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Abstract
The steady advances in machine learning and accumulation of biomedical data have contributed

to the development of numerous computational models that assess the impact of missense vari-

ants. Different methods, however, operationalize impact differently. Two common tasks in this

context are the prediction of the pathogenicity of variants and the prediction of their effects

on a protein’s function. These are related but distinct problems, and it is unclear whether meth-

ods developed for one are optimized for the other. The Critical Assessment of Genome Inter-

pretation (CAGI) experiment provides a means to address this question empirically. To this

end, we participated in various protein-specific challenges in CAGI with two objectives in mind.

First, to compare the performance of methods in the MutPred family with the state-of-the-art.

Second and more importantly, to investigate the applicability of general-purpose pathogenicity

predictors to the classification of specific function-altering variants without additional training or

calibration. We find that our pathogenicity predictors performed competitively with other meth-

ods, outputting score distributions in agreement with experimental outcomes. Overall, we con-

clude that binary classifiers learned from disease-causing mutations are capable of modeling

important aspects of the underlying biology and the alteration of protein function resulting from

mutations.
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1 INTRODUCTION

In the era of high-throughput sequencing, computationalmethods that

predict the impact of newly discovered variants have become integral

to the studies of disease (Peterson, Doughty & Kann, 2013; Niroula

& Vihinen, 2016; Rost, Radivojac & Bromberg, 2016). Different meth-

ods, however, use different definitions of impact, depending on the

established practices in the research community that their develop-

ers and users belong to. Broadly speaking, an impactful variant can be

interpreted in an evolutionary sense as “deleterious,” that is, affecting

reproductive fitness, or in a biochemical andmolecular sense, as “dam-

aging” to a protein’s function, that is, function-affecting (MacArthur

et al., 2014). Another term, “pathogenicity,” has been used to describe

disease-causing variants and is usually interpreted as clinically signif-

icant (Richards et al., 2015). These terms are often used interchange-

ably and, consequently, predictions from one class of methods may be

misused to inform decisions regarding related but different concepts.

It has been pointed out, for instance, that evolutionary conservation is

not sufficient to establish pathogenicity (MacArthur et al., 2014) and

that many variants that affect protein function appear to be disease-

neutral (Schaefer et al., 2012; Bromberg, Kahn, & Rost, 2013; Lugo-

Martinez et al., 2016).

Computationalmethods for variant impact prediction either rely on

rules derived from expert knowledge or on data-drivenmachine learn-

ing algorithms (see Peterson et al. [2013] for an overview). The basic

idea behind supervised machine learning methods involves “training”

a computer to “learn” a mathematical function (model) that relates

observable features (e.g., protein sequence) to known outcomes (e.g.,

protein function), in order to make predictions on a previously unseen

set of observed features. Ideally, the choice of training data and fea-

tures leads to the optimization of a mathematical function that cap-

tures the underlying biology. For instance, it has been observed that

a predictor of protein–protein interaction (PPI) sites tends to predict

hotspots (residues critical for interactions) more strongly than other
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interacting residues (Ofran and Rost, 2007). However, this behavior is

not guaranteed. In the context of impact prediction, there aremethods,

particularly formissense variants, that rely on similar training data and

feature sets to predict various notions of impact. Several questions,

thus, naturally arise.Do thesemodels learn someprinciples that under-

liewhatmakes an amino acid substitution impactful? Are they all learn-

ing similar or different classification functions? Or how can one use

available data fromdisparate experimental studies to improve learning

of each notion of impact?

Before addressing such questions, it is important to understand

thesemethods in the context of the aforementioned variance in termi-

nology. Supervised or semisupervised learningmethods can be divided

into those that are trained on variants demonstrated to affect pro-

tein function in vitro or in vivo, for example, SNAP (Bromberg &

Rost, 2007), SNAP2 (Hecht et al., 2015), and those that are trained

directly on known pathogenic variants, for example, PhD-SNP (Capri-

otti et al., 2006), MutPred (Li et al., 2009), PolyPhen-2 (Adzhubei

et al., 2010), FATHMM (Shihab et al., 2013), and VEST (Carter, Dou-

ville, Stenson, Cooper, & Karchin, 2013). This allows us to disam-

biguate the two different but related binary classification tasks that

these methods address: the classification of amino acid substitu-

tions as (1) protein function altering or not, and (2) pathogenic or

benign. This distinction has been made previously (Schaefer et al.,

2012) and has recently been reiterated (Hecht et al., 2015; Richards

et al., 2015).

Pathogenic amino acid substitutions can be understood as those

that severely affect protein function (note that we do not specifically

address variants that disrupt protein structure and its dynamics, but

rather group those into the broader classes of function impacting,

pathogenic, or other variants depending on their downstream con-

sequences). Therefore, a predictor trained on functional variants

should be able to predict pathogenic ones as those that score highly.

Indeed, it has been shown that pathogenic amino acid substitutions

can be predicted using functional effect predictors with reasonable

accuracy (Schaefer et al., 2012; Reeb et al., 2016). Schaefer et al.,

2012 further demonstrated that SNAP’s prediction scores for disease

mutations tend to be higher than even those for the function-altering

mutations that it was trained on and that PhD-SNP predicted nearly

two-thirds of function-altering substitutions from SNAP’s training

set as disease-causing. However, Bromberg et al. (2013) found that

SIFT and PolyPhen-2 do not capture effect severity as well as SNAP

does. Therefore, it remains unclear under what conditions and to

what extent pathogenicity predictors can directly be transferred to

infer the effects of substitutions on the specific aspects of protein

function.

There are several factors to consider when investigating the gen-

eralizability of pathogenicity predictors to the functional effect pre-

diction problem. First, the definition of functional and/or pathogenic

variants varies between studies and depends on the evidence at hand.

Genetic evidence is insufficient when factors such as penetrance and

epistatic effects are unaccounted for. In vitro assays, on the other

hand, provide evidence of functional impact in controlled settings but

do not necessarily reflect what happens at the cellular or organis-

mal level. In vivo experiments rely on model organisms and cell lines,

and their findings may not necessarily translate to the clinical setting.

Currently, training variants for pathogenicity predictions are obtained

from databases such as the Human GeneMutation Database (HGMD)

(Stenson et al., 2014) and SwissVar (Mottaz et al., 2010), which do not

necessarily annotate the lines of evidence used to establish impact

and are sparse on specific experimental outcomes. This suggests that

pathogenicity predictors, in particular, are exposed to a broad spec-

trum of functional outcomes under the umbrella of “pathogenic” and

“benign.” Second, there has been a growing debate over whether

general-purpose pathogenicity prediction models trained on variants

combined from multiple genes are more powerful than gene-specific

models. Recently, a case has been made for the development of both

as the performance advantages relate to the amount and composi-

tion of the training data available for each protein (Riera et al., 2016).

Finally, in spite of substantial curation efforts, errors and biases are

major issues with public databases (Schnoes et al. 2009). This has par-

ticularly been noted in the case of HGMD (George et al., 2008; Cassa

et al., 2013), and it is not clear whether learned models are robust to

this noise in practice.

Community experiments such as the Critical Assessment of

Genome Interpretation (CAGI) provide excellent opportunities to not

only assess the status of the field but also address the aforemen-

tioned questions through controlled studies. To this end, we partici-

pated in multiple challenges in CAGI by primarily submitting predic-

tions from MutPred, a random-forest-based predictor that we previ-

ously developed to classify pathogenic and benign variants (Li et al.,

2009). A distinguishing feature of MutPred is that it includes inter-

nal predictors for specific structural and functional properties such as

secondary structure, intrinsic disorder,DNA-binding, phosphorylation,

and others. For a given amino acid substitution, MutPred runs these

predictors on the original and mutated sequence, models the puta-

tive change in the propensities for these properties, and uses them to

predict pathogenicity. Sequence- and structure-based analyses have

revealed that such changes in local properties account for a substan-

tial fraction of disease-causing mutations and can classify pathogenic

variants more effectively than conservation-based approaches (Li

et al., 2009; Mort et al., 2010; Lugo-Martinez et al., 2016). How-

ever, it is not clear whether such site-specific or region-specific

changes in structure and function are predictive of impact beyond the

protein level.

