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Abstract: The structural, functional, and mechanistic characterization of several types of post-
translational modifications (PTMs) is well-documented. PTMs, however, may interact or interfere

with one another when regulating protein function. Yet, characterization of the structural and func-

tional signatures of their crosstalk has been hindered by the scarcity of data. To this end, we
developed a unified sequence-based predictor of 23 types of PTM sites that, we believe, is a useful

tool in guiding biological experiments and data interpretation. We then used experimentally deter-

mined and predicted PTM sites to investigate two particular cases of potential PTM crosstalk in
eukaryotes. First, we identified proteins statistically enriched in multiple types of PTM sites and

found that they show preferences toward intrinsically disordered regions as well as functional roles

in transcriptional, posttranscriptional, and developmental processes. Second, we observed that tar-
get sites modified by more than one type of PTM, referred to as shared PTM sites, show even

stronger preferences toward disordered regions than their single-PTM counterparts; we explain

this by the need for these regions to accommodate multiple partners. Finally, we investigated the
influence of single and shared PTMs on differential regulation of protein–protein interactions. We

provide evidence that molecular recognition features (MoRFs) show significant preferences for

PTM sites, particularly shared PTM sites, implicating PTMs in the modulation of this specific type
of macromolecular recognition. We conclude that intrinsic disorder is a strong structural prerequi-

site for complex PTM-based regulation, particularly in context-dependent protein–protein interac-

tions related to transcriptional and developmental processes. Availability: www.modpred.org

Keywords: post-translational modification; intrinsically disordered protein; molecular recognition
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INTRODUCTION

Protein post-translational modifications (PTMs) are

important biochemical events involved in the regula-

tion of various cellular functions.1–3 PTM-based reg-

ulation can occur through the individual effect of a

modification at a single residue or through combined

effects over multiple sites undergoing the same or

different modifications. This modus operandi is best

exemplified by the “histone code hypothesis,” accord-

ing to which distinct PTMs on histones, sequentially

or in combination, regulate downstream chromatin

processes.4 Over the past decade, growing evidence

has suggested that the concept of regulatory inter-

play among PTMs can be extended to other pro-

teins,3,5–8 with specific examples including PDGFR-

b,9 p300/CBP,10 RNA polymerase II (subunit

RPB1),11 a-tubulin,12 Cdc25C phosphatase,13 FoxO

family of transcription factors,14 and p53.15 Further-

more, several recent large-scale studies have estab-

lished extensive crosstalk between different pairs of

PTMs such as O-linked glycosylation-phosphoryla-

tion,16 acetylation-phosphorylation,17 acetylation-

ubiquitylation18,19 and phosphorylation-ubiquityla-

tion.20 The above studies have revealed three gen-

eral modes of concerted PTM-based regulation.

First, nonadjacent residues may be modified by one

or more PTMs in a sequential or combinatorial man-

ner to induce structural changes. Second, clusters of

PTMs within a small region of the protein may alter

local surface properties for recognition by effector

molecules. Third, depending on the context, for

example, tissue-type, stage of cell cycle, or external

stimuli, steric competition between PTMs at the

same site may result in the differential control of

protein function or a different function altogether.

For a given protein, it is possible that all these

modes of regulation exist simultaneously (Fig. 1).

PTM sites have been extensively studied with

respect to their structural preferences and can broadly

be divided into two groups.21–23 The first group

includes PTM types with sites largely found in regions

of well-defined secondary structure. Examples include

acetylation,24,25 palmitoylation,23 and N-linked glyco-

sylation,26 among others. PTMs from the second group

show strong preference for intrinsically disordered

regions, that is, regions without a single dominant

macrostate under physiological conditions.27,28 For

example, statistical associations between PTM sites

and intrinsic disorder have been observed for phospho-

rylation,29,30 methylation,31 and ubiquitylation.32

Understanding the structure surrounding PTM sites

has also provided key mechanistic insights into the

effects of PTMs on protein folding and binding. Modi-

fied residues can induce orthosteric and/or allosteric

effects that result in shifts toward novel low-energy

conformations and their (de)stabilization.3,33–35

PTMs can also occur at interaction interfaces

and can influence protein-protein binding.23,36 In

this context, molecular recognition features (MoRFs)

are an interesting class of interaction sites. MoRFs

are short structured or loosely structured fragments

within disordered regions that are important for

high-specificity/low-affinity interactions in signal

transduction, cell regulation, and many other func-

tions.37,38 The observation of PTM sites in MoRFs

has led to the speculation that PTMs may enable

selective binding of these regions to one or more

partners in a dynamic- and context-specific

manner.39

Despite the progress in understanding the struc-

tural aspects of PTMs and their resulting conse-

quences, the focus has largely been on

characterizing the different types of modifications

individually. However, with recent advances in the

rapid and high-throughput identification of some

PTMs, large-scale studies that integrate information

on different types of modification sites have become

realistic. For example, two recent studies have used

conservation of individual sites40 or coevolution of

site-pairs41 to infer global functional relationships

between PTM sites. At the local level, Woodsmith

et al.42 observed that more than 80% of PTM inte-

gration (PTMi) spots overlap with disordered

regions. Most recently, short conserved sequence

motifs containing any two PTM sites have been

identified and used to assign joint functional roles to

such pairings of sites.43

Interestingly, to date, there have been no large-

scale studies on the characterization of properties

surrounding sites shared by multiple PTMs. This

can largely be attributed to a paucity of data for

such sites. Even with the latest methods of detec-

tion, a full repertoire of sites has not been estab-

lished for any PTM type.44 Furthermore, most

methods have been applied only to a handful of

PTMs such as phosphorylation, glycosylation, acety-

lation, and ubiquitylation, thus limiting studies on

shared modification sites. A complementary

approach involves the use of computational methods

for predicting PTM sites. Many PTM site prediction

methods have been developed;45,46 however, to the

best of our knowledge, no unified tool exists for a

simultaneous prediction of sites for more than a few

types of modifications. Zhou et al. suggested a uni-

fied user interface to connect several independently

developed predictors for different PTM types.47 This

approach introduces a problem of interpreting heter-

ogeneous prediction results, for example scores

drawn from different distributions.

