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Abstract

Thermodynamic stability is a fundamental property shared by all proteins. Changes in

stability due to mutation are a widespread molecular mechanism in genetic diseases.

Methods for the prediction of mutation‐induced stability change have typically been

developed and evaluated on incomplete and/or biased data sets. As part of the

Critical Assessment of Genome Interpretation, we explored the utility of high‐
throughput variant stability profiling (VSP) assay data as an alternative for the

assessment of computational methods and evaluated state‐of‐the‐art predictors

against over 7,000 nonsynonymous variants from two proteins. We found that

predictions were modestly correlated with actual experimental values. Predictors

fared better when evaluated as classifiers of extreme stability effects. While different

methods emerging as top performers depending on the metric, it is nontrivial to draw

conclusions on their adoption or improvement. Our analyses revealed that only 16%

of all variants in VSP assays could be confidently defined as stability‐affecting.
Furthermore, it is unclear as to what extent VSP abundance scores were reasonable
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proxies for the stability‐related quantities that participating methods were designed

to predict. Overall, our observations underscore the need for clearly defined

objectives when developing and using both computational and experimental methods

in the context of measuring variant impact.

K E YWORD S

CAGI, phosphatase and tensin homolog, PTEN, thiopurine S‐methyl transferase, TPMT,

VAMP‐seq, variant stability profiling

1 | INTRODUCTION

The thermodynamic stability of a protein is the net balance of forces

determining whether a protein is in its native folded conformation or

is denatured/unfolded (Gromiha, 2010). Mutations that lead to

changes in protein stability are important mechanisms of disease and

have thus been subject to intensive research (Pejaver, Urresti, et al.,

2017b; Wang & Moult, 2001; Yue, Li, & Moult, 2005). Experimental

techniques for the identification of destabilizing and/or stabilizing

mutations include circular dichroism (Greenfield, 2006), differential

scanning calorimetry (Bruylants, Wouters, & Michaux, 2005), and

fluorescence and UV absorbance spectroscopy (Pace & Scholtz,

1997). Most commonly, these techniques are used to establish

stability of a wild‐type protein and its in vitro‐mutated version. The

difference between these is computed as the signed change in the

Gibbs free energy (unfolding energy). That is, (a) if this difference is

negative, that is, mutant unfolding energy is higher than wild‐type,
the mutation is stabilizing, (b) if it is zero, the mutation has no effect,

and (c) otherwise, it is destabilizing. While these techniques provide

valuable insights, they do not scale up to a large number of variants

per protein across many different proteins. Thus, two complementary

approaches have been explored: (a) High‐throughput mutagenesis,

including denaturation experiments or the profiling of other

indicators of protein stability, and (b) computational methods for

the prediction of stability changes due to mutation.

Computational methods are broadly based on the features of

protein structure (e.g., FoldX; Schymkowitz et al., 2005 or

PoPMuSIC; Dehouck, Kwasigroch, Gilis, & Rooman, 2011) or

sequence (e.g., INPS; Fariselli, Martelli, Savojardo, & Casadio,

2015 or EASE‐MM; Folkman, Stantic, Sattar, & Zhou, 2016). Some

methods, for example, I‐Mutant (Capriotti, Fariselli, & Casadio,

2005) and INPS‐MD (Savojardo, Fariselli, Martelli, & Casadio,

2016), among others, can run in both sequence and structure

modes. Integrative methods combining features from sequence,

structure, experimental details, and/or conservation/evolution-

ary history have also been developed. Methods also vary in

provided output; for example, FoldX and PoPMuSIC predict

actual values of the change in the Gibbs free energy—a regression

task. On the other hand, for example, I‐Mutant and MUpro

(Cheng, Randall, & Baldi, 2006), can frame the prediction problem

as a classification task (destabilizing or stabilizing).

Due to their ease of use, computational methods play an

important role in advancing our understanding of protein folding,

stability, and function. However, the ability of these methods to

perform their assigned tasks has yet to be thoroughly evaluated. In

fact, most methods are developed and evaluated using data from the

same handful of sources, for example, ProTherm (Kumar et al., 2006)

or the Protein Mutant Database (Kawabata, Ota, & Nishikawa, 1999).