In this study, we take advantage of the numerous data sets avail-

able as part of the CAGI experiment to assess the utility of gen-

eral sequence-based methods for pathogenicity prediction such as

MutPred for more specific prediction tasks. In particular, we address

the following questions: (1) Are pathogenicity predictors trained on

mutations frommultiple proteins useful for individual protein-specific

prediction tasks? (2) Can predictors trained to distinguish between

pathogenic and benign variants predict the outcomes of function-

specific experimental assays? (3) Are pathogenicity predictors robust

to heterogeneity in evidence for pathogenicity/functionality in cur-

rent training and test sets? (4) Do supervised learning approaches

capture the biologically intuitive relationship between pathogenicity
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TABLE 1 Summary of data sets selected for this study

Gene symbol Protein name Challenge name CAGI year
Number of protein
variants

Number of variants with
amino acid substitutions

NAGLU Alpha-N-
acetylglucosaminidase

NAGLU 2015 165 165

PKLR Pyruvate kinase PKLR Pyruvate kinase 2015 543 543

UBE2I SUMO-conjugating
enzymeUBC9

SUMO ligase 2015 5,109 5,109a

NPM-ALK Nucleophosmin,
anaplastic lymphoma
kinase fusion protein

NPM-ALK 2015 23 19a

BRCA1 Breast cancer type 1
susceptibility protein

BRCA 2013 36 19

BRCA2 Breast cancer type 2
susceptibility protein

64 42

CDKN2A Cyclin-dependent kinase
inhibitor 2A

p16 2013 10 10

MRE11A Double-strand break
repair protein
MRE11A

MRN 2013 51 24

NBN Nibrin 40 24

RAD50 DNA repair protein
RAD50

RAD50 2011 69 35

SCN5A Sodium channel protein
type 5 subunit alpha

NaV1.5 channel 2011 3 3

CBS Cystathionine
beta-synthase

CBS 2011
2010

84
51

84
51

CHEK2 Serine/threonine-protein
kinase Chk2

CHEK2 2010 41 34a

aIncludes protein variants withmore than one substitution.

and functionality? By addressing these questions, we aim to pro-

vide a more thorough understanding of the variant impact predic-

tors and lay the groundwork for the development of next-generation

methodologies.

2 MATERIALS AND METHODS

2.1 Data sets

Over the four iterations of the CAGI experiment, several prediction

challenges accompanied by data sets obtained through different types

of experimental techniques have been archived on the CAGI Website

(https://genomeinterpretation.org/). In this study, only those data sets

containing mutations (predominantly amino acid substitutions) from a

single gene or a small set of genes were selected (Table 1). For each

challenge, raw ground truth values were extracted from the official

results file provided alongwith the data set. For four challenges, exper-

imental results have already been published by the data providers

and were obtained directly from the literature: the p16 challenge

(Scaini et al., 2014), the NaV 1.5 channel challenge (Calloe et al., 2013),

the 2010 cystathionine beta-synthase (CBS) challenge (Dimster-Denk

et al., 2013) and the CHEK2 challenge (Le Calvez-Kelm et al., 2011).

When numbering all the mutations in this work, the initiation codon

was assumed to be codon 1.

2.2 Processing

For all challenges, onlymissense variantswere extracted from theorig-

inal data sets. Variantswithout experimental values and/or predictions

(due to mismatch between reference residue in the variant and that in

the reference sequence) were excluded. For challenges where exper-

imental quantities were expressed as percentages, the values were

mapped to the (0, 1) interval. In challengeswhere the combined effects

of multiple mutations were to be predicted, the predictors were run

on each mutation individually and the maximum value was chosen as

the final prediction. This approach was chosen over other potential

approaches in a systematic analysis on the SUMO ligase challenge and

applied to the other data sets without further experimentation. The

underlying assumption of this approach was that the combined effects

of multiple substitutions would not exceed the effect of the most dele-

terious variant. Other challenge-specific aspects of data set construc-

tion are outlined below.

The MRN, RAD50, and CHEK2 challenges contained data sets

derived from case-control sequencing studies. In these special cases,

the ground truth for each variant was available through the num-

bers of case and control individuals harboring it. When counts for

different subpopulations were available, they were summed together

to create single pooled count sets. To establish ground truth values,

the probability of pathogenicity for a variant was estimated in two

ways: (1) as the fraction of its occurrence in case individuals among all

https://genomeinterpretation.org/
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individuals carrying the variant, and (2) as the same fraction when the

imbalance between case and controls was accounted for. This case-

control-balanced frequency was calculated as:

# (case ∧ carrier)
# (case ∧ carrier) + #case

#control ⋅ # (control ∧ carrier)
,

where “carrier” indicates that the variant is carried by an individual. A

frequency value of 0.5 indicates that a variant is equally likely to occur

in the case and control cohorts. Any variant with a value greater than

thiswas treated as a pathogenic variant. To assess the effect of this fre-

quency threshold on predictor performance, it was varied between 0.1

and 0.9 in increments of 0.1, and area under the curve (AUC) values

were calculated at each threshold.

In the case of CBS, binary class labels (nonfunctional or other)

and raw experimental values for the 2010 and 2011 challenges

were obtained from the work of Dimster-Denk et al., (2013) and the

CAGI repository, respectively. “Sensitive” mutations were included

in the “non-functional” class and “Heme rescue” mutations were

excluded. Only those raw experimental values that corresponded to

the assay conditions defined in the original challenge description were

extracted.

For the SUMO ligase challenge, experimental values could be neg-

ative and were set to zero to fall within our predictors’ score distribu-

tions. Apart from evaluating predictions in terms of raw experimental

values, all variants were classified into four groups, based on thresh-

olds defined by the official CAGI assessors. If a value for a variant was

<0.3, it was considered to be “deleterious”. If its value was ≥0.3 and

<0.7, it was treated as “unsure.” If the variant had a value ≥0.7 and

<1.3, it was considered to be “wild-type” and any variant with a value

≥1.3 was treated as “advantageous.”

2.3 Predictors

Pathogenicity predictions were made on all missense mutations from

these data sets using two different predictors. First,MutPred, an exist-

ing random forest-based method that relies on sequence, conserva-

tion, predicted structural, and functional features tomake pathogenic-

ity predictions, was used (Li et al., 2009). Second, a neural network

ensemble using an expanded feature set was trained on a much larger

andmoreheterogeneousdata set obtained fromHGMD(Stensonet al.,

2014), SwissVar (Mottaz et al., 2010), dbSNP (Sherry et al., 2001), and

others (details of this approach will be described elsewhere). This pre-

dictor will be referred to as MutPred2 (Pejaver et al., 2017). The pre-

dictorwas run in twomodes, with orwithout accounting for gene fami-

lies in training. These features simply enumerate proteins in the human

and mouse genomes at various levels of sequence identity to the pro-

tein in which the variant is observed. We informally refer to these fea-

tures as “homolog counts.” Both MutPred and MutPred2 require only

a protein sequence and an amino acid substitution as input, and out-

put scores between zero (benign) and one (pathogenic). For challenges

where experimental assay scores were expressed as a fraction of the

wild-type function, prediction scores were “inverted” by subtracting

them from one. Thus, a score of zero would indicate a complete loss

of function and a score of one would indicate similar function levels as

the wild-type protein.