In this study, we predict and analyze multiple

types of PTM sites simultaneously to gain structural

and functional insights into the regulation of pro-

teins by multi-PTM interplay. Specifically, we focus

on both protein-level and site-level regulation and

address issues of limited data through the predictor

development. Our work provides evidence that
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intrinsic disorder is a key structural signature of

complex PTM-based crosstalk in eukaryotes and ena-

bles the regulation of protein–protein interactions in

transcriptional and developmental processes.

Results

Predictor development and performance
evaluation

To train a combined predictor of PTM sites, we first

collected data from public databases and the litera-

ture (see Materials and Methods). In total, this data

contained 278,703 PTM sites. These sites were found

in 54,484 proteins from 3,219 species. After the

removal of redundant sites, the training data set

contained 126,036 experimentally verified PTM sites

(positives) and 971,129 sites not known to be modi-

fied (negatives), as shown in Table I. Next, we

trained bootstrapped ensembles of logistic regression

models for each PTM type and evaluated them using

cross-validation. Finally, we built a webserver and

standalone tool called ModPred for the prediction of

PTM sites on single and multiple sequences, respec-

tively. A schematic summary of the models in

ModPred is provided in Supporting Information,

Figure S1. All data sets, installable software, and

the prediction server can be accessed at our website

(see Materials and Methods).

The classification performance of ModPred com-

bined over all amino acids for a given PTM is shown

in Table I. The model using evolutionary features

performed better than the model without them (21

Figure 1. Examples of the three modes of concerted PTM regulation. (A) The primary sequence of the p53 tumor suppressor

protein along with the structure of its DNA-binding domain (ID: 2YBG). The different PTM sites are highlighted and labeled in

different colors. Sequential ubiquitylation of lysines in the DNA-binding domain and the C-terminus has been shown to regulate

the nuclear export of p53.85 Additionally, relationships between different but overlapping clusters of N-terminal phosphorylation

sites have been thought to check untimely p53 activation and enable signal integration and amplification over multiple stress

pathways.86 A recent study identified 150 novel modifications and suggested that by virtue of the unusually high number of

PTM sites, the combinatorial regulation of p53 is far more complex than previously thought.87 In this study, we refer to such

proteins as being enriched in one or more types of PTM sites. (B) Acetylation and dimethylation of Lys20 in histone H4 results

in recognition by the transcriptional coactivator CBP (ID: 2RNY, model 6) and the DNA-damage response protein 53BP1 (ID:

2LVM, model 10), respectively. Only the most informative NMR models as calculated by Olderado88 are shown here. A slight

difference in structure can be seen, with the acetylated form having a larger bend than the dimethylated form. Each of these

interactions results in a different functional outcome. The binding of CBP has a strong affinity in vitro89 and is speculated to

increase the acetylation of H3 and H4 histones, which is generally associated with transcription activation.90,91 Unlike the recog-

nition of the acetylation mark, the interaction between 53BP1 and dimethylated form occurs only in a specific cellular context

and is important for the promotion of nonhomologous end-joining repair in response to DNA damage.92 Recently, a mass

spectrometry-based study of in vivo histone acetylation dynamics reported that a sharp reduction in acetylation at Lys20 was

due to increased methylation.93 For simplicity, we refer to such sites of competition (with more than one observed modification)

as shared PTM sites, those sites with only one observed modification as single-PTM sites and those with no observed modifi-

cations as non-PTM sites.
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out of 23 PTMs; P 5 2.9 3 1026; binomial test);

therefore, we used this model in all subsequent anal-

yses. Except for the cases of specialized predictors

(e.g., kinase-specific predictors of phosphorylation

sites48), ModPred reaches similar accuracy as other

available tools and thus provides benefits by unify-

ing the computational and statistical framework uti-

lized across different PTMs. Unfortunately, accurate

direct comparisons with other tools are very diffi-

cult, as witnessed by the emergence of critical

assessments in many fields,49 because those tools

use different data sets, different evaluation proto-

cols, or have different application objectives.

Proteins containing long regions of disorder are

enriched in multiple types of PTM sites
We reasoned that the probability of concerted regu-

lation by multiple types of PTMs of a protein would

be higher if the protein is predicted to contain an

unusually large number of sites for more than one

type of PTM. To identify such site-enriched proteins,

we first ran ModPred on two data sets: the set of all

eukaryotic disordered proteins obtained from Dis-

Prot50 and the set of reference proteomes of seven

eukaryotic species (see Materials and Methods). We

“called” PTM sites based on thresholds correspond-

ing to a false positive rate of 0.1. Then, for a given

modification, we defined a protein to be enriched in

PTM sites if it contained a significantly larger pro-

portion of predicted sites than expected by chance. A

significant P-value implied that the protein held the

potential to be excessively modified.

Next, we investigated the structural properties

of proteins enriched in sites for multiple PTM types.

For all proteins, we counted the number of PTM

types that showed significant P-values in our statis-

tical enrichment test and grouped them based on

whether they contained long regions of disorder (at

least 30 consecutive residues) or not. On the DisProt

data set, we observe that proteins containing experi-

mentally characterized long disordered regions

(LDRs) are enriched in more types of PTM sites

than proteins without LDRs (1.88 vs. 0.99; P 5 2.3 3

1027; t-test). Conversely, proteins enriched in two or

more types of PTM sites contain significantly larger

fractions of disordered residues (0.55 vs. 0.28;

P 5 6.2 3 10218; t-test). As shown in Figure 2(A),

while half of all proteins containing known LDRs

are enriched in at least two types of PTM sites, only

a quarter of proteins without LDRs show such

multi-PTM enrichment.

For the data set of seven proteomes, we used

predictions of structural disorder51 to address the

unavailability of known disordered regions. In this

case as well, we observe that proteins containing

predicted LDRs are enriched in sites for a larger

number of PTM types than proteins without LDRs

(1.42 vs. 0.39; P<10264; t-test). As further support,

we also find that proteins containing extremely long

regions of disorder (at least 100 consecutive resi-

dues) are enriched in more types of PTM sites than

LDR-containing proteins (2.27 vs. 0.88; P< 10264; t-

test). Again, proteins enriched in at least two types

of PTMs show preferences for disordered regions

(average disorder score of 0.43 vs. 0.11; P< 10264; t-

test). We find that 65% of proteins that are predicted

to contain LDRs are enriched in sites for one or

more types of PTMs [Fig. 2(B)], while 40% are

enriched in sites for at least two PTM types. These

fractions are considerably larger than those for the

set of proteins without LDRs (23 and 7%,

respectively).

