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Summary

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/

AMP) for interpreting sequence variants specify the use of computational predictors as ‘‘supporting’’ level of evidence for pathogenicity or

benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommenda-

tions that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that

quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have

extended this framework to computational predictors and introduce a new standard that converts a tool’s scores to PP3 and BP4 evidence

strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other

continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence

for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets.

Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multi-

ple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence

level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the

PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.

Introduction

Genetic and genomic testing is now the standard of care
for identifying hereditary susceptibility to many condi-
tions (e.g., cancer, metabolic conditions, and intellectual
and physical developmental disorders) as it can provide
an etiologic diagnosis and indicate increased lifetime risk
to manifest symptoms of a monogenic disease. However,
testing can also identify variants of uncertain significance
(VUSs), many of which are amino acid substitutions.1

VUSs are rapidly accumulating in variant databases and
their classification represents a major challenge in clinical
genetics.1

To help standardize the approach of clinical genetic/
genomic testing laboratories, the American College of
Medical Genetics and Genomics and the Association for

Molecular Pathology (ACMG/AMP) published recommen-
dations for evaluating the pathogenicity of variants in
genes associated with monogenic disease.2 The ACMG/
AMP recommendations (1) list qualitatively distinct lines
of evidence (functional, genetic, population, computa-
tional, etc.), (2) indicate how each evidence type could
be applied toward a pathogenic or benign classification,
(3) stratify the strength of evidence as supporting, moder-
ate, strong, very strong, or standalone for pathogenicity
and benignity, and (4) provide rules for combining evi-
dence types that defined the amount of evidence required
to reach the classification categories.
Many computational (in silico) tools have been devel-

oped to predict whether a variant will disrupt the function
of a gene product.3–5 Because computational tools can be
applied to many different types of genomic variation,

1Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; 2Department of Genetics and Genomic Sciences, Icahn
School of Medicine at Mount Sinai, New York, NY 10029, USA; 3Department of Biomedical Informatics and Medical Education, University of Washington,
Seattle, WA 98195, USA; 4Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 5Analytic and
Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; 6Department of Dermatology, University of Utah, Salt Lake City,
UT 84132, USA; 7Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; 8The Institute for Computational Medicine, The Johns
Hopkins University, Baltimore, MD 21218, USA; 9Departments of Biomedical Engineering, Oncology, and Computer Science, The Johns Hopkins Univer-
sity, Baltimore, MD 21218, USA; 10Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; 11Ambry Genetics, Aliso Viejo,
CA 92656, USA; 12Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
13Department of Medicine and University of Vermont Cancer Center, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA;
14Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; 15Khoury
College of Computer Sciences, Northeastern University, Boston, MA 02115, USA; 16Department of Plant and Microbial Biology and Center for Computa-
tional Biology, University of California, Berkeley, Berkeley, CA 94720, USA
17Present address: Spin Systems, Falls Church, VA 22042, USA
18These authors contributed equally
*Correspondence: predrag@northeastern.edu (P.R.), brenner@compbio.berkeley.edu (S.E.B.)
https://doi.org/10.1016/j.ajhg.2022.10.013.

The American Journal of Human Genetics 109, 2163–2177, December 1, 2022 2163

! 2022 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



these methods are attractive for application to variants
observed in clinical or research testing, particularly in the
absence of genetic or functional evidence. However, it is
critical to recognize that while in silico predictors alone
are not capable of classifying the pathogenicity of a
variant, with adequate calibration and validation they
can provide a useful contribution to the overall classifica-
tion. The 2015 version of the ACMG/AMP computational
classification rules stated that if ‘‘multiple lines of compu-
tational evidence’’ supported either pathogenic or benign
classification, then they could be assigned the lowest level
of evidence: PP3-supporting pathogenic or BP4-supporting
benign. Supporting evidence must then be combined with
substantial other lines of evidence to classify the variant as
being pathogenic, benign, or of uncertain significance.
These rules have presented several challenges that can

lead to either overstating or understating the strength of
computational evidence.3,6 The ACMG/AMP recommen-
dations required that two or more algorithms be used
and that their outputs can be considered to be supporting
evidence only if the predictions from all tested algorithms
agree. In practice, many methods overlap and thus do
not offer independent assessment of pathogenicity.4,6

Accepted standards for concordance do not exist, and vari-
ability among laboratories has been observed.7 Finally, the
design of several tools was motivatedmainly by the discov-
ery of novel variants and hypothesis generation for exper-
imental follow-up, rather than clinical pathogenicity clas-
sification. As a result, the data sets used for validation and
calibration of in silico predictors present potential sources
of error for use of these tools in clinical settings, including
the score thresholds required to apply evidence from any
given predictor. Methods that have been tested on a few
well-understood genes should be tested on larger data
sets before they can be considered generalizable. If the var-
iants from certain genes are overrepresented or if the same
variants or different variants from the same protein occur
both in the datasets used for training and for evaluation
of these tools, the models may be overfitted and biased,
and the effectiveness of the tool overestimated due to
such circularities.8 Thus, the current ACMG/AMP rules
can be applied by different labs in non-standardized ways
that could lead to misestimation of the strength of in silico
predictors for pathogenicity classification, encouraging
inappropriate and/or inconsistent variant classification.
We have previously modeled the ACMG/AMP rules for

combining evidence and showed how they fit a probabi-
listic framework.9 Under reasonable assumptions, we
used a positive likelihood ratio of pathogenicity to quan-
tify the strength of evidence that corresponds to a support-
ing level of evidence and established that, within this
framework, the strength of evidence required for moder-
ate, strong, and very strong rose exponentially.9 This
model gave us a basis for developing formal principles
that can be used for validating and calibrating evidence
for pathogenicity classification and potentially expanding
the use of predictors beyond the supporting evidence