2.4 Evaluation

For prediction tasks that were treated as soft (unthresholded) classi-

fication problems, the predictors were assessed as rankers. The area

under the receiver operating characteristic (ROC) curvewas therefore

chosen as an evaluation metric (Fawcett, 2006). In the case of regres-

sion tasks, tomeasure the concordance between prediction scores and

actual experimental values, one ormore of the followingmeasureswas

used: Pearson’s correlation, Spearman’s rank correlation, and the root-

mean-square deviation (RMSD) (Rosner, 2010). The choice of metric

varied depending on how evaluations were undertaken by the offi-

cial CAGI assessors for each challenge. Performance values for other

methods were obtained from the assessors’ materials on the CAGI

Website. For more systematic comparisons, the reader is referred to

the assessors’ publications.

3 RESULTS

The CAGI experiment has resulted in a valuable repository of data

sets associated with a variety of prediction tasks. For the purposes

of this study, we concentrated on protein-specific data sets rich in

amino acid substitutions. This resulted in a collection of 11 data sets

covering 13 proteins, with the number of protein variants ranging

from three to 5,109 (Table 1). Depending on the experimental means

used to determine ground truth values, this collection can be grouped

into three broad categories: (1) challenges with genetic evidence

from large sequencing studies (BRCA1, BRCA2, CHEK2, MRE11A,

NBN, and RAD50), (2) challenges with biochemical functional assays

(N-acetyl-glucosaminidase [NAGLU], nucleophosmin-anaplastic lym-

phoma kinase [NPM-ALK], PKLR), and (3) challenges that measure

effects such as growth rate at the cellular level (CBS, CDKN2A,

SCN5A, UBE2I). We note that these proteins can also be grouped

along the lines of their phenotypic roles. For instance, BRCA1, BRCA2,

CDKN2A, CHEK2, the MRN complex proteins, and the NPM-ALK

fusion protein have all been implicated in a variety of cancers, whereas

CBS,NAGLU, PKLR, and SCN5Ahave been implicated in relatively rare

genetic disorders. In the following sections, we describe the nuances

associated with the specific prediction tasks within each of the three

aforementioned groups and their evaluation.

3.1 Prediction of the effects of pathogenic amino

acid substitutions identified through sequencing

studies

In this section, we describe results for prediction challenges where the

true values for impact were assigned based solely on genetic evidence

with no additional biochemical or molecular experiments. For the four

challenges covered here, frequency of occurrence or the mere pres-

ence of variants in patient and control cohorts largely influenced their

categorization as being pathogenic.
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3.1.1 BRCA challenge

MyriadGenetics, amolecular diagnostic company, has created the pro-

prietary BRACAnalysis R© test for the assessment of a woman’s risk of

developing hereditary breast or ovarian cancer. This test is based on

the detection of mutations in BRCA1 and BRCA2 and their classifi-

cation into one of four classes: (1) deleterious, (2) benign, (3) genetic

variant - favor polymorphism, and (4) variant of unknown significance

(VUS). The basis for these designations is proprietary but is thought to

incorporate information from patient testing, population-level variant

frequencies, and segregation of variants in families with disease. In the

BRCA challenge, the goal was to predict the probability that Myriad

Genetics classified each of 100 BRCA variants into one of these four

classes. Apart from this multiclass classification task, a more straight-

forward task was to predict the probability that Myriad Genetics clas-

sified a given variant as deleterious (a binary classification problem).

Since our predictors were directly amenable to this task, we concen-

trated on the prediction of the deleteriousness of variants, particu-

larly missense variants. As a result, of the 19 and 42missense variants

in BRCA1 and BRCA2, respectively, only four and seven were consid-

ered for evaluation. The remaining missense variants had been classi-

fied as VUS by Myriad Genetics and any quantitative evaluation was

infeasible.

The predictions for these 11 variants are summarized in Table 2

along with their class labels. In the case of BRCA1, both predictors

returned perfect predictions with AUC values of one. For BRCA2, the

AUC values of MutPred and MutPred2 were 0.90 and 0.67, respec-

tively. However, when the two variants classified as “probably benign”

were excluded, both methods resulted in AUCs of one. This suggests

that the difference between the methods lies in how such “probably

benign” variants were ranked relative to other variants in BRCA2. In

fact, theMutPred2 score distributionwas such that a low score thresh-

old was sufficient to classify variants as deleterious (Table 2). This was

probably due to the selection of the MutPred2 model that included

protein-level homolog counts as features. Although this model per-

formed better than the onewithout these features, it typically rescales

TABLE 2 Predictions on missense variants classified by Myriad
Genetics

BRCA1

Variant True classification
MutPred
score

MutPred2
score

p.Cys39Phe Deleterious 0.99 0.76

p.Tyr777Asp Benign 0.54 0.54

p.Ile1275Val Benign 0.20 0.02

p.Asp1546Glu Benign 0.11 0.03

BRCA2

Variant True classification
MutPred
score

MutPred2
score

p.Val211Leu Deleterious 0.24 0.29

p.Ile975Ser Deleterious 0.37 0.34

p.Arg2336Hisa Deleterious 0.69 0.15

p.Val3079Ile Deleterious 0.58 0.09

p.Leu2368Val Benign 0.19 0.09

p.Glu2956Ala Probably benign 0.23 0.18

p.Pro3243Leu Probably benign 0.35 0.21

aPresent in both predictors’ training sets as a pathogenic variant.

scores based on the number of homologs that a given protein has in

human and mouse. Overall, while it appears that MutPred performed

better than MutPred2, the results were inconclusive, due to the small

data set size, class imbalance, and the lack of additional experimental

evidence for deleteriousness. We note that only MutPred predictions

were included in our official submission to the challenge, and it was

found to be the best-performingmethod by the assessors.

We then performed a qualitative analysis of the scores from both

predictors for the 50 variants designated as VUS. We found that

VUSs from both genes were dominated by benign predictions for

both predictors (Fig. 1). This is in general agreement with the major-

ity of the official CAGI submissions. However, the score distribu-

tions of MutPred andMutPred2 differed from each other significantly

F IGURE 1 Score distributions for missense variants designated as VUS by Myriad Genetics in (A) BRCA1 and (B) BRCA2. The raw prediction
scores from the two methods are marked on the x-axis. The density values on the y-axis were estimated by using the default kernel smoothing
function ksdensity inMATLAB. For a given prediction score, the higher the density value, themore frequently observed it is in the given data set
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for both BRCA1 (Kolmogorov–Smirnov P = 1.1 × 10−3) and BRCA2

(Kolmogorov–Smirnov P = 9.7 × 10−3). In the case of MutPred, the

score distribution peaked in the interval (0.3, 0.4) for both BRCA1 and

BRCA2 and was slightly bimodal for BRCA2. On the other hand, Mut-

Pred2 favored lower scores, peaking in the interval (0.1, 0.2) for both

genes with a shorter right tail for BRCA2. This trend agrees with that

in Table 2. We speculate that, in addition to the homolog count fea-

tures, the different score distributions for the two predictors largely

arise due to an expanded feature set and the use of neural networks in

MutPred2.

3.1.2 MRN and CHEK2 challenges

In addition to the BRCA genes, there were four other genes with

only genetic evidence for pathogenicity of their variants in the CAGI

experiment. ThesewereMRE11A, NBN, RAD50, and CHEK2 and their

variants were provided in three distinct challenges: the MRN chal-

lenge (for the first two genes), the RAD50 challenge, and the CHEK2

challenge. However, all of these challenges were structured similarly.

Variants in these four genes were obtained from breast cancer case

and control individuals through population-level sequencing at the

respective loci; for details see (Le Calvez-Kelm et al., 2011; Damiola

et al., 2014). The goal of these challengeswas to predict the probability

of a given variant occurring in an individual from the case group. Since

the challenge focused primarily on rare variants, these probabilities

(derived from frequencies)were very similar to eachother andevaluat-

ing the task as a regression problemwould be too stringent. Therefore,

we treated this task as a binary classification problem, applied our

predictors to only missense variants and evaluated them using AUC.