Figure 2. Distribution of the number of PTM types enriched in (A) the set of known disordered proteins from DisProt and (B)

the proteomes of seven model organisms when all predicted sites were included. For a given protein, the number of PTM types

for which a statistically significant enrichment of sites was found was recorded. This number is represented in the groupings on

the x-axis. When performed over the entire data set, this analysis yielded proportions of the proteome for each PTM type

enrichment count. This is represented on the y-axis.
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Since disordered regions are likely to occur at

the terminal regions of proteins, we also investi-

gated whether these distributions are the result of a

nonrandom accumulation of PTM sites at the ter-

mini. We find that when residues at the N- and C-

termini (10% of protein length) are excluded, the

distributions largely remain the same, indicating the

absence of significant positional bias for enriched

PTM sites in the primary structure (data not

shown).

Functional signatures of proteins enriched in
multiple types of PTM sites

To better understand the functional roles of proteins

under complex PTM-based regulation, we carried

out an enrichment analysis of UniProt52 keywords

associated with proteins statistically enriched in pre-

dicted sites for at least two PTM types. We used a

one-sided Fisher’s exact test53 to ask whether the

relative frequencies of occurrence of particular key-

words were significantly larger in this set of proteins

(main set) than in the remaining proteins (control

set). We find that the top 10 keywords that correlate

with enrichment of multiple PTMs are largely

related to DNA-binding and transcriptional regula-

tion processes [Fig. 3(A)]. While not represented in

the top 10, keywords such as “RNA-binding,”

“mRNA processing,” “mRNA splicing,” and

“spliceosome” all show significant P-values (Support-

ing Information, Table S2). Additionally, we find sig-

nificant enrichment of keywords associated with

cellular differentiation and development such as

“cell cycle,” “cell division,” and “Wnt signaling

pathway.” Significantly depleted terms include those

associated with membrane proteins and various met-

abolic enzymes. Interestingly, keywords related to

signaling such as “transducer,”, “sensory trans-

ducer,” and “receptor” are significantly depleted for

the set of proteins enriched in multiple PTMs. These

terms are generally associated with proteins that

exist in the membrane and participate in the initial

steps of major signaling pathways. While this may

be suggestive of preferential differences in upstream

and downstream signaling proteins for PTM-based

regulation, we hesitate to assign any biological

meaning to this depletion.

Previous studies have shown that long regions

of intrinsic disorder correlate with signaling, tran-

scription, splicing, and developmental processes and

anticorrelate with metabolic and transporter proc-

esses.54–56 To exclude the possibility that our results

are a consequence of the presence of LDRs as

opposed to the enrichment in multiple types of PTM

sites, we split the main and control protein sets

based on whether they contained LDRs or not. We

then compared the LDR-containing proteins in the

main set to the LDR-containing proteins in the con-

trol set. Similarly, we repeated the analyses only on

the ordered proteins. As shown in Figure 3(B,C), the

top 10 keywords in both the disordered and ordered

analyses largely confirm the associations detected

above (Supporting Information, Table S2). Three

additional observations stand out. First, the term

“alternative splicing” is significantly enriched in the

disordered main set but significantly depleted in the

ordered main set, which suggests a joint role of

PTMs and alternative splicing in generating func-

tional diversity of disordered proteins. On the other

hand, although ordered proteins are less likely to be

alternatively spliced,57 functional diversity in these

Figure 3. UniProt keyword enrichment analysis for the set of proteins enriched in sites for two or more PTM types. P-values

were calculated using a one-tailed Fisher’s exact test for each keyword and fold-enrichment or depletion was calculated by tak-

ing the ratios of the frequencies of keywords in the main set to the frequencies in the control set. This was repeated for three

types of data sets—(A) the set of all proteins, (B) the set of proteins with LDRs, and (C) the set of proteins without LDRs. Only

the top 10 keywords are shown here and additional significant keywords are reported in Supporting Information, Table S2.
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proteins may still be enhanced through complex

PTM-based regulation. Second, several keywords for

mitochondrial localization and processes such as

“tricarboxylic acid cycle,” “mitochondrion,” “pyruvate,”

“respiratory chain,” “electron transport,” “ubiquinone,”

and “glucose metabolism” are specifically enriched in

the ordered main set. On closer inspection, the most

frequently enriched PTM types in these proteins were

acetylation and ubiquitylation, which have been previ-

ously observed in mitochondria.58,59 Third, molecular

functions related to immunity such as “antibiotic,”

“MHC I,” “defensin,” and “fungicide” are enriched in

the ordered main set but not in disordered. This sug-

gests a role for structure-based PTM regulation in

immune response.

Shared PTM sites have stronger preference for
disordered structures than single-PTM sites

We investigated the structural preferences of sites

occupied by more than one PTM (shared PTM sites)

in four ways. First, we mapped experimentally

determined shared PTM sites to the DisProt data

set. Second, we used ModPred’s predictions to iden-

tify putative shared PTM sites and mapped them to

this data set. Third, we used a data set of 648 exper-

imentally determined shared PTM sites, obtained by

combining sites for individual PTMs from our train-

ing data and mapping them to the data set consist-

ing of seven proteomes. Finally, we mapped

predicted shared PTM sites to this data set as well.

For the DisProt data set, we compared the propor-

tion of single and shared PTM sites occurring in

ordered and disordered regions. In the seven pro-

teomes, we directly compared disorder prediction

scores of single-PTM sites to those of putative sites

of competition.

The mapping of known shared PTM sites to the

DisProt data set yielded too few sites to allow a

“per-PTM” analysis. Overall, a larger percentage of

shared PTM sites was found in disordered regions

when compared to single-PTM sites (65.3 vs. 48.3%;

P< 10264; t-test). When we considered predicted

sites, a larger proportion of shared sites was present

in disordered regions than that of single-PTM sites

in almost all cases [54.0 vs. 40.8%; P< 10264; t-test;

Fig. 4(A)]. Generally, disordered regions are more

likely to harbor both single and shared PTM sites

than ordered regions (Table II). However, we note

that 72% of residues in the DisProt data set lack

any structural annotation.