As an ideal gold‐standard, large‐scale experimental analysis of

protein variants’ stability is still lacking. Even independent method

assessments have relied on newer versions of the same training

databases for their evaluations (Khan & Vihinen, 2010; Potapov,

Cohen, & Schreiber, 2009). Therefore, it remains unclear how

accurate the predictions made for larger data sets spanning

thousands of mutations and proteins are.

High‐throughput methods to measure mutation‐induced stability

changes have proven insightful. Protein alanine‐scans, for example,

included substituting amino acids at a range of protein positions by

alanine one at a time, followed by denaturation experiments with

free energy change measurements (Blaber, Baase, Gassner, &

Matthews, 1995; Milla, Brown, & Sauer, 1994). These experiments,

although painstaking and limited in variability, have been particularly

useful in identifying critical residues (stability and otherwise;

Morrison & Weiss, 2001). Other approaches have opted to measure

more accessible proxies of stability changes; for example, lowered

steady‐state abundance of a protein may reflect increased degrada-

tion due to instability. For instance, Yen, Xu, Chou, Zhao, & Elledge

(2008) demonstrated that the global protein stability (GPS) profiling

technique was able to detect the increase in stability due to the

p.Thr380Ala mutation in cyclin E. Combined with deep mutational

scanning approaches, GPS profiling could facilitate stability measure-

ments of all possible protein variants (Fowler & Fields, 2014).

The recently developed multiplexed variant stability profiling

(VSP) assay (Matreyek et al., 2018) uses the fluorescent reporter

system (EGFP; to measure the protein variant abundance) and

mCherry (expressed cotranscriptionally or cotranslationally from the

same construct) on cells carrying mutated proteins. The per‐cell
EGFP/mCherry ratios are calibrated with respect to cells carrying the

wild‐type protein or known destabilized proteins to define a (high to

low, stable to unstable) range. Cells are sorted into bins according to

their EGFP/mCherry ratios and sequenced to quantify each variantʼs

frequency in each bin. A variant stability score is calculated on the
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basis of these bin frequencies, with 0 = unstable, 1 = wild‐type, and
>1 =more stable than wild‐type protein. A key advantage of VSP

assays is that they are applicable to a wide range of proteins and can

measure effects of all possible mutations at all positions. They

particularly help overcome issues of overrepresentation of to‐alanine
(Magliery, 2015) and destabilizing mutations (Pucci, Bernaerts,

Kwasigroch, & Rooman, 2018), the underrepresentation of “inverse”

mutations (Thiltgen & Goldstein, 2012), and general errors in

curation (Yang et al., 2018). Thus, VSP assays are an attractive

alternative to existing data sources for the development and

validation of computational methods.

One of the main objectives of the Critical Assessment of Genome

Interpretation (CAGI) is to objectively assess computational methods

for the prediction of the impact of genetic variation through

task‐specific challenges in community‐wide experiments. The recent

CAGI5 edition included a prediction challenge, in which variants from

multiplexed VSP assays of two biomedically important proteins were

made available to the CAGI participants: phosphatase and tensin

homolog (PTEN) and thiopurine S‐methyl transferase (TPMT). PTEN is

a ubiquitously expressed protein that dephosphorylates phosphatidyli-

nositol (3,4,5)‐triphosphate (PIP3), a secondary messenger molecule

promoting cell growth and survival (Lee, Chen, & Pandolfi, 2018). PTEN

missense mutations have been observed in cancers, including glioma,

endometrial cancer, and melanoma. Germline variation in PTEN results in

PTEN hamartoma tumor syndromes (PHTS), a group of developmental

abnormalities (Hobert & Eng, 2009) and is associated with autism

spectrum disorders (Butler et al., 2005). TPMT is a key enzyme in the

metabolism of thiopurine drugs, which suppress the immune system and

have been used to treat acute‐lymphoblastic leukemia, autoimmune

diseases, and to prevent organ rejection after transplants (Burchenal

et al., 1953; Weinshilboum, 2001). Thiopurine overdose may lead to

treatment interruptions that cause poor health outcomes and, in

some cases, a life‐threatening myelosuppression and hepatotoxicity

(Weinshilboum, 2001).