However, it is important to note that the definition of whether a

variant was truly pathogenic or not depended on its frequency in cases

and controls. Therefore, in addition to the default threshold of 0.5, we

investigated the effects of varying class label thresholds on AUCs as

well.

Evaluation results for all four genes are summarized in Figure 2.

In all four cases, the MutPred2 model with homolog count features

was used as it performed comparably or better than the model with-

out these features. In the case of MRE11A, the AUC for MutPred was

higher than that for MutPred2 (0.66 vs. 0.62). However, at low false

positive rate (fpr) values,MutPred2 identifiedmore true positives than

MutPred (Fig. 2A). As the cutoff for pathogenicity was increased, both

predictors improved performance and converged to similar AUC val-

ues (Fig. 2B). For RAD50, although MutPred had a smaller AUC value

thanMutPred2 (0.63 vs. 0.68), the performanceswere very similar, dif-

fering only at high fpr values (Fig. 2C). Again, both predictors showed

similar performance at higher frequency thresholds, with MutPred

being more stable (Fig. 2D). NBN deviated from the other members of

the MRN complex in that both predictors performed worse than ran-

dom at the default frequency threshold, with MutPred2 doing slightly

better (Fig. 2E). Interestingly, this performancewas recovered for both

predictors when the threshold was decreased, that is, unlike the pre-

vious case, more relaxed thresholds (0.2, 0.3) yielded better perfor-

mances, with MutPred reaching AUC values up to 0.7 (Fig. 2F). Finally,

in Figures 2G and H, we describe the results for CHEK2. Although

the AUC for MutPred was higher than that for MutPred2 (0.64 vs.

0.61), their true-positive rates in the (0, 0.1) fpr interval were compa-

rable. Furthermore, AUCvalues for both predictors at lower frequency

thresholds were equal, with MutPred’s performance improving at

more stringent thresholds. These results held even when the true

pathogenicity labels were assigned based on case-control-balanced

frequencies (Supp. Tables S1–S4).

We note that the official CAGI assessors used measures other

than AUC. Although our AUC values for these four genes were mod-

est at best, the official assessment concluded that MutPred was the

best-performing method for the RAD50 challenge (MutPred2 had not

been developed at the time). To the best of our knowledge, all sub-

mitted predictors performed poorly on MRE11A and NBN and our

predictors were among the better performing ones. Although some

of the variants in these data sets were included in our predictors’

training sets (more so for MutPred2; data not shown), the compara-

ble performances of both predictors indicates no significant advan-

tage to either of our methods. This suggests that either variants from

these genes are difficult to predict on with current approaches or

that the frequency-based annotations of pathogenicity are generally

unreliable.

3.2 Prediction of the effects of amino acid

substitutions on protein activity and function

In these challenges, the ground truth values were established through

in vitro biochemical assays. Typically, these experiments first involved

expression of proteins of interest in cells followed by their extrac-

tion from cell lysates and purification. Then, specific functions such as

enzyme activity or binding affinity were assayed against known sub-

strates or analogs. Although several mutations, and almost all of the

proteins (NAGLU, NPM-ALK, and PKLR), covered in this section are

medically important, the prediction tasks here focused mostly on the

specific functional consequences of thesemutations,without regard to

cellular or organismal phenotype.

3.2.1 NAGLU challenge

The most recent challenge in this category was the prediction of the

effect of naturally occurring missense mutations on the enzymatic

activity of NAGLU, a lysosomal glycohydrolyase. Deficiency of NAGLU

and/or its mutations cause Mucopolysaccharidosis IIIB or Sanfillipo B

disease. The data set consisted of 165 missense mutations extracted

from the Exome Aggregation Consortium (ExAC) data resource (Lek

et al., 2016). The effects of these mutations on NAGLU’s hydrolysis

activity were assayed and quantified relative to the wild type to estab-

lish ground truth values. An activity value of zero indicated complete

abolition of activity, a value of one indicatedwild-type levels of activity

and any value greater thanone indicated activity greater than thewild-

type value.Weevaluated our predictions in twoways. First, we treated

every mutation with activity levels > 0.1 (Wyatt T. Clark, personal

communication) as wild-type-like and evaluated the task as a binary

classification problem. Second, we treated the task as a regression
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F IGURE 2 Performance of pathogenicity predictors on MRE11A (A, B), RAD50 (C, D), NBN (E, F), and CHEK2 (G, H). (A), (C), (E), and (G) show
ROC curves for both predictors for the particular gene at a frequency threshold of 0.5 (default threshold). Since true values of pathogenicity were
defined in terms of a variant’s occurrence in case and control individuals, a threshold had to be chosen to establishwhich variantswere pathogenic.
(B), (D), (F), and (H) show the corresponding effects of varying frequency thresholds to define actual pathogenic and benign variants on the AUC
values of both predictors
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F IGURE 3 Summary of the evaluation of the effects of missense mutations on NAGLU activity. A: ROC curves for MutPred and MutPred2. B:
Scatterplot showing the relationship between MutPred predictions and actual NAGLU activity values. C: Scatterplot showing the relationship
between MutPred2 predictions and actual NAGLU activity values. The lines in B and C were fit by creating a linear regression model and plot-
ting the coefficients. Pearson’s rwere found to be 0.54 and 0.62 for B and C, respectively. In (B) and (C), values of zero and one indicate no activity
andwild-type levels of activity, respectively. (A), (B), and (C) excludemutations with activity values>1

problem and used Pearson’s correlation coefficients to measure the

agreement between our predicted activity values and actual experi-

mental values.

We found that the inclusion of homolog count features had little

impact on the predictive performance of MutPred2 and, therefore,

considered the model without these features. Irrespective of whether

mutations with activity levels above 1 were included or not, the AUCs

of MutPred and MutPred2 were 0.78 and 0.85, respectively (Fig. 3A).

This was the case even when considering Pearson correlation coeffi-

cients. MutPred was less correlated with activity values (r = 0.54; P =
3.4 × 10−13; t-test) than MutPred2 was (r = 0.62; P = 1.1 × 10−17; t-

test)whenmutationswith activity levels above 1were excluded.When

these mutations were included, the corresponding correlation coeffi-

cients were 0.54 (P = 1.6 × 10−13; t-test) and 0.61 (P = 6.7 × 10−18;

t-test). Overall, MutPred2 outperformed MutPred and was, in fact,

judged to be the best-performing method among all submissions for

this challenge.

Interestingly, as in the case of the BRCA VUS, the distributions of

scores output by MutPred and MutPred2 were very different. Unlike

MutPred2, MutPred predicted no activity values to be greater than

0.7 and the spread of scores appeared more “compressed” (Fig. 3B

and C). One possible explanation for this is thatMutPred2was trained

on 22 more NAGLU variants than MutPred, about half of which were

not pathogenic. On the other hand, MutPred was only presented with

pathogenic NAGLU variants during training and may have tended to

favor pathogenic predictions in this protein. However, it is unlikely

that the inclusion of such a small set of training variants (relative to

the whole training set) would substantially affect performance. For

instance, seven nonpathogenic mutations from the NAGLU data set

overlappedwithMutPred2’s training set. However, three of these have

activities <0.5 and are more likely to be damaging mutations. There-

fore, any advantages gained here by MutPred2 would be nullified. An

alternative explanation for the difference in score distributions is that

MutPred2 uses a neural network ensemble, resulting in a smoother

classification function that scales scores more evenly than the random

forest model inMutPred.

3.2.2 NPM-ALK challenge

NPM-ALK is a protein formed through the fusion of NPM1 and

anaplastic lymphoma kinase (ALK). This fusion results in the ALK tyro-

sine kinase being constitutively activated and contributing to cancer.