In the case of the seven proteomes, for most

PTMs, experimentally determined shared sites have

higher disorder scores than single-PTM sites for 10

out of 14 PTM types [Fig. 4(B)]. The major excep-

tions were farnesylation and geranylgeranylation;

however, further investigation revealed that both

contained only 10 shared sites, all of which were

shared between the two. Since farnesylation and

geranylgeranylation are considered to be specific

cases of a PTM generally referred to as prenylation,

it appears that these sites may not be bona fide

shared PTM sites. While the general trend suggests

that shared sites are more likely to be disordered

than single-PTM sites (mean scores 0.74 vs. 0.72),

the finding was not statistically significant (P 5 0.15;

t-test).

When predicted PTM sites are considered, this

trend becomes more apparent with 21 out of 25

types of PTMs showing significantly increased mean

disorder scores when predicted to be occupied by

another PTM [Fig. 4(C)]. Overall, the mean disorder

scores of shared sites are significantly higher than

that of single-PTM sites (0.70 vs. 0.67; P< 10264; t-

test). The lack of significance for farnesylation, gera-

nylgeranylation, myristoylation, and N-terminal gly-

cine acetylation can be explained by the fact that

these PTMs occur at terminal regions of proteins

and are, thus, more likely to occur in disordered

regions even when they are the lone modification at

a site. Interestingly, the differences in scores are

large when considering PTMs at order-promoting

residues such as cysteine (palmitoylation) and tyro-

sine, further strengthening the hypothesis that sites

that can be occupied by more than one PTM show

distinct preferences for intrinsic disorder.

MoRFs are more likely to harbor PTM sites
(particularly shared sites) than non-MoRF

regions

Protein–protein interactions of intrinsically disor-

dered proteins are commonly mediated through

MoRFs. The association of PTM sites with structural

disorder prompted us to ask if they preferentially

occur within MoRFs and, thus, are likely to be func-

tionally relevant in regulating protein–protein inter-

actions. To test this, we mapped single and shared

PTM sites to a data set of 897 MoRFs from 824

eukaryotic protein sequences. However, since we

excluded proteins without any PTM annotation, our

data set was reduced to 523 MoRFs from 502 pro-

teins. We find that 30% of all MoRFs contained at

least one experimentally verified PTM site and 12%

of all MoRFs contained at least two known PTM

sites. Furthermore, at least two types of PTMs were

observed in 4% of all MoRFs. Since these low frac-

tions could be a consequence of incomplete PTM

annotations, we separately considered predicted sites.

In this case, the data set was larger: 809 MoRFs in

787 proteins. For this data set, 70% and 45% of all

MoRFs were predicted to contain at least one and

two PTM sites, respectively. At least two types of

PTMs were observed in 42% of the MoRF data set.

We then asked if MoRFs preferentially harbor

PTM sites in general. Using a one-tailed Fisher’s

exact test, we tested whether the proportion of PTM

sites in MoRFs was greater than that in non-MoRF
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regions and if this difference was greater than

expected. This is indeed the case for both known and

predicted PTM sites (Table III; upper half). Next, we

split the PTM site counts into those of shared and

single PTM sites. We then tested whether the propor-

tion of shared PTM sites in MoRFs was significantly

greater than that in non-MoRF regions. Shared sites

are significantly more likely to occur in MoRFs than

in non-MoRF regions (Table III; lower half). Further-

more, MoRFs contain a greater proportion of shared

sites than that in other disordered regions (Known:

0.05 vs. 0.01; P 5 1.8 3 1025, Predicted: 0.18 vs. 0.14;

P 5 4.5 3 1028). However, it is not clear whether

PTM sites (as a whole) are more likely to be found in

MoRFs than in disordered regions (Known: 0.38 vs.

0.16; P 5 8.7 3 10234, Predicted: 0.35 vs. 0.40; P 5 9.6

3 10213). This ambiguity may be attributed to the

biased and incomplete annotation of known MoRFs.

Discussion

The importance of PTMs and their complex inter-

play in increasing proteomic diversity at low evolu-

tionary costs is only now being recognized.1,3

However, the structural and functional aspects of

Figure 4. Disorder preferences of sites that are uniquely modified by one PTM when compared to those for sites modified by

multiple PTMs on three data sets—(A) Predicted PTM sites mapped to known disordered regions in DisProt, (B) Known PTM

sites mapped from the original training data set to predicted disordered regions in the seven proteome data set, and (C) Pre-

dicted PTM sites mapped to predicted disordered regions in the seven proteome data set. Percentage of sites in disordered

regions are compared in A and mean disorder scores are compared in B and C. Error bars represent standard error derived

through bootstrapping (1000 times). PTMs marked with a “*” have significantly different percentages/average disorder scores,

based on two-sample t-tests, corrected for multiple testing (Benjamini–Hochberg, a 5 0.05).
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this layer of regulation are not completely under-

stood. In this study, we focused on two extreme

cases of concerted PTM-based regulation using modi-

fication site information obtained through high-

throughput data integration and computational pre-

diction. We found statistical associations between

the presence of intrinsic disorder and both protein-

level and site-level PTM crosstalk. Our results also

highlight the role of PTMs in jointly regulating

molecular recognition in processes such as transcrip-

tion and cell development.

Predictor development
We first developed ModPred, a PTM site predictor

from amino acid sequence that is amenable to an

array of applications ranging from whole proteome

characterization to guiding experimental studies on

a single protein. An important characteristic of

ModPred is that its objective is to estimate the over-

all propensity of a particular amino acid to be modi-

fied, across all species and different modifying

enzymes. We achieved this by training a robust

model to achieve similar accuracy across the entire

feature space. In comparison, models that are

organism-specific and/or potentially utilize informa-

tion other than sequence such as structural, modify-

ing enzyme-specificity, or protein–protein interaction

data would be expected to outperform ModPred on

such organisms. ModPred can serve as a reference

model to these more sophisticated solutions. How-

ever, such data are currently available for only a

handful of species (and is noisy and incomplete even

there), for example kinase information is available

for about 12% of curated phosphorylation sites in

Phospho.ELM.60 It is thus worthwhile to develop

sequence-based tools that generalize well across

organisms and modifying enzymes even at a cost of

somewhat increased error rates. Furthermore, the

use of a common statistical framework alleviates sev-

eral practical problems encountered when connecting

independently developed predictors, such as differen-

ces in code implementation, feature generation, soft-

ware dependencies, or output score distributions.

Additionally, the interpretation of scores from these

different predictors is nontrivial. For each predictor,

the use of default score thresholds or arbitrary user-

defined cutoffs such as 0.5 results in a different false

positive rate. This variation in the number of false

positive predictions is particularly problematic in

studies such as ours, where different types of PTM

sites are analyzed at the same time. Thus, in this

context, using a unified predictor is beneficial.