The PTEN and TPMT variants were provided to CAGI partici-

pants, who were allowed to use any data and resources to make

predictions of the associated VSP scores. In this study, we performed

the assessment of these predictions using these experimental scores

as the ground truth. Furthermore, we used these variant sets to

evaluate existing methods (not submitted to CAGI), which have

emerged as de facto standards. Importantly, we also provide some

discussion on the topic of the value of gold‐standard experiments in

evaluation of computational methods.

2 | MATERIALS AND METHODS

2.1 | Data sets

Multiplexed VSP assays for PTEN and TPMT yielded variant stability

scores for 7,954 protein variants (4,002 PTEN variants and 3,952

TPMT variants; Table 1). For most (99%) variants, reference values

were obtained by calculating the mean of these scores, along with the

standard deviation, and lower and upper confidence interval (CI)

limits. For 73 (1%) variants, no replicate data were available, so the

scores from the lone experiments were included “as is”.

The stability scores from VSP assays are typically calibrated

according to the scores for synonymous variants (no effect) on one

extreme and nonsense variants on the other extreme. Here, they

ranged between −0.975 and 2.198, with the negative values arising

from the exclusion of nonsense variants near the termini in score

calibration. Initially, variants with negative scores were deemed to be

outside the interpretable range and were, therefore, excluded. Note

that an alternative approach, in which scores for these variants were

set to zero, yielded similar trends (Table S1). We also excluded

nonsense variants from further consideration because their destabi-

lizing effects are expected to arise largely from protein truncation.

Note that synonymous variants in our set were described as wild‐
type to wild‐type substitutions of amino acids as opposed to actual

DNA‐level mutations. As such they were retained for predictor

evaluations. The final reference data set used for evaluation

consisted of 3,860 and 3,613 missense variants in PTEN and TPMT,

respectively (Table 1).

2.2 | Fitting the distribution of variant scores

Given the bimodal nature of the distribution of nonsynonymous

variants (see below), we assumed a Gaussian mixture model (GMM)

and estimated the parameters of two possible nonsynonymous

variant score distributions (effect vs. no effect) using a positive‐
unlabeled learning approach. In this approach, the experimental

values for the synonymous variants contributed to learning the

parameters for the synonymous‐like (no effect) variants in the

nonsynonymous distribution. More specifically, an extension of

the expectation maximization algorithm that estimates parameters

of the mixing components from two mixtures, referred to as the

multisample Gaussian mixture model (MSGMM), was used. We note

that here, the synonymous distribution was also assumed to be a

mixture of correctly and incorrectly labeled variants (Jain, White, &

Radivojac, 2016).

2.3 | Predictors and baseline methods

The rules of the challenge were as follows: Predictors assigned

continuous scores to each variant such that a score = 0 indicates

an unstable protein (destabilizing), a score = 1 indicates wild‐type
stability (no effect), and a score >1 indicates stability greater than

that of wild‐type (stabilizing). Participating groups were allowed up

to six submissions, and were asked to provide brief descriptions of

the methods underlying each of their submissions (Supporting

Information Methods). We note that although the true variant

stability scores are now published (Matreyek et al., 2018), they

were not made available to the participating groups until after the

challenge was closed.

For the purpose of comparison, the following three general‐
purpose variant effect prediction methods were also included in this

evaluation: SIFT (Ng & Henikoff, 2001), SNAP (Bromberg & Rost,
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2007), and PolyPhen‐2 (Adzhubei et al., 2010). While these were not

developed for the specific task of predicting effects of variants on

protein stability, the VSP assay itself was originally developed as a

general‐purpose technique for the high‐throughput identification of

deleterious and benign variants and may thus be somewhat

comparable with the effects these methods were developed to

predict. For the baseline methods, score transformation was carried

out (heuristically) to match the expected score range as follows

(rounded to three decimal points):
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In addition, Envision, a machine learning model trained on large‐scale
mutagenesis data sets (similar to this study) to predict the impact of

missense variants on protein function, was also included as a newer

baseline method (Gray, Hause, Luebeck, Shendure, & Fowler, 2018). No

score transformation was necessary for Envision. Finally, a naïve random

predictor was implemented by randomly reassigning all stability scores

from the assay for a given protein to all variants in that protein. This was

motivated by the need for a baseline when comparing classification

accuracies on imbalanced data sets (see below).