NPM-ALK is dependent on the molecular chaperone Hsp90 for its sta-

bility and activity. In this challenge, the goal was to predict the effects

of 23 mutations (19 missense) on two distinct and separately assayed

functions of NPM-ALK relative to the wild-type protein, kinase activ-

ity, and Hsp90-binding affinity. In both cases, the experimental values

were set to zero if the given function was completely lost, 0.5 if the

activity or binding was less than that of the wild-type protein, one if

the function was at wild-type levels, and two if the function was above

wild-type levels. We ran and evaluated our predictors solely for this

study and did not officially participate in this challenge. We note that

MutPred2 uses predicted losses and gains of specific protein proper-

ties (as a consequence of mutation) such as catalytic activity, stability,

and PPIs as features. Therefore, in addition to the general scores out-

put by our predictors, we evaluated scores from these individual pre-

dictors as well.

We note that all mutations in the data set were mappable to the

ALK protein and predictions could be made on either NPM-ALK or

ALK. We chose ALK, as our performance on this sequence was bet-

ter overall. For the first task, MutPred correlated better with kinase

activities than MutPred2 when all mutations were considered. How-

ever, the trend reversed when only those mutations with activity

values ≤1 were considered (Fig. 4A). To put these results in con-

text, r of the best-performing method at CAGI was 0.88. However,

we note that these methods were developed and/or customized for

this challenge. When the assessors used general pathogenicity pre-

dictors such as SIFT (Ng & Henikoff, 2001), PolyPhen-2 (Adzhubei

et al., 2010), and PROVEAN (Choi et al., 2012), the best-performing

method (PolyPhen-2) had a coefficient of 0.47. Furthermore, when

MutPred2’s internal catalytic site predictors were considered, cor-

relation levels increased to those comparable to the top CAGI

submissions.



1100 PEJAVER ET AL.

F IGURE 4 Evaluation of the performance of our predictors on the NPM-ALK challenge. Spearman correlation coefficients for (A) the kinase
activity prediction task and (B) the Hsp90-binding affinity task. “Wild” scores were obtained by running the in-house predictor for the given prop-
erty on wild-type sequence. “Mutant” scores were obtained similarly on the mutated sequence. Property scores combined “wild” and “mutant”
values as described in Pejaver et al. (2017). A “*” adjacent to a bar indicates a statistically significant correlation (with Bonferroni correction).

Next, we considered the Hsp90-binding affinity predictions. This

task turned out to be much harder with the only positive correla-

tion value arising from predictions made by MutPred when affinity-

increasing mutations were excluded (Fig. 4B). Interestingly, the PPI

property predictors resulted in positive correlations in all but one case.

However, none of these were statistically significant and were only

better than MutPred when all mutations were considered. In the offi-

cial assessment, all predictions were virtually random with the top r

being 0.05, much below those of a majority of our approaches. These

trends held even when considering Pearson’s correlation coefficients,

except in the case of PPI mutant scores; a positive correlation was

observed when affinity-increasing mutations were excluded, suggest-

ing a strong linear relationship between the predicted and true values

(Supp. Fig. S1).

3.2.3 Pyruvate kinase challenge

Pyruvate kinase is an enzyme that catalyzes the last step in glycolysis

and is regulated by two allosteric effectors, alanine and fructose 1,6

bisphosphate (Fru-1,6-BP). Of the four isoforms expressed from the

pklr gene in mammals, the one specific to the liver, L-PYK, is of par-

ticular interest. Variants in this gene have been associated with pyru-

vate kinase deficiency and, in L-PYK, several variants fall in or around

allosteric effector-binding sites, suggesting a link between allosteric

regulation and disease. In the pyruvate kinase challenge, there were

two major goals. The first goal was to predict the effect of missense

mutations on kinase activity defined simply as the presence or absence

of activity. The second goal involved the prediction of the real-valued

effects of thesemutations on allosteric regulation by the twoeffectors.

The values between zero and one indicated allosteric inhibition, values

aboveone indicated allosteric activation andvalues of one indicatedno

allosteric effects. As in the case of the NPM-ALK challenge, in addition

to our general impact scores, we also evaluatedMutPred2’s predicted

allosteric site-related features for the second task.

There were two data sets in this challenge that were derived from

two experiments. The first data set consisted of 113 amino acid substi-

tutions at nine different positions close to the alanine-binding site. On

this data set, the AUC for MutPred was greater than that for the Mut-

Pred2model with homolog count features (0.80 vs. 0.76), although the

latter identified more activity-disrupting mutations at low fpr values

(Fig. 5A). The second data set consisted of 430 mutations generated

through an alanine scan on all nonalanine/glycine positions in L-PYK.

The trends here were similar (AUC ofMutPred= 0.79 vs. AUC ofMut-

Pred2= 0.74), withMutPred also doing slightly better thanMutPred2

at low fpr values (Fig. 5B). Although we did not officially participate in

this challenge, it is instructive to contextualize our performance in rela-

tion to the state-of-the-art. The official assessors used balanced accu-

racy, calculated as the average of sensitivity and specificity (Fawcett,

2006), as the primary measure and found the best-performing meth-

ods to have values of 0.77 and 0.75 for the first and second data sets,

respectively. We calculated MutPred’s balanced accuracy to be 0.54

and 0.61 at a score threshold of 0.5. The corresponding values forMut-

Pred2 were 0.59 and 0.67. When score thresholds corresponding to

the maximum possible balanced accuracy were considered, MutPred

had values of 0.77 and 0.75 (score threshold: 0.80 and 0.81, respec-

tively), and MutPred2 had values of 0.76 and 0.71 (score threshold:

0.74 and 0.59, respectively) for the two data sets.

Next, we evaluated the ability of our methods to predict effects on

allosteric regulation by alanine and Fru-1,6-BP. These were measured

in both experiments for alanine and only in the second experiment for

Fru-1,6-BP. Unlike other challenges, all mutations were retained here

because none of these values exceeded one for alanine and all but

one were below one for Fru-1,6-BP. We found that MutPred2 was the

only approach with positive correlations in all three cases (Fig. 5C).



PEJAVER ET AL. 1101

F IGURE 5 Evaluation of the performance on the pyruvate kinase challenge. A: ROC curves for the predictors on the first data set consisting of
mutations at and around the alanine-binding site. B: ROC curves for the predictors on the second data set consisting of mutations obtained from
protein-wide alanine scanning.C: Correlation coefficients calculated betweenpredicted and experimental values. The allosteric property predictor
was used and evaluated in a manner similar to the NPM-ALK challenge. A “*” adjacent to a bar indicates a statistically significant correlation (with
Bonferroni correction)

Interestingly, the predicted allosteric site features in MutPred2 per-

formed better than the original MutPred model, achieving positive

correlations in two out of the three data sets. To put these results

in perspective, Spearman’s rank correlation coefficients of the best-

performingmethods at CAGIwere 0.35, 0.01, and 0.05 for the first and

second alanine data sets and the Fru-1,6-BP data, respectively. Since

none of these mutations were in our training sets, we interpret these

results as follows. The score distribution returned by MutPred is opti-

mized to perform better (and perhaps the best) when assessing kinase

activity. However, MutPred2’s score distribution generalizes better to

the different definitions of function in this challenge at the cost of a

modest loss in accuracy when considering kinase activity (the primary

function of L-PYK).

3.3 Prediction of the effects of amino acid

substitutionsmeasured at the cellular level

In order to establish the causal roles of variants in disease, it is often

insufficient to demonstrate their effects on an isolated protein’s func-

tion. A common approach is to measure the effects of such mutations

on measurable cellular parameters such as growth rate, detection of

signals in or outside the cell, protein turnover, among others. TheCAGI

experiment included four such challenges: the SUMO ligase challenge,

the p16 challenge, the SCN5A challenge, and the CBS challenge (with

twodifferentdata sets). Eachof theseuseddifferent experimental end-

points to assign variant impact and are described in this section along

with the evaluationof our predictions. It is important to note that these

experiments are often carried out on cell lines and may or may not

reflect actual phenotypes at the organism level.