Table III. Preferences of Known and Predicted PTM Sites in MoRF Regions when Compared to Non-MoRF
Regions

Fraction of PTM sites

Sites

Known PTM Predicted PTM

MoRF Non-MoRF P-value MoRF Non-MoRF P-value

PTM 301 5,616 2.1 3 10266 1,711 64,489 1.9 3 10273

Non-PTM 758 53,431 3,242 215,031
Proportion of

PTM sites
0.284 0.095 0.345 0.231

Fraction of shared PTM sites

Known PTM Predicted PTM

Sites MoRF Non-MoRF P-value MoRF Non-MoRF P-value

Shared 15 73 3.0 3 1025 313 7,808 2.3 3 10213

Single-PTM 286 5,543 1,398 56,681
Proportion of shared

PTM sites
0.050 0.013 0.183 0.121

Comparisons of the proportions of PTM sites in MoRFs to those of non-MoRFs are provided in the upper half. In the lower
half, these sites are further split into shared and single PTM sites and compared. P-values were derived from one-tailed
Fisher’s exact tests on 2 3 2 contingency tables of site counts. P-values marked in bold indicate that they are significant
after correcting for multiple testing (Benjamini–Hochberg, a 5 0.01).

Table II. Proportions of Disordered and Ordered Resi-
dues (as annotated by DisProt) Harboring Known and
Predicted PTM Sites (Single and Shared)

Types of
PTM sites

Known Predicted

Disordered
(%)

Ordered
(%)

Disordered
(%)

Ordered
(%)

Single 2.81 1.91 22.91 9.99
Shared 0.08 0.00 4.95 0.06

Each cell contains the percentage of residues in the struc-
tural category that is either known or predicted to be a site
of one or more than one modifications. Values marked in
bold indicate the dominant structural category.

Pejaver et al. PROTEIN SCIENCE VOL 23:1077—1093 1085



Multiply modified proteins tend to be

intrinsically disordered
Theoretically, even a handful of sites for different

PTMs on a protein are sufficient to elicit combinatorial

regulation. However, without more detailed informa-

tion, interpreting the presence of a few sites as evi-

dence of PTM site interplay becomes unreasonable.

Therefore, we adopted a more conservative approach

(analogous to the extreme scenario of “hypermo-

dification”61,62) and identified proteins statistically

enriched in sites for multiple PTM types, as predicted

by ModPred. We found that these proteins contained a

greater fraction of disordered residues than proteins

enriched for at most one type of PTM sites. These pro-

teins largely participate in context-dependent proc-

esses such as transcriptional and posttranscriptional

regulation. Incidentally, most known cases of concerted

PTM-based regulation have been recorded in histones

and transcription factors. For example, Benayoun and

Veitia have proposed that a sophisticated “PTM code”

is perhaps necessary for transcription factors as differ-

ently modified isoforms could result in distinct DNA-

and protein-binding specificities and affinities, thus

enabling them to participate in a variety of signal-

dependent processes.7

We note that because of spatiotemporal differen-

ces of certain PTMs, sites shared by PTMs may not

necessarily be sites of competition. Nevertheless, we

also investigated the structural properties surround-

ing known or predicted shared PTM sites and found

that they preferentially lie in intrinsically disor-

dered regions. Remarkably, this was the case even

with PTMs typically known to prefer ordered regions

such as acetylation, palmitoylation, and N-linked

glycosylation. We reason that since shared PTM

sites need to be recognized and modified by multiple

enzymes with varying substrate specificities, they

benefit from the structural flexibility present in dis-

ordered regions to accommodate multiple partners.

Within disordered regions, we observed that the pro-

portion of PTM sites, particularly that of shared

sites in MoRFs was greater than that for non-MoRF

regions. Taken together, our results suggest that

both single and shared PTM sites are important in

modulating disorder-based interactions. On modifi-

cation, sites in MoRFs may induce local changes in

structure that result in the formation of partially or

fully developed secondary structure elements, recog-

nizable to binding partners. Alternatively, modifica-

tions in MoRFs may act as inhibitors of protein–

protein interactions through transition to an unfav-

orable secondary structure element. Additionally,

the presence of shared PTM sites in MoRFs can

allow for the presentation of structurally different

recognition surfaces, thus enhancing binding-

partner diversity. Interestingly, while 70% of MoRFs

were predicted to contain at least one PTM site,

only 20% of all MoRFs were predicted to contain at

least one shared PTM site, suggesting that the modi-

fication of a single site and the interaction between

neighboring single-PTM sites may be more common

mechanisms in MoRF interactions. We note that

eukaryotic linear motifs (ELMs)63 and short linear

motifs (SLiMs)64 have also been implicated in

disorder-based protein–protein interactions. A natu-

ral extension of our work would be to investigate the

relationship between shared sites and linear motifs.

Intrinsic disorder inversely correlates with rates

of synthesis and protein half-life.30 The same study

also suggested that phosphorylation may fine-tune

the abundance and availability of such proteins,

based on requirements in the cell at any given time.

We speculate that the above mechanisms of complex

PTM-based regulation provide elegant solutions to

counter the limited availability of intrinsically disor-

dered proteins. We suspect that at the protein-level,

the unusually large number of PTM sites provides a

framework for conformational selection, as suggested

by Ma and Nussinov.35 This may be particularly

effective in LDRs, which are known to harbor many

binding sites that could be used sequentially to bind

multiple partners.65 Additionally, adjacent and

shared PTM sites may result in local changes that

allow for one-to-many mechanisms of multipartner

binding. For example, a site shared by two PTMs

may result in the simultaneous availability of three

distinct recognition surfaces for a particular period

of time and it is possible that all binding scenarios

occur to varying degrees. In fact, recent arguments

support the notion of the simultaneous existence of

multiple “mod-forms” (specific patterns of modifica-

tions of a protein) with distributions that vary

according to the cellular context.66

Related work

To the best of our knowledge, there have been only

four large-scale studies that integrate PTM data

from multiple sources to characterize relationships

between PTMs. Beltrao et al. inferred conservation

of individual PTM sites within protein domains to

define PTM “hotspots” and assigned functional roles

to small groups of PTM sites.40 Minguez et al. used

coevolution of sites for 13 PTMs and considered

them in pairs to infer functional relationships

between them.41 Woodsmith et al. used only four

types of PTM sites to comprehensively characterize

protein-level and region-level regulation in protein

complexes.42 Peng et al. identified conserved

sequence motifs suggestive of crosstalk between

pairs of PTM sites close to each other.43 Our work

differs from previous studies in three ways. First, by

taking advantage of our predictor, the scale of the

analysis, and the coverage of PTMs in this study are

far greater than in any previous work. Second,

unlike these studies, our primary objective was to

gain broad structural and functional insights into
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PTM-based crosstalk. Last, due to the complexities

of translating static PTM site data to dynamic regu-

latory phenomena, we only concentrate on two

extreme cases of concerted PTM-based control. Dur-

ing the revision of this manuscript, Huang et al.

