2500.

Jain,S. et al. (2019) Identifiability of two-component skew normal mixtures
with one known component. Scand. J. Stat., 46, 955–986.

Jeong,K. et al. (2012) False discovery rates in spectral identification. BMC
Bioinformatics, 13, S2.

Ji,C. et al. (2016) XLSearch: a probabilistic database search algorithm for
identifying cross-linked peptides. J. Proteome Res., 15, 1830–1841.

Kall,L. et al. (2008a) Assigning significance to peptides identified by tandem
mass spectrometry using decoy databases. J. Proteome Res., 7, 29–34.

Kall,L. et al. (2008b) Posterior error probabilities and false discovery rates:
two sides of the same coin. J. Proteome Res., 7, 40–44.

Keich,U. and Noble,W.S. (2015) On the importance of well-calibrated scores
for identifying shotgun proteomics spectra. J. Proteome Res., 14, 1147–1160.

Keller,A. et al. (2002) Empirical statistical model to estimate the accuracy of
peptide identifications made by MS/MS and database search. Anal. Chem.,
74, 5383–5392.

Kim,S. et al. (2008) Spectral probabilities and generating functions of tandem mass
spectra: a strike against decoy databases. J. Proteome Res., 7, 3354–3363.

Kim,S. and Pevzner,P.A. (2014) MS-GFþ makes progress towards a universal
database search tool for proteomics. Nat. Commun., 5, 5277.

Kong,A.T. et al. (2017) MSFragger: ultrafast and comprehensive peptide identifi-
cation in mass spectrometry-based proteomics. Nat. Methods, 14, 513–520.

Li,Q. (2008) Statistical methods for peptide and protein identification using
mass spectrometry. Ph.D. Thesis, University of Washington.

Li,Y.F. and Radivojac,P. (2012) Computational approaches to protein infer-
ence in shotgun proteomics. BMC Bioinformatics, 13, S4.

Li,Y.F. et al. (2012) Protein identification problem from a Bayesian point of
view. Stat. Interface, 5, 21–38.

Li,S. et al. (2015) An integrated platform for isolation, processing, and mass
spectrometry-based proteomic profiling of rare cells in whole blood. Mol.
Cell Proteomics, 14, 1672–1683.

Li,Z.Y. et al. (2018) Nanoliter-scale oil-air-droplet chip-based single cell

proteomic analysis. Anal. Chem., 90, 5430–5438.
Lin,T.I. et al. (2007) Finite mixture modelling using the skew normal distribu-

tion. Stat. Sin., 17, 909–927.
Lombard-Banek,C. et al. (2019) Microsampling capillary electrophoresis mass

spectrometry enables single-cell proteomics in complex tissues: developing

cell clones in live Xenopus laevis and zebrafish embryos. Anal. Chem., 91,

4797–4805.
Ma,K. et al. (2012) A statistical model-building perspective to identification of

MS/MS spectra with PeptideProphet. BMC Bioinformatics, 13, S1.
Nesvizhskii,A.I. (2010) A survey of computational methods and error rate esti-

mation procedures for peptide and protein identification in shotgun proteo-

mics. J. Proteomics, 73, 2092–2123.
Perkins,D.N. et al. (1999) Probability-based protein identification by search-

ing sequence databases using mass spectrometry data. Electrophoresis, 20,

3551–3567.
Rinner,O. et al. (2008) Identification of cross-linked peptides from large se-

quence databases. Nat. Methods, 5, 315–318.
Scheubert,K. et al. (2017) Significance estimation for large scale metabolomics

annotations by spectral matching. Nat. Commun., 8, 1494.
Serang,O. and Noble,W. (2012) A review of statistical methods for protein

identification using tandem mass spectrometry. Stat. Interface, 5, 3–20.
Shao,X. et al. (2018) Integrated proteome analysis device for fast single-cell

protein profiling. Anal. Chem., 90, 14003–14010.
Steen,H. and Mann,M. (2004) The ABC’s (and XYZ’s) of peptide sequencing.

Nat. Rev. Mol. Cell Biol., 5, 699–711.
Stein,S.E. (1990) National Institute of Standards and Technology (NIST) mass

spectral database and software. Version 3.02, USA.
Storey,J.D. (2002) A direct approach to false discovery rate. J. R. Stat. Soc. B,

64, 479–498.
Tabb,D.L. et al. (2007) MyriMatch: highly accurate tandem mass spectral

peptide identification by multivariate hypergeometric analysis. J. Proteome
Res., 6, 654–661.

Vizcaino,J.A. et al. (2016) 2016 update of the PRIDE database and related

tools. Nucleic Acids Res., 44, D447–D456.
Walzthoeni,T. et al. (2012) False discovery rate estimation for cross-linked

peptides identified by mass spectrometry. Nat. Methods, 9, 901–903.
Wang,X. et al. (2018) Target-decoy-based false discovery rate estimation for

large-scale metabolite identification. J. Proteome Res., 17, 2328–2334.
Yang,R. et al. (2019) A new class of metrics for learning on real-valued and

structured data. Data Min. Knowl. Disc., 33, 995–1016.
Yates,J.R. et al. (1995) Method to correlate tandem mass spectra of modified

peptides to amino acid sequences in the protein database. Anal. Chem., 67,

1426–1436.
Young,J.C. and Minder,C.E. (1974) Algorithm as 76: an integral useful in cal-

culating non-central t and bivariate normal probabilities. J. R. Stat. Soc. C,

23, 455–457.
Zhu,Y. et al. (2018) Nanodroplet processing platform for deep and quantita-

tive proteome profiling of 10-100 mammalian cells. Nat. Commun., 9,

882.

Mixture models for false discovery rate estimation i753

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i745/6055912 by guest on 31 D

ecem
ber 2020

Predrag Radivojac


	l
	l
	l
	tblfn1
	l
	tblfn2
	l
	tblfn3
	l
	l
	l