3.3.1 SUMO ligase challenge

This challenge constitutes the largest data set of mutations in our

collection and was generated through a high-throughput yeast com-

plementation assay. UBE2I is the only human SUMO-conjugating

protein (SUMO E2 ligase). It regulates the function of a multitude

of proteins through the covalent attachment of small ubiquitin-like

modifier proteins (SUMOs) to them (Geiss-Friedlander and Melchior,

2007). The goal here was to predict the effect of missense mutations

on the function of UBE2I defined as the change in fraction of mutant

SUMO ligase clones, relative towild-type clones, in a competitive yeast

growth assay. This set of variants was divided into three subsets. The

first subset consisted of 219 amino acid substitutions whose experi-

mental values were robust to multiple internal replicates. The second

subset consisted of 463 amino acid substitutions whose experimental

values were assigned with lower confidence than those in subset 1.

Finally, the third subset consisted of 4,427 combinations of two or

more amino acid substitutions occurring together. The predicted val-

ues were expected to be between zero (no growth) and one (wild-type

growth), or greater than one (more growth than wild type). We note

that for this challenge, a score distribution was provided to calibrate

raw prediction scores. While our official submissions included this

calibration step, in this study, we aimed to investigate the direct

applicability of our methods and, therefore, used the raw scores. Cali-

bration only provided modest improvements over the results from the

raw scores.

Based on thresholds established by the CAGI assessors, we divided

the data set into two classes (deleterious or wild type) and obtained

ROC curves for both predictors (Fig. 6). In subsets 1 and 2, we found

that both predictors had comparable performances with slight advan-

tages belonging toMutPred2 in subset 1 andMutPred in subset 2. This

trend remained even when the “unsure” variants were included in the

“deleterious” class (Table 3). However, both predictors’ performance

improved on subset 1 and dropped on subset 2when the “unsure” vari-

ants were reassigned. In this case, the trend for subset 1 agreed with

the trend for subset 3 and we concluded that subset 2 deviated from

the other subsets due to the noise introduced by a larger fraction of

low-confidencegrowthvalues.As canbe seen inTable3, Spearmancor-

relation coefficients betweenpredictedandexperimental growth rates

followed a similar pattern as the AUC values with modest differences

between the two predictors. We note that the exclusion of “unsure”

variants made both subsets easier to predict on and that the perfor-

mance improved for both predictors (data not shown).
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F IGURE 6 Performance of both predictors on the three subsets of the SUMO ligase variants. All “unsure” variants were included in the “wild-
type” class and all “advantageous” variants were excluded from the analyses. A: ROC curve for the set of variants with high-confidence growth
rate values (subset 1). B: ROC curve for the set of variants with low-confidence growth rate values (subset 2). C: ROC curve for the set containing
combinations of two ormore amino acid substitutions occurring together (subset 3)

TABLE 3 Performancemeasures for the prediction of the deleteriousness of amino acid substitutions in SUMO ligase

Subset 1

AUC

Method Processing Unsure as “wild type” Unsure as “deleterious” Spearman correlation coefficient

MutPred NA 0.669 0.694 0.380

MutPred2 NA 0.687 0.703 0.408

Subset 2

AUC

Method Processing Unsure as “wild type” Unsure as “deleterious” Spearman correlation coefficient

MutPred NA 0.708 0.671 0.389

MutPred2 NA 0.689 0.653 0.360

Subset 3

AUC

Method Processing Unsure as “wild type” Unsure as “deleterious” Spearman correlation coefficient

MutPred Meana 0.615 0.625 0.197

MutPred2 0.608 0.628 0.184

MutPred Max 0.613 0.624 0.189

MutPred2 0.631 0.649 0.226

MutPred Product 0.601 0.624 0.182

MutPred2 0.609 0.638 0.170

All correlations are significant at a P-value threshold of 0.05.
aOfficial submission to CAGI.

Subset 3 was a harder task for both predictors as neither of them

were designed to predict the combined effects of multiple substi-

tutions. We therefore decided to run the predictors on individual

mutations and perform postprocessing to assign a single value to each

multimutant protein variant. Table 3 shows the three different post-

processingmethods thatweexplored, and, clearly, taking themaximum

predicted value among individual predictions for a variant worked the

best for MutPred2 and the average predicted value worked slightly

better forMutPred. Both predictors showedmodest correlations with

experimental values.We note that the official assessors for this partic-

ular challenge used multiple sophisticated metrics to identify the best

method. Although our methods were not the best performing, their

performances were very similar to the state-of-the-art, suggesting

that UBE2I is a hard target to predict on with current methods.

3.3.2 p16 challenge

The CDKN2A gene codes for two proteins through alternate splicing of

its first exons, both of which have tumor-suppressor functions. Among

these, the p16 isoform inhibits cyclin-dependent kinase (CDK4/6) and,

thus, promotes cell cycle arrest and affects cell proliferation. Muta-

tions that affect the inhibitory function of p16 cause cells to grow

rapidly and contribute to malignant melanoma. The p16 challenge

involved the prediction of cell proliferation rates as a consequence of

10 differentmutations at four positions in p16. These rateswere set by
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TABLE 4 Predictions of the effects of 10mutations in p16 on cell proliferation rates

MutPred MutPred2b

Mutation Proliferation rate Tumor-like?a Score Abs. diff. Score Abs. diff.

p.Gly23Arg 0.54 No 0.54 0.00 0.68 0.14

p.Gly23Cysc 0.87 Yes 0.83 0.03 0.89 0.02

p.Gly23Arg 0.92 Yes 0.56 0.35 0.79 0.13

p.Gly23Ser 0.69 No 0.52 0.17 0.66 0.04

p.Gly23Val 0.90 Yes 0.62 0.29 0.83 0.07

p.Gly35Gluc 0.60 No 0.92 0.32 0.80 0.20

p.Gly35Arg 0.54 No 0.80 0.26 0.84 0.30

p.Gly35Trp 0.86 Yes 0.81 0.05 0.82 0.04

p.Leu65Proc 0.66 No 0.78 0.12 0.59 0.08

p.Leu94Proc 0.94 Yes 0.95 0.01 0.83 0.11

Bold predictions represent those where the absolute difference between the real and predicted values<0.20.
aUsing a proliferation rate threshold of 0.75, as defined by CAGI assessors.
bModel with homolog count features shown here.
cPresent in both predictors’ training sets as pathogenic mutations.

the data providers to be 0.5 for wild-type cells (negative controls) and

one for tumor-like cells (positive controls). Since amutation resulting in

a growth rate closer to 0.5 could be interpreted as being “benign” and

that with a rate closer to one could be interpreted as “pathogenic,” we

directly applied our predictors to this data set. Our predictions were

evaluated in two ways. First, we treated every mutation with growth

rate above 0.75 as tumor-like and evaluated the task as a binary classi-

fication problem. Second, we treated the task as a regression problem

and calculated the RMSD to determine how close our predicted prolif-

eration rates were to actual experimental values.

The results for the p16 data set are summarized in Table 4. When

evaluated as a classification task, both models in MutPred2 (with or

without homolog counts) outperformed MutPred (AUC values of 0.80

and 0.84, respectively, vs. 0.68). This is the case even for RMSD values

except that the MutPred2 model with homolog counts had the lowest

RMSD (0.1397), followed by the other MutPred2 model (0.1506) and

MutPred (0.2061). As suggested before, the better performance of the

homolog count model can be explained by the fact that the inclusion

of these features rescales scores, which better mimic actual prolifer-

ation rate distributions. Since we did not participate in this challenge,

wedirectly comparedour performancevalueswithothermethods that

were officially assessed. MutPred2 had an AUC value comparable to

the top-performing methods and the second-best RMSD value among

all methods submitted.