2.4 | Evaluation design

The continuous nature of the experimental and prediction scores

motivated the need for three different evaluation approaches. First,

methods were evaluated on their ability to predict the actual

experimental values of the final set variants. Specifically, we calculated

the Pearson and Spearman correlation coefficients (ρ) between the

predicted and experimental values (Rosner, 2015). Second, the challenge

was treated as a three‐class classification task, in which methods were

evaluated on their ability to assign variants to one of the three classes—

most destabilizing, wild‐type, and most stabilizing. These classes were

defined by thresholding the experimental value distribution correspond-

ing to the bottom 25% (most destabilizing) and top 25% (most stabilizing)

of all values. In other words, a variant was treated as most destabilizing if

the value of its lower CI limit was less than 0.468, and most stabilizing, if

the value of its upper CI limit was greater than 1.200. We note that these

criteria were generous and allowed for variants with borderline scores

but high experimental variability to be assigned to the extreme classes.

Variants with scores in the range (0.9, 1.1) were assigned to the wild‐type
group. These three classes formed the classification data set (Table 1).

Finally, the challenge was also treated as a binary classification task, in

which methods were assessed in terms of their ability to correctly classify

variants into two classes, effect or no effect, by combining the

destabilizing and stabilizing variants into a single effect class. Classifica-

tion accuracy (the fraction of correct class predictions) was chosen as the

evaluation metric in both tasks.

3 | RESULTS

Eight groups participated in the challenge and 16 submissions were

received; while four of the groups contributed only one submission,

one group submitted five predictions. Methods relied on combina-

tions of features derived from the proteins’ sequence, structure, local

physicochemical environment, and evolutionary history, integrated

via a variety of algorithms and/or machine learning models (Table 2;

Supporting Information Methods). The practical predictor‐distin-
guishing aspects included training protocols, output calibration, the

choice of underlying methods (e.g., to build alignments), etc. Some

submissions did not make predictions for all reference set variants

(Figure S1).

TABLE 1 Summary of data set preprocessing and the resulting variant numbers

Data set # variants (PTEN) # variants (TPMT)
#variants
(total) Range of exp. values (min, max)

Original data set 4,000 3,952 7,952 (−0.975, 2.198)

Nonsense 120 196 316 (−0.975, 2.198)

Negative score 20 143 163 (−0.975, 0.000)

Final data set 3,860 3,613 7,473 (0.001, 2.198)

Effect 2,448 1,853 4,301 (0.001, 2.198)

Stabilizing 852 787 1,639 (0.841, 2.198)

Destabilizing 1,596 1,066 2,662 (0.001, 1.338)

Wild‐Type 539 698 1,237 (0.900, 1.099)

Synonymous 144 129 273 (0.130, 2.010)

Classification data set 2,987 2,551 5,538 (0.001, 2.198)

Abbreviations: PTEN, phosphatase and tensin homolog; TPMT, thiopurine S‐methyl transferase.
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3.1 | Distribution of experimental scores highlights
difficulty in differentiating variant effect

The destabilizing variants in our set were fairly evenly distributed

throughout the protein structures, with modest preference toward

buried regions (Figure S2). For any given position, stabilizing effects

were infrequent.

We explored the distribution of the experimentally derived VSP

scores for nonsynonymous variants in the final set (Figure 1a, blue).

This distribution was arguably bimodal (peaks at ~0.3 and ~0.9) and

asymmetric, that is, there were more destabilizing than stabilizing

variants—an observation in line with previous deep mutational

scanning studies (Araya et al., 2012). Notably, a large number of

the apparently neutral variants scored between 0.7 and 1 (just

slightly lower than wild‐type stability), suggesting either a prepon-

derance of mild destabilizing effects in the reference data set or,

more likely, a limit to experimental resolution. The latter was also in

line with the observations made for the nonsense and synonymous

variant distributions; these fit expectations from VSP assay calibra-

tion (peaks at ~0 and ~1, respectively), but had exceedingly high

variances (Figure 1a, red and yellow, respectively). The distribution

overlaps highlight a considerable experimental uncertainty in calling

variants “effect” and “no effect”.