reported that proteins containing multiple types of

PTM sites possess more disordered regions and are

involved in chromatin and DNA-related processes.67

While our study differs from this work in the use of

statistical enrichment of PTM sites in a protein, our

findings are in general agreement with its results.

Limitations

The use of a predictive approach gives rise to poten-

tial sources of bias. First, redundant sequences in

the data sets are likely to skew the observed results

as predictors would, in effect, “call” the same PTM

sites and disordered regions more than once. We

accounted for this by running CD-HIT68 on our

data sets to filter out redundant sequences at 40%

sequence identity and repeating all our analyses.

This reduction did not change our original observa-

tions (data not shown). Second, the effects of false

positive predictions of PTM sites on the study are a

concern. When we called PTM sites based on even

more stringent thresholds (corresponding to a false

positive rate of 0.01), the observed trends did not

change in general (data not shown). However, due

to low sensitivities of the predictor at this threshold

(Table I), it is likely that a lot of true PTM sites are

missed. Third, the use of intrinsic disorder as a fea-

ture in ModPred may potentially lead to biased

inferences on its relationship with concerted PTM

regulation, particularly if its contribution to each

prediction is high. To address this, we trained mod-

els without features related to intrinsic disorder,

performed 10-fold cross-validation and compared

the resulting performance to the original ModPred

model. We found that the removal of these features

had negligible effects on predictor performance and

that the resulting prediction scores were highly cor-

related with those of the original model (data not

shown). Last, not all PTMs occur in all proteins in

all species. For example, sulfation occurs only on

proteins that pass through the Golgi apparatus and

canonical O-linked GlcNAcylation is not known to

occur in yeast. ModPred does not explicitly take

these factors into consideration when making pre-

dictions. Therefore, we repeated all analyses while

limiting our PTMs to lysine acetylation, methyla-

tion, N-linked glycosylation, N-terminal acetylation,

phosphorylation, SUMOylation, and ubiquitylation.

Again, we found that the trends did not change

(data not shown). In general, while the particular

numbers obtained in this study through prediction

may differ from the actual (but unknown) values,

we believe that our results provide confident

assessments of all trends. We note that, unlike

intrinsic disorder, PTM-based regulation is fre-

quently observed in all domains of life and using

only eukaryotic proteins may be an additional

source of bias. However, because of their underre-

presentation in the training data, archaeal, bacte-

rial, and viral proteins are prone to false positive

predictions by ModPred. The potential severity of

this bias led us to limit our data set to eukaryotic

species.

Materials and methods

Data collection

Training data. Experimentally verified PTM sites

were mainly collected from Swiss-Prot52 (Release

2011_08), Protein Data Bank69 (January 2012), and

Human Protein Reference Database70 (Release 9).

Sites annotated with terms such as “by similarity,”

“probable,” “potential,” and “partial” were excluded.

This data set was supplemented by high-throughput

data from PHOSIDA,71 Phospho.ELM60 (Release

9.0), PhosphoSitePlus,72 and sites that we manually

extracted from the literature.

Eukaryotic reference proteomes. Reference pro-

teomes of seven model organisms were downloaded

from Swiss-Prot (Release 2013_08). These included

Saccharomyces cerevisiae (6621 proteins), Caeno-

rhabditis elegans (3430), Arabidopsis thaliana

(12,187), Drosophila melanogaster (3169), Rattus

norvegicus (7858), Mus musculus (16,618), and

Homo sapiens (20,260). In total, 70,143 proteins

were used for all analyses.

DisProt data set. A set of experimentally verified

disordered proteins were downloaded from DisProt

(Release 6.02)50 and its annotations were used to

identify disordered and ordered regions. Archaeal,

bacterial, and viral proteins were excluded, as sev-

eral PTMs considered in this study are not known to

occur in these organisms. Only proteins with a mini-

mum length of 30 amino acids were considered. The

final set contained 493 proteins from 55 eukaryotic

species, with 877 annotated disordered regions and

58 annotated ordered regions.

MoRF data set. A data set consisting of 4839

MoRFs extracted from the Protein Data Bank (PDB)

was obtained using a method similar to that

described in Hsu et al.39 (structured partner >40

residues). After removing duplicate MoRFs and

those that map to ambiguous regions of protein

sequence, 1769 MoRFs remained. Since some of

these MoRFs overlap with each other, MoRFs from

the same protein sequence (as per UniProt IDs)

were merged together. After merging, only MoRFs

between lengths 5 and 25 were included. Next,
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overlapping MoRFs from 100% identical sequences

(such as those from orthologous or paralagous

sequences) were merged together. Finally, MoRFs

from archaeal, bacterial, and viral proteins were

excluded. The final set used in this study consisted

of 897 MoRFs from 824 protein sequences.

Predictor construction

Data preparation and redundancy removal.

All sites in our compiled data set that were anno-

tated as PTM sites were defined to be positive train-

ing examples and all other occurrences of the

corresponding residues were defined to be negative

examples. More specifically, for each PTM, a set of

proteins that contained positive examples for that

particular PTM was also used to define negative

examples. In the case of amidation (motif), due to

the small number of negatives present in our origi-

nal data set, we randomly sampled residues from

our overall PTM data set (excluding plant proteins)

and added them to our training data. Farnesylation,

geranylgeranylation, myristoylation, and N-terminal

acetylation are PTMs that are known to occur at

specific termini and/or positions in a protein. In

these cases, negative examples from the same pro-

tein could not be used and were solely obtained

through the above random-sampling procedure.