3.3.3 NaV 1.5 challenge

This challenge involves the smallest data set among all the chal-

lenges described in this study. SCN5A encodes the NaV 1.5 integral

membrane protein, primarily found in cardiac muscle cells and is

responsible for mediating the fast influx of Na+ ions across the cell

membrane. This influx, in turn, results in the fast depolarization of the

cardiac action potential. Thus, this protein plays an important role in

impulse propagation through the heart. Althoughmutations in SCN5A

have been associated with multiple heart diseases, this challenge

concentrates on those that have been linked to Brugada syndrome

(Calloe et al., 2013). The data set contains three missense mutations

obtained by sequencing two independent families and screening the

resulting mutations against a control group. The effects of these

mutations on current flowweremeasured by patch clamp experiments

and expressed as the fraction of the reduction in current density due to

the mutation, when compared with the wild-type protein. The goal of

this challenge was to predict these current density fraction values.We

did not officially participate in this challenge and ran our predictors on

this data set solely for this study.

Table 5 shows the prediction scores for the three mutations along

with actual current density values obtained from Calloe et al. (2013).

Although the data set was too small to assign statistical significance

to our results, we found the Spearman correlation coefficients to be

one for both prediction methods. The Pearson correlation coefficients

were 0.83 and 0.90 for MutPred and MutPred2, respectively. This

suggests that while scores from both predictors were monotonically

related to current density fractions, MutPred2 scores were linearly

related to these fractions and could directly be applied to this pre-

diction task. Interestingly, although both function-altering mutations

were present in MutPred2’s training set as pathogenic, it was able to

reasonablypredict actual outcomes fromthepatch clampexperiments.

3.3.4 CBS challenge

One of the earliest challenges included in the CAGI experiment was

the prediction of the effects of mutations in CBS on its function. CBS

plays a role in cysteine biosynthesis via the transsulfuration pathway

and has been implicated in homocystinuria. There have been two CBS

challenges in CAGI with different data sets for each: one in 2010 and

the other in 2011. The 2010 data set contained 51 synthetically gener-

ated amino acid substitutions and the 2011 data set contained 84 sub-

stitutions observed in patients with homocystinuria. The experimental

setup in both situations was the same and involved the expression of

mutated human CBS clones in yeast cells with the orthologous gene

CYS4 removed. Thus, in this in vivo yeast complementation assay, the

growth of yeast cells was directly dependent upon the level of mutant
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TABLE 5 Predictions of the change in cellular current densities due to SCN5Amutations associated with Brugada syndrome

1 - Prediction score

Mutation
Fraction of current density reduction as
comparedwithwild type MutPred MutPred2

p.Arg620His 1.00 0.64 0.93

p.Arg811His 0.57 0.14 0.22

p.Ser1218Ile 0.00 0.12 0.07

F IGURE 7 Evaluation results on both the CBS data sets. A: ROC curve for both predictors on the 2010 data set (synthetic mutations). B: ROC
curve for both predictors on the 2011 data set (naturally occurring mutations). C: Heat map representing the predicted and experimental values
for mutations in the 2010 data set.D: Heat map representing the predicted and experimental values for mutations in the 2011 data set. In (C) and
(D), dark blue cells represent low growth rates, yellow cells represent wild-type growth rates and white cells represent missing data. Spearman
correlation coefficients (alongwith P-values) are shown at the top of each heatmap. The heatmaps include only thosemutationswith growth rates
≤1 and are sorted based on the first column’s values

human CBS and could be used to infer functionality for each muta-

tion. Since human CBS requires vitamin B6 (supplemented in the sol-

uble form of pyridoxine) as a cofactor for its function, experiments

were carried out with high (400 ng/ml) and low (2 ng/ml) cofactor con-

centrations. The goal was to predict cell growth rates expressed as a

fraction relative to the wild type with the same amount of pyridoxine

supplementation, where zero indicates complete loss of function and

one indicates wild-type levels of function. Since the data sets also pro-

vided explicit binary information on whether a variant was nonfunc-

tional or not,wedirectly ran our predictors on these data sets and eval-

uated them as both classification and regression problems.

We found that MutPred2 (without homolog counts) had greater

AUC values than MutPred in both data sets (Fig. 7A and B). How-

ever, in the 2011 data set, MutPred was more sensitive in the low fpr

interval; 79 of the 84 mutations in the 2011 data set were present in

MutPred’s training set (78 pathogenic and one benign) and 81 were

present inMutPred2’s training set (79 pathogenic and two benign). Of

these pathogenic mutations, only p.Asn228Lys occurred in the 2010
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data set. Since our predictors were trained in a binary classification

scenario similar to this challenge (albeit with different class defini-

tions), we calculated Spearman’s correlation coefficients as an addi-

tional measure of performance. When mutations with relative growth

rates above one were excluded, MutPred2’s scores correlated better

with experimental values than MutPred’s for the 2010 data set but

the converse was true for the 2011 data set (Fig. 7C and D). Pre-

dictions from both methods correlated better with the rates at high

pyridoxine concentrations in the 2010 set but were similar in both

experimental conditions in the 2011 data set. This was perhaps due to

the lack of null mutant growth rates for the low concentration experi-

ment in the 2010data set (Fig. 7C; second column).When the full set of

mutations was considered for each data set, MutPred2 outperformed

MutPredon all data sets in all experimental conditions (Supp. Table S5),

suggesting that its scores scaled better even when mutations outside

its prediction rangewere included.Wenote that neither of thesemeth-

ods were officially submitted to CAGI. The best-performing method in

2010 had an AUC value of 0.90 and Spearman coefficients of 0.62 and

0.65 for high and low concentrations of pyridoxine, respectively. Since

our training sets substantially overlapped with the 2011 data set, we

did not compare our performance to the official assessors’ results.

4 DISCUSSION

In this study, we applied two pathogenicity predictors, MutPred

and MutPred2, to various single-gene prediction challenges related

to the impact of missense mutations. This impact was measured

through genetic sequencing in case-control settings (BRCA1, BRCA2,

MRE11A, RAD50, NBN, CHEK2), biochemical assays for protein

function (NAGLU, NPM-ALK, PKLR), and assays measuring cellular

variables (UBE2I/SUMO ligase, CDKN2A/p16, SCN5A/NaV 1.5, CBS).

Both methods were trained on large sets consisting of amino acid

substitutions from thousands of genes and were not specifically tuned

for any particular gene or task at hand. They performed comparably or

better than the top-performingmethods identified by the independent

assessors. In some cases, these methods only utilized information

specific to the given gene, implicitly suggesting that generic models

trained on larger data sets benefit from information learned from

other genes. This is in general agreement with a recent systematic

study that concluded that the best-performing generic models fre-

quently outperform gene-specific ones (Riera et al., 2016). In addition,

our results provide insights on the transferability of pathogenicity pre-

dictors to the prediction of functional effects of missense mutations,

the robustness of these predictors to heterogeneity in evidence types

in current test sets, and the interpretability of thesemodels in a biolog-

ical context, that is, the relationship between the problemof predicting

pathogenic variants and that of predicting function-altering variants.

4.1 MutPred andMutPred2models generalize to

different prediction tasks

It has been previously argued that functional effect predictors can

predict disease-related mutations with reasonable accuracy and that

prediction scores correlate with effect severity (Schaefer et al., 2012).