To estimate the proportion of variants that are most likely to

affect stability, we modeled the nonsynonymous distribution as a

mixture of two Gaussian distributions (Figure 1b)—a “synonymous‐
like” (closer to score = 1) and “nonsense‐like” (closer to score = 0). We

observed that the scores of 84.3% of all nonsynonymous variants fell

within the estimated score range for synonymous variants (synon-

ymous‐like, mean = 0.87 and standard deviation = 0.24). Note that

over 99% of the synonymous variants are also in this range. It

remains unclear whether these results emerge from experimental

noise or real (mild) effects of synonymous variants; that is, in

depth experimental follow‐up is necessary to clarify these observa-

tions. The remaining 15.7% variants represented the most likely

“effect” variants (score ≤0.40, mean = 0.25; standard deviation = 0.13,

Figure 1b).

3.2 | Prediction score distributions differ from
experimental ones

We compared the scores from three popular (baseline) prediction

methods chosen for this assessment (SIFT, SNAP, and PolyPhen‐2) to
the experimental measurements. The distributions of the three

methods’ scores were clearly bimodal, with peaks closer to the

extremes and a relatively flat middle (Figure 2). This is unsurprising,

as these methods were trained on binary class labels of variant

impact, not specifically continuous stability changes in this task. Thus,

for SNAP, for example, the score is a measure of prediction accuracy,

which correlates with effect severity, but is not meant to replace it

(Bromberg, Overton, Vaisse, Leibel, & Rost, 2009; Mahlich et al.,

2017). We also considered an additional baseline model trained on

deep mutational scanning data sets called Envision. While the shape

of Envisionʼs score distribution was similar to that of the experi-

mental data, no scores below 0.4 were observed.

Prediction score distributions of the challenge submissions

varied. Broadly, the distributions could be grouped into four types:

(a) Similar to the experimental distribution with an additional peak

close to 0, that is, excess destabilizing mutations (Group 1, Group

6‐Submission 2 and Group 7), (b) normal or skew‐normal with a peak

close to 1, that is, mostly no‐effect (Groups 4 and 8), (c) distributions

with peaks set around specific thresholds, for example, 0, 0.5, and/or

1 (Group 2 and Group 6‐Submission 3), and (d) others (Groups 3 and

5 and the remaining Group 6 submissions).

3.3 | Predictions correlate modestly with
experimental values

We first assessed the ability of computational methods to predict the

VSP experimental scores. This was essentially a regression task, in which

both the predictors and the assays assigned real numbers greater than or

equal to zero to each variant. We used (value‐based) Pearson and (rank‐
based) Spearman correlation coefficients as measures of agreement

between predictions and the ground truth. We also calculated correla-

tions between predictors because we observed that predictors generally

rely on a similar pool of features, varying more explicitly in the technical

aspects of their development, for example, prediction algorithms, training

sets, and use of feature selection techniques. We were, thus, particularly

interested in comparing and contrasting method construction and

predictive performance.

Positive nonzero correlations between predicted and experimental

values were observed for all but one method, clearly exceeding that of

the random predictor (Figure 3a,b). However, there was no method with

a correlation coefficient that exceeded 0.5. Among the baseline methods,

SIFT performed the best. However, a number of submissions performed

better than SIFT, suggesting recent improvements in the state‐of‐the‐art.
Interestingly, while these submissions generally repurposed previously

developed methods, they varied substantially in their approaches,

for example, support vector regression models using sequence‐ and

structure‐based features, evolutionary analytical models, and protein‐
folding models, among others. Specifically, the top‐performing methods

(from Groups 5 and 6), either explicitly or implicitly, accounted for the

solvent accessibility of residues in the 3D structure, and downweighed

the effects of surface variants more than of those that were buried.