Each positive and negative site was associated

with a 25-residue fragment centered at the residue

of interest (for the sites near termini, the fragments

were asymmetric). To use a nonredundant training

set and achieve good generalization, we removed all

residues associated with fragments that were more

than 40% identical to other fragments in the data

set.29,32 In cases where a fragment containing a neg-

ative site was 40% identical to a fragment contain-

ing a positive site, the one with the negative class

label was removed because its class designation was

less reliable.

Additional constraints were applied to the phos-

phorylation data sets due to their large sizes and

the variation in quality in different data sources.

First, only data from Swiss-Prot, HPRD, and PDB

were used as the addition of high-throughput data

offered little improvement in performance (data not

shown). Second, for every positive site in a protein,

we limited the number of negative sites sampled

from it to five.

Feature extraction. Three types of features were

generated for model training and evaluation. We dis-

tinguish (1) sequence-based features, (2) features

based on physicochemical and other predicted prop-

erties, and (3) evolutionary features.

The first type included amino acid relative fre-

quencies as well as beta entropies73 (b� {1, 1.25,

1.50, 1.75}) calculated using concentric windows cen-

tered at the positive and negative sites. We also cal-

culated the net and total charge by counting the

number of positively charged residues (K and R) and

negatively charged residues (D and E) within these

windows. Additionally, we calculated the proportions

of aromatic residues (F, Y, and W) and the charge-

hydrophobicity ratios74 within these windows. For

this set of features, windows of sizes 3, 7, 11, and 21

were used. We then added binary features indicating

the presence (one) or absence (zero) of the 20 amino

acids within three positions N-terminal and C- ter-

minal to the central residue.

The second set of features included physico-

chemical properties and structural properties, calcu-

lated or predicted for each residue and then

averaged over windows of sizes 1, 7, 11, and 21.

These consisted of VL2 intrinsic disorder,75 VSL2B

intrinsic disorder,51 flexibility,76 hydrophobic

moment,77 B-factor,78 amino acid volumes, and sec-

ondary structure (in-house predictor). Apart from

the mean, the standard deviation and the maximum

values in these windows were also included as fea-

tures. In total, 418 features were obtained for the

basic model derived from these two classes of

features.

Finally, the third set of features was derived

from position-specific scoring matrices (PSSMs) and

was designed to incorporate evolutionary constraints

around sites. First, PSSMs were constructed for full-

length protein sequences by running PSI-BLAST

(v.2.2.18; E-value threshold: 0.0001; number of

passes: 3) against the NCBI nonredundant database

(June 2013).79 Then, each of the columns of a PSSM

was treated as a sequence of numbers and the fea-

tures were constructed by averaging the values

around the residue of interest using window sizes of

1, 3, 11, and 21. For our features, we excluded the

last column because its values differ, depending on

which version of PSI-BLAST is used. In this manner,

164 additional evolutionary features were added and

the final number of features used to train the “with

PSSM” model was 582.

Training. Logistic regression classifiers are linear

classifiers that use the logistic function, applied to a

linear combination of features, to calculate class pos-

terior probabilities. They usually perform well on

high-dimensional biological data sets and are robust

to noise. To ensure stability in training and enhance

performance, we Z-score normalized original data

sets and performed principal component analysis

(PCA) on these data with the retained variance set

to 95%. The value of 95% was selected with the goal

of eliminating nearly colinear features and no

parameter optimization was attempted. In addition,

normalization and transform matrices for PCA were

calculated on the training partition only and then

applied to the test data.
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We adopted a bagging approach.80 In each boot-

strap iteration during training, positive and nega-

tive examples were sampled separately to ensure an

equal number of examples from the positive and

negative classes. We had initially constructed ran-

dom forest models consisting of 100 regression

trees.81 However, we found that, for this problem,

while random forests resulted in slightly better per-

formance accuracies than the ensembles of logistic

regression models, the actual prediction scores could

not be interpreted meaningfully (i.e., the majority of

scores on test data was limited to a relatively nar-

row part of the 0–1 interval; data not shown). There-

fore, we chose logistic regression ensembles over

random forests to achieve more stable and interpret-

able prediction scores.

For all PTMs, we trained an ensemble of 30

logistic regression models for each modified residue

type separately. For example, in the case of methyla-

tion, separate models were built for lysine and argi-

nine. ADP-ribosylation, amidation, hydroxylation,

and proteolytic cleavage were exceptions to this rule

as training data was insufficient for a per-residue

split. Furthermore, special treatment was provided

for PTMs for which a sequence motif had been

known, as we observed from two-sample logos82 that

motifs alone are not predictive of these modifications

(Supporting Information, Fig. S2). In those situa-

tions, we adopted a novel approach by separately

constructing models on positive versus negative

motif-containing sequences and positive versus nega-

tive non-motif sequences. We defined motifs based

on rules in the literature and PROSITE.83 The

importance of such training can be seen in the case

of N-linked glycosylation. Here, most positive sites

contain an N[!P][ST][!P] motif, whereas most nega-

tive sites do not. Training a single classifier on such

data may result in a model that predicts positively

on all motif sequences but still have relatively low

precision due to its inability to correctly classify neg-

ative motif-containing sequences. This arises from

the facts that the data set for N-linked glycosylation

is highly imbalanced and that the number of motif-

containing negatives is comparable to the positives.

Evaluation. To evaluate the performance of the

ensemble models, 10-fold cross-validation was per-

formed on most data sets. The first exception was

made for phosphorylation, where twofold cross-

validation was adopted due to the sufficiently large

data set size for stable accuracy estimation. Further-

more, in cases where the number of positive instan-

ces was less than 100, a leave-one-out approach was

adopted. To avoid intraprotein biases, partitions for

cross-validation were defined at the protein level

rather than the site (residue) level. Predictions were

made by passing each data point from the test parti-

tion into each member of an ensemble model for a

given PTM. Scores were then averaged across the 30

models to obtain scores for each residue. To assign

classes (modified or not modified), a threshold score

was set and any residue with a score above this

threshold was defined as a PTM site. Any residue

with a score lower than this threshold was defined

as a non-PTM site.

We varied score thresholds between zero and

one in small increments and calculated sensitivity

(sn; true positive rate) and specificity (sp; true nega-

tive rate) at each threshold as follows:

sn5
TP

TP1FN

sp5
TN

TN1FP

Here, TP 5 number of true positives, that is

instances where a positive example is predicted to

be a positive; TN 5 number of true negatives, that is

instances where a negative example is predicted to

be a negative; FP 5 number of false positives, that is

instances where a negative example is predicted to

be a positive; FN 5 number of false negatives, that is

instances where a positive example is predicted to

be a negative.