We inverted this question and askedwhether pathogenicity predictors

can similarly capture different specific functional effects of amino acid

substitutions. We used a variety of CAGI prediction tasks to inves-

tigate this and found that pathogenicity predictors performed well

on almost all of the functional effect prediction tasks that this study

covers. Furthermore, prediction scores (especially MutPred2) often

correlated with actual experimental values without any calibration

or preprocessing. Although the direct use of these prediction scores

without any calibration can be context-dependent, the evidence sug-

gests that one can generally utilize the rankings to prioritize variants

of interest. Another interesting observation has to do with mutations

that overlap with our methods’ training sets. For example, nearly all of

the variants in the 2011 CBS data set were present in MutPred’s and

MutPred2’s training sets as pathogenic variants. Despite being trained

to identify all of these mutations as one class, our methods generated

distributions of scores that agreed with actual experimental measure-

ments. Moreover, we found that MutPred2 generally outperformed

MutPred. In the case of NPM-ALK and pyruvate kinase, we demon-

strated that the new functional site predictors (allosteric site and PPI

binding) in MutPred2 provide alternative ways to infer the impact of

amino acid substitutions. Furthermore, the prediction and inclusion

of such residue-level functional impact (a distinguishing attribute of

MutPred and MutPred2) improved the prediction of both pathogenic

and function-altering substitutions.We conclude that ourmethods can

be directly used to predict experimental valueswithout any calibration

and, at the very least, can serve as a baseline approach or a feature for

customized functional impact prediction tasks. We recommend that a

set of models similar to (and potentially including) ours be selected by

the CAGI organizers and used as a baseline in each relevant prediction

challenge.

4.2 Predictor score distributionsmatter

When considering metrics that measure the concordance between

experimental and predicted values, MutPred2 performed better than

MutPred, for example, the NAGLU, pyruvate kinase, p16, and the CBS

challenges. A major factor contributing to this are the differences

between the score distributions of the two methods. MutPred2 had

a spikier score distribution on the BRCA VUS data set and was more

spread out in the NAGLU challenge. The learning algorithm in Mut-

Pred2 is a neural network, which can approximate any discriminant

function (Cybenko, 1989) as well as posterior probabilities of the

underlying distribution of inputs and outputs (Rojas, 1996). Score dis-

tributions of predictors are often viewed and optimized in terms of the

separationbetweendifferent classes.However, our results support the

attempts to approximate posterior distributions as closely as possible

(Rost, Radivojac & Bromberg, 2016). While random forests (MutPred)

performed comparably or even better thanMutPred2 on classification

tasks, they were frequently outperformed on the prediction of func-

tional effect severity. We speculate that this may be due to the differ-

ences between the individual components of the two ensemble mod-

els: neural networks and classification trees. Although both neural net-

work ensembles and random forests involve averaging the outputs of
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these individual predictors, the smoother approximation of posterior

distributions by the neural networks seems to better capture the inter-

mediate levels of functional effect severity. Our arguments are further

supported by the fact that SNAP (which has been demonstrated to

correlatewith themagnitude of functional effects) also relies on neural

networks.

4.3 The relationship between predictive

performance and the evidence for pathogenicity

and functional impact

As illustrated through thedifferentCAGIprediction tasks, the strength

of the annotation of a pathogenic variant depends on the operating

definition of a pathogenic variant. Our results suggest better perfor-

mance of the pathogenicity predictors when information on biochem-

ical, molecular, or functional impact is available. For instance, in the

cases of MRE11A, RAD50, NBN, and CHEK2, AUC values for our pre-

dictors seldom exceeded 0.7, and yet our predictors were among the

top-performing methods. Despite being trained for the purpose of dis-

tinguishing between pathogenic and benign variants, state-of-the-art

methods did not perform as well as expected. However, in the case

of challenges with evidence of functional impact (NAGLU, CBS, and

p16), our predictors and the community itself faredmuchbetter. Based

on these observations, we reason that evaluations against disease

variants annotated simply based on their frequencies in case-control

studies are confounded by several external factors and these likely

contribute to the underestimation of predictive performance (Jain,

White, & Radivojac, 2017).

4.4 Predictors trained on variants frommultiple

genes in HGMDare robust

Public databases provide valuable data for systematic hypotheses test-

ing and the development of predictive models. However, issues of

uncertainty (overlap between class-conditional distributions in a given

feature space), sample selection bias, and noise will always have to be

overcome either through best practices in data processing or by the

models themselves (Rost, Radivojac&Bromberg, 2016).We found that

supervised learning methods that rely on large resources for training

wereactually useful on tasks specific to individual proteins.Ourpredic-

tors were competitive with or in some cases better than methods cus-

tomized for the given protein and/or task, for example, the p16, CBS,

and NPM-ALK challenges.

Interestingly, all pathogenic mutations in the MutPred training set

and a substantial fraction in the MutPred2 training set derive from

HGMD. From our experience going beyond this specific study, both

MutPred models heavily benefited from the use of this database.

Results from recent large-scale studies on the development of

metapredictors for pathogenicity prediction support this view; pre-

dictors trained on HGMD mutations tended to perform better than

other methods (Dong et al., 2015; Ioannidis et al., 2016). This can be

explained by the fact that the specialization of HGMD and its expert

curators for the task of collecting and storing disease variants reduces

noise, especiallywhen theevidence for pathogenicity is variable and/or

sparse.

4.5 Limitations and futurework

Our work is not without limitations and we discuss them here. First,

unlike in many previous studies (Bromberg et al., 2013; Schaefer et al.,

2012), the CAGI data sets covered a dozen or so proteins with signif-

icant variability in data set sizes. While our study serves as a proof-

of-concept for the direct applicability of our pathogenicity predic-

tors to functional effect prediction tasks, more systematic analyses

on larger data sets will be needed to fully disentangle the relation-

ship between the two prediction problems. Second, the CAGI data sets

likely contained some biases. Amino acid substitutions predominantly

came from proteins that were of medical interest. Moreover, several

data setswereobtained fromongoing studieswithdifferentobjectives.

For example, in the2010CBSdata set, nearly half of allmutationswere

selected for their mild to severe impact on protein stability (Dimster-

Denk et al., 2013), as predicted by Rosetta (Kellogg et al., 2011). Third,

asof now, ourmethodsdonot account for activatingmutations and this

not only introduces complications for evaluation (see below) but also

overestimates the direct applicability of our methods. However, since

the overall ranking of amino acid substitutions were often consistent

with real values, our methods would still be effective in the prioritiza-

tion of interesting variants. Assigning directionality to predicted func-

tional effects is a potential avenue for future research that should rely

on predictions of specific functional activities (Lugo-Martinez et al.,

2016). Finally, while our choice of evaluation criteria for a given task

was influenced by the respective CAGI assessors, our analyses were

not as comprehensive. Moreover, our data handling and preprocessing

protocols deviated from theirs, for example, exclusion of frameshift-

ing indels and nonsense mutations. As a result, in some cases, our per-

formance values did not agree with CAGI assessments. For instance,

in our hands, we found the AUC values for subset 1 of the SUMO lig-

ase challenge ranged between 0.65 and 0.71 (with varying data selec-

tion criteria), but in the official assessments our methods performed

consistently around 0.75. Therefore, any direct comparisons between

actual performance evaluations must be interpreted cautiously. How-

ever, our general conclusions still hold as the overall trends remained

the same, for example, in the SUMO ligase challenge MutPred and

MutPred2 did cluster together with other methods, in terms of

performance.

4.6 Final remarks

The CAGI experiment has enabled us to assess the utility of general

machine learning models for multiple function-specific tasks and draw

meaningful conclusions both on a case-by-case basis and on the aggre-

gate.Althoughour resultsmaynot generalize toother predictivemeth-

ods, they provide empirical support that models trained on pathogenic

variants with the incorporation of local structural and functional fea-

tures, transfer well to the related problem of functional effect pre-

diction. Disambiguating specific functional effects from pathogenicity,
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and understanding their mutual relationship, may be of interest in the

future iterations of CAGI.
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