We next calculated all‐pairwise correlations between predic-

tors. Correlations between methods, even across groups, were

comparable to or higher than predictor correlation to experi-

mental scores, for example, Pearson ρ = 0.740 between Group

8–Submission 1 and Group 1‐Submission 1 and ρ = 0.807 between

Group 6‐Submission 1 and PolyPhen‐2. These results reflect

similarities in training data and method development. However,

the mean correlation coefficient among all pairs of predictors

(ρ = 0.416) was not significantly different from the mean correla-

tion coefficient between predicted and experimental values

(ρ = 0.371, two‐sample t‐test p = .1619). Correlation of scores

grouped predictors into three clusters that could be broadly
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classified as (a) methods that use direct or derived sequence

information, (b) structure‐based methods, using stability predic-

tion (FoldX) and protein folding (Rosetta) methods, and (c)

integrative methods using machine learning (Figure 3c). Curiously,

the first cluster contained the top‐performing methods (as per

Figure 3a,b) as well as the baseline methods, although SNAP,

PolyPhen‐2, and Envision were arguably outliers.

3.4 | Method performance changes when variant
effect prediction is a classification task

An alternative view of our prediction task considers the effect of

each variant as belonging to one of three possible classes. Variants

with experimental scores at approximately 0 can be thought of

as destabilizing, those with scores at approximately 1 as wild‐type

(no effect), and those with scores >1 as stabilizing. Variants that did

not fit the class definition criteria were excluded from consideration

in this evaluation (methods; Table 1, classification set). Predictors

were assessed on their ability to accurately predict the class of the

variant effect, regardless of prediction proximity to the experimental

score. We further simplified the prediction task by combining

the destabilizing and stabilizing variants into one class so that

the methods were assessed in a familiar binary, effect or no‐effect,
setting.

We observed that in the three‐class setting, no prediction

method exceeded 50% overall accuracy (Figure 4a). The binary class

setting was easier with accuracy reaching 70%—a number much

more in line with the expected performance of predictors designed to

make extreme class predictions (Figure 4b). Here, a different set of

method leaders emerged in both three‐ and two‐class settings

F IGURE 1 Experimental variant stability profiling (VSP) score distributions. For consistency with the multisample Gaussian mixture model
(MSGMM) algorithm, probability density functions were plotted instead of raw counts or frequencies. (a) Distribution of all variant types (bar
heights correspond to the frequency of variants from each bin divided by the bin‐width, 0.044) and (b) Gaussians fitted to the nonsynonymous
distribution using the MSGMM algorithm (with parameters learned from the synonymous distribution). The black dashed line corresponds to
the estimated threshold that separates likely stability‐impacting variants from synonymous‐like ones

F IGURE 2 Distribution of the baseline method predictions. SIFT, SNAP, and PolyPhen‐2 predictions, standardized to fit the (0, 1) score
range, and Envision predictions (without standardization)
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(Groups 2 and 3); these were machine learning methods integrating

multiple sequence and structure features. Furthermore, Group

5‐Submission 1 (the weighted evolutionary action method) was the

best submitted method in terms of accuracy‐to‐correlation tradeoff

(the mean of the Pearson correlation coefficient and accuracy).

3.5 | Prediction performance varies between
phosphatase and tensin homolog and thiopurine
S‐methyl transferase

Finally, we investigated whether there were any differences in

predictive performance between the two proteins in this study. For

simplicity, we restricted our analyses to calculating Pearson correla-

tion coefficients for the regression task and binary class accuracy for

the classification task (Figure 5). However, results for Spearman

correlation coefficients were similar (Table S2). We observed that

for some methods, there indeed were differences between PTEN and

TPMT. For instance, Group 7‐Submission 1 and Group 5‐Submission

1 exceeded a Pearson ρ of 0.5 for PTEN, but no methods achieved

this in TPMT. Furthermore, only two of the top‐five performing

methods for PTEN also featured in the top‐five for TPMT (Group

5‐Submission 1 and Group 6‐Submission 1). In some cases, the

differences in correlation were drastic, for example, Group

7‐Submission 1, PTEN ρ = 0.531 and TPMT ρ = 0.310 (Figure 5a,b).

Differences persisted for binary classification (Figure 5c,d). Notably,

submissions from Group 7 were the best in terms of three‐class
accuracy for both proteins. Group 7‐Submission 1 (FoldX) was the

most accurate, among all methods, for PTEN and the same groupʼs

Submission 2 (Rosetta) did the best for TPMT. However, in line with

the per‐protein performance differences these submissions were

only exceptional for one of the proteins, moving overall (two protein)

performance of each submission drastically lower. Interestingly,

although Envision performed relatively poorly on both the regression

and classification tasks, its performance was highly protein‐specific.
In terms of correlation, it was among the bottom three methods for

PTEN but among the top three methods for TPMT (with the random

predictor excluded).