The receiver operating characteristic (ROC)

curve was obtained by plotting these true positive

rates against the false positive rates (fpr 5 1 2 sp) at

the various threshold values. Areas under the curve

(AUCs) were calculated as the main performance

measure. We note that in this problem one cannot

accurately estimate the precision-recall curve

because the ratio of positive versus negative sites in

nature is unknown. To assess whether models with

evolutionary features performed better than those

without them, we counted the number of PTMs

where this was observed to be the case. We then

used a binomial test to check if this observed count

was significant, under the null hypothesis that the

model with PSSMs would perform better than the

model without PSSMs half the time.

Implementation. ModPred was implemented in

MATLAB and compiled to run as a standalone appli-

cation on different platforms. The Common Gateway

Interface program for the webserver runs this execut-

able and was written in Python. The output of

ModPred is a score between zero and one, with higher

scores indicating residues more likely to be modified.

For each PTM, three strict confidence levels are pro-

vided for easy interpretation of results (low, with the

decision threshold set to 0.5; medium, with the deci-

sion threshold set to the value corresponding to the

false positive rate of 0.1; and high, with the value cor-

responding to the false positive rate of 0.01). The code

and data are available at http://www.modpred.org.
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Structural and functional analysis

Selection of PTMs. While ModPred could be used

to predict sites for up to 23 PTMs, disulfide linkage

and proteolytic cleavage were excluded as they do

not fit the conventional definition of PTMs. Addi-

tionally, PUPylation was excluded as it is exclusively

a prokaryotic PTM and amidation was excluded

because it can act on any amino acid and predictions

usually show a distribution of high scores around

the actual amidation site, thus potentially biasing

any statistical enrichment tests.

Definition of LDRs in proteins. The VSL2B pre-

dictor was run on every protein in the data set. A

protein was considered to contain a long region of

disorder if it contained at least 30 consecutive resi-

dues with prediction scores of 0.78 or greater. This

cutoff corresponded to an fpr of 0.05 when we tested

VSL2B on a data set of known LDR-containing pro-

teins derived from DisProt.

Identification of PTM site-enriched proteins.

For each PTM in this study, we applied a binomial

test to assign a P-value P to each protein, as follows:

P5
Xm
i5k

m

i

 !
� pi � ð12pÞm2i

where P represents the probability that, at least k

out of m modifiable residues in a protein are

strongly predicted to be modified by chance. A low

value suggests that an unusually high number of

strong predictions cannot be explained by random

chance. Here, k is derived by counting the number

of modifiable residues with ModPred scores above a

threshold t, for a given PTM, p is a value such that,

under the null model, a randomly selected modifi-

able residue from any protein has a 100�p % chance

of being a strongly predicted PTM site. In this study,

for each PTM, we used values of t corresponding to

a false positive rate of 0.1 to derive k. Therefore, p

was set to 0.1 in all cases.

The above method addresses two major issues

when trying to identify proteins enriched in PTM

sites. First, the number of strongly predicted PTM

sites in a given protein will be proportional to its

length or the number of modifiable residues. As can

be seen above, the calculation of P takes both k and

m into account. Second, through the selection of a

low value for p, this method takes into account the

occurrence of false positive predictions. Finally, after

P-values were calculated for all PTMs over all pro-

teins in a data set, we used the Benjamini–Hoch-

berg84 method to correct for multiple testing

(a 5 0.01). For subsequent analyses, we designated

each protein as being enriched in sites for zero, one,

two, three PTM types, so on and so forth.

Since LDRs were defined to be 30 residues or

more, short proteins (of length less than 50 residues)

were excluded for this enrichment analysis. Further-

more, specific to this analysis, PTMs such as farne-

sylation, geranylgeranylation, myristoylation, and

N-terminal acetylation were excluded, as their speci-

ficity to either terminus would result in the underes-

timation of statistical enrichment.

UniProt keyword analysis. For each data set, we

obtained keywords corresponding to each protein

from the UniProt database. We then extracted only

those proteins that were enriched in at least two

types of PTM sites. To identify keywords enriched

and depleted in the set of proteins enriched in multi-

ple types of PTM sites, we used a one-tailed Fisher’s

exact test to calculate P-values for each keyword.

This test asks whether the proportion of proteins

with a keyword in the main set is significantly

greater than or less than that in the control set. We

compared this set to the set of all proteins enriched

for less than two types of PTM sites. Additionally,

we made comparisons when considering only the

LDR-containing proteins in both these sets and only

the ordered proteins in both these sets. P-values

were Benjamini–Hochberg corrected and an associa-

tion was considered significant if its P-value was

less than 0.05 (with at least 10 occurrences of the

keyword in the main set). Fold-enrichment of a key-

word was calculated by dividing its frequency in the

main set (set of proteins enriched in multiple types

of PTM sites) by its frequency in the control set.

Fold-depletion was calculated by taking the recipro-

cal of this value.

Definition of shared PTM sites. Known PTM

sites from the training data set were mapped to the

DisProt data set and shared sites were defined as

those where one or more PTMs have been experi-

mentally identified. In the case of predicted sites,

scores for all of the competing PTMs had to be equal

to or exceed thresholds corresponding to an fpr of

0.1. The same was done for the model organism data

set.

MoRF analysis. The number of single-PTM sites,

shared sites, and non-PTM sites occurring in and

outside MoRF regions were counted. When consider-

ing non-PTM sites in a given protein, only residues

relevant to its modifications were counted. For

example, if a protein contained sites for only acetyla-

tion and phosphorylation, only the remaining lysine,

serine, threonine, and tyrosine residues would be

counted as non-PTM sites. Additionally, if a protein

was not known (or predicted) to contain any PTM

sites, it was excluded from the counting process.
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Two 2 3 2 contingency tables were set up to per-

form comparisons of the proportions of different types

of sites in these regions. First, the fraction of PTM

sites in MoRFs was compared to that in non-MoRF

regions. Second, among these sites, the fraction of

shared sites was also compared to that in non-MoRF

regions. One-tailed Fisher’s exact tests with Benja-

mini–Hochberg correction (a 5 0.05) were used to

assign P-values to these comparisons. This was done

for both known and predicted PTM sites.
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