4 | DISCUSSION

We assessed the ability of computational methods to predict the

effects of individual nonsynonymous variants on the VSP assay‐
derived stability of two proteins. Our assessment differs from

previous assessments (Khan & Vihinen, 2010; Potapov et al., 2009;

Pucci et al., 2018; Thiltgen & Goldstein, 2012) in two ways. First, the

use of high‐throughput VSP assay data as the gold standard enabled

evaluations free from ascertainment bias; that is, mutations were not

explicitly targeted to protein positions of interest. Second, the scope

of methods evaluated was not restricted to stability predictors,

highlighting the overlap between functional, structural, and disease‐
driving variant effects.

4.1 | Uncertainty in the experimental data

We used VSP assay scores as the gold standard to evaluate

computational predictions. When simply evaluating the experimen-

tally derived variant impact scores, one of two observations is most

salient (Figure 1). Either (a) the assay is essentially noise free, and a

large number of synonymous variants have a significant effect on

protein abundance and stability or (b) the experimental system

carries high levels of variability. If the latter is true, the correlation

F IGURE 3 Performance of predictors in predicting experimental variant scores. Method performance was measured using (a) Pearson
correlation and (b) Spearman correlation. In (c) Correlation (Pearson) between methods was also computed. Red boxes indicate clusters as
defined by the dendrogram in the figure. Pink and yellow boxes indicate subgroupings of submissions from the same participating group, within
each cluster
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between predictor scores and experimental values becomes exceed-

ingly difficult to interpret. Assessment in a (two or three class)

classification setting, may be better suited to address this concern,

but more sophisticated methods for selecting experimental thresh-

olds to define impact class are necessary to account for these

uncertainties.

Overall, the limitations of using the VSP assay data as a gold standard

for evaluating generalized computational methods are as follows: (a) as

noted above, many synonymous variants have high VSP scores in PTEN

and TPMT, making straightforward mapping of effect/no‐effect difficult,
(b) VSP scores reflect changes in both stability and protein abundance,

but do not directly account for changes in protein function, which may

unevenly impact performance of computational methods, (c) the use of a

heuristic cutoff to discretely classify continuous VSP scores may affect

evaluation, as can the data providers’ postexperiment score transforma-

tion/normalization to create the set of final values. Despite these flaws,

VSP assays constitute a novel, independent, and important way to assess

performance of computational predictors.

F IGURE 4 Performance of predictors in assigning a class to each variant. Performance in the (a) three‐class and (b) two‐class setting.
Numbers next to each point indicate the submission number

F IGURE 5 Per protein predictor performance. Phosphatase and tensin homolog performance as (a) the Pearson correlation of predictions
with experimental values for variants in the final set and (c) the Pearson correlation of predictions with experimental values for variants in the
classification set mapped versus binary classification accuracy. Thiopurine S‐methyl transferase performance as (b) the Pearson correlation of
predictions with experimental values for variants in the final set and (d) the Pearson correlation of predictions with experimental values for
variants in the classification set mapped versus binary classification accuracy
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4.2 | Different predictors emerge as top‐
performing in different evaluation settings

We evaluated all methods in both the value prediction (regression) and

classification settings. When considering the correlation between

experimental and prediction scores, the best submission came from

Group 5. However, in the three and two class classification settings,

methods from Groups 2 and 3 (both from the same research team)

emerged as the most accurate. Apart from classification accuracy, the

optimal tradeoff between correlation in the regression setting and

accuracy in the classification setting is a desirable metric. By this measure,

methods from Groups 5 and 6 emerged as the best‐performing for the

full data set. Group 7 was the best in terms of three‐class accuracy on

each protein individually. Note that no submission exceeded a correlation

coefficient (Pearson and Spearman) or a three‐class accuracy of 0.5 or

binary classification accuracy of 0.7 for both proteins together, high-

lighting a still existing need for improved methods.

The dependence of performance on the evaluation metric

suggests that different methods are optimized for different settings.

However, the regression and classification settings represent distinct

use‐cases, and methods should be chosen accordingly.

4.3 | With the exception of outliers, most
predictors perform similarly

Previous efforts to compare and contrast predictors of general

variant impact have found that methods are correlated in their

predictions, largely due to similar design objectives, overlapping

training sets, and/or feature sets (Ioannidis et al., 2016; Mahlich et al.,

2017). Interestingly, for predictors of mutation‐induced stability

change, correlations were found to be small in previous evaluations

(Khan & Vihinen, 2010; Potapov et al., 2009). Due to the broader

scope of methods considered, our study revealed trends similar to

the former situation rather than the latter, with methods generally

grouping according to their design principles. Despite these

commonalities, top‐performing methods were generally distinguished

by the customization made for this particular prediction task. For

instance, almost all the top‐performing methods adjusted their scores

to the variant solvent accessibility. This feature was indeed found to

be the most correlated with assay scores in the recently published

study on the PTEN‐TPMT data set (Matreyek et al., 2018) and

perhaps provided these methods with a predictive advantage. We

note that it is also possible that methods were similar to each other

in their deviation from the requirements of the prediction challenge,

that is, there was a mismatch between method objectives and the

nature of the experimental data (see Section 4.4 for more details).

4.4 | Defining the scope of enquiry when studying
and predicting variant effects

Many publications do not explicitly define their variant impact

prediction goals except by the data sets they choose for method

development and evaluation. However, it is safe to say that most

have been designed to prioritize variants that affect protein

structure or function (both global and local) or are implicated in

disease (pathogenicity prediction). Note here (a) the misuse of the

word “deleterious,” which can imply stabilizing or gain of function

variants but is most often used to identify destabilizing or loss of

function effects and (b) the misuse of the word “pathogenic,” which is

usually established for variants that cause monogenic disease but is

most often used to define those that may have some (not necessarily

causative) impact in pathogenicity pathways.

While the various variant impacts (as defined above) are correlated it

is not clear how transferable method predictions are across these

different tasks; although some methods have shown promise (Pejaver,

Mooney, & Radivojac, 2017a; Schaefer, Bromberg, Achten, & Rost, 2012).

Some issues are important to consider here: First, note that VSP assays

measure the steady‐state abundance of mutated proteins as a reflection

of stability. In fact, protein abundance may be affected by other means,

for example, altered posttranscriptional regulation, translational speeds,

and disrupted trafficking (Matreyek et al., 2018). Similarly, note that the

experiment‐specific (here, VSP assay‐specific) resolution limits and

variation between replicates complicate the use of individual experi-

mental data sets as a fixed gold standard to evaluate computational

method performance. Second, since baseline methods did not perform as

well as expected from previous studies, the VSP stability score likely does

not reflect functional effects. As function‐changing mutations may have

no effects on protein stability and not all stability changes lead to

functional disruptions (Bromberg & Rost, 2009; Lugo‐Martinez et al.,

2016; Sahni et al., 2015), function prediction methods may be at a

disadvantage. Third, state‐of‐the‐art stability prediction tools may not

generalize across all proteins and variants within a protein. The best

example here are the two submissions from Group 7, each of which

performed best on one protein and failed on another (three class

accuracy; Supporting InformationMaterials). Finally, the stabilizing effects

of variants in this study must be interpreted cautiously. We note that

most baseline methods were not designed to predict stabilizing effects.

This is also true for most submissions, which generally repurposed

previously developed methods for this challenge. Moreover, the link

between protein abundance and thermodynamic stability is weaker in the

stabilizing range and it is, thus, unclear to what extent these experimental

scores are meaningful.

As more VSP assay data accumulates, insights into the associated

uncertainties will emerge, enabling a more rigorous evaluation of the

generalizability of predictors for this particular task. However, as it

must be clear by now, it is not trivial to make recommendations of

the best prediction methods for general use. The issues presented

here highlight the need for the users and developers of both

computational and experimental methods to clearly define design

goals, state caveats when such methods are repurposed for related

tasks, and provide evidence for the validity of this repurposing.
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