strength.10,11 This approach can also be used for in silico
tools to establish proper weighting of computational evi-
dence. With these, we can now study, using carefully
curated data sets, how tools can be calibrated to support
a given strength of evidence and can be used in the
ACMG/AMP classification framework.
Here we propose a quantitative framework for establish-

ing the level of contributory evidence in genomic testing
that can be applied to any computational tool. We then
focus on missense variation and systematically evaluate a
set of widely used in silico tools on data sets validated to
optimize accuracy and minimize circularity. We set out to
determine score thresholds appropriate for a variant evalu-
ated by the tool to reach various levels of evidence, poten-
tially including levels beyond the original ACMG/AMP
recommendation of supporting. Our goal was to calibrate
in silico tools, tested here for missense variants, so they
could be used in a manner that is consistent across clinical
diagnostic laboratories and properly weighted based on ev-
idence. Finally, we discuss our findings and implications
for an effective use of computational tools in the clinical
interpretation of variants.

Materials and methods

In silico tools considered
Missense variant interpretation tools for this study were selected

based on several factors, including their mention in the ACMG/

AMP recommendations, their prevalence in current clinical work-

flows, their consistent performance in independent assessments

such as the Critical Assessment of Genome Interpretation

(CAGI),12 their contribution to methodological diversity, and ease

to obtain prediction scores. This resulted in a set of 13

tools: BayesDel (withoutminor allele frequency),13 CADD,14 Evolu-

tionary Action (EA),15 FATHMM,16 GERPþþ,17MPC,18MutPred2,19

PhyloP,20 PolyPhen-2 (HumVar model),21 PrimateAI,22 REVEL,23

SIFT,24 and VEST4.25 Of these, REVEL and BayesDel are meta-pre-

dictors and incorporate prediction scores from other tools,

including some evaluated here. Except for BayesDel, CADD, EA,

MutPred2, and PolyPhen-2, precomputed variant prediction scores

for all tools were obtained from the database of human nonsynon-

ymous SNPs and their functional predictions (dbNSFP).26 For the

five tools mentioned above, prediction scores were generated for

the variants considered in this study. All tools, except for

FATHMM and SIFT, output scores such that higher scores are indic-

ative of pathogenicity and lower scores are indicative of benignity.

For consistency, the outputs of FATHMM and SIFT were trans-

formed to be similar to the other tools and facilitate more consis-

tent analyses. We did not select any tool designed to evaluate splice

variants, though we observe that pathogenicity predictors trained

on missense variants rarely exclude exonic splice variants from

their training data.

Data sets
The ClinVar 2019 set

To perform the calibration, we created a data set, referred to as the

ClinVar 2019 set (Data S1), consisting of variants classified as path-

ogenic, likelypathogenic, likelybenign,orbenign.Themainvariant

call format (VCF) file containing all variants from ClinVar27 was
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downloaded from its FTP site in December 2019. A series of steps

were then undertaken to filter out variants that were not relevant

to the analyses or could potentially bias them. Only missense vari-

ants with an allele frequency (AF) below 0.01 in the GenomeAggre-

gation Database (gnomAD v.2.1)28 and from genes with at least one

pathogenic variant of any type inClinVar were first retained. In this

step, for each variant, the gnomAD exomes global AF was used.

When this was unavailable, the gnomAD genomes global AF was

used. Among these, all VUSs, variants with a zero-star review status,

i.e., without any detailed review information, and those with con-

flicting classifications were excluded. Next, variants that were pre-

sent in the training setsof thedifferent tools considered in this study

were removedwhenever available. Excluded variants came from the

training sets of BayesDel, FATHMM, MPC, MutPred2, PolyPhen-2,

REVEL, and VEST4. For meta-predictors such as BayesDel and

REVEL that incorporate prediction scores from other tools, we also

removed trainingvariants for their constituent toolswhenavailable;

e.g., FATHMM, MutPred,29 VEST3,25 and MutationTaster.30 The re-

sulting data set consisted of 11,834 variants from 1,914 genes

(Figure 1A).

The gnomAD set

To ensure that a sufficient number of variants were included at

each step of our calibration procedure, we created a second data

set, referred to as the gnomAD set (Data S2). This data set was

also used to measure how often a variant would be assigned a

particular evidence strength as a consequence of this calibration.

VCF files for both exome and genome data (v.2.1.1) were obtained

from the gnomAD downloads page, after which a series of filtering

steps was undertaken. As before, only variants with AF< 0.01 were

retained. For quality control, only those variants annotated as

‘‘PASS’’ in the ‘‘FILTER’’ column and with median genotype

quality > 20 were retained. Additionally, all retained variants

were required to have a median depth R 30 if the allele count

was <3 (present in at most two individuals), or R10 if the allele

count was at R3. As with the ClinVar set, all missense variants

from genes without a single pathogenic variant of any type in

ClinVar were removed. From this point on, data from both exomes

and genomes were merged into a single data set of 1,449,622

variants by taking the union of the two resources. From these,

variants in segmental duplications and low-complexity and decoy

regions were removed. As before, variants present in the various

predictors’ training sets were also removed. Finally, to ensure no

overlap with the ClinVar set, gnomAD variants found in ClinVar

(December 2019) were removed. The resulting data set consisted

of 363,894 variants from 3,640 genes (Figure 1B).

The ClinVar 2020 set

To validate our calibration procedure, we created a test set consist-

ing only of missense variants meeting the previously described

criteria and present in ClinVar after December 2019. This is

referred to as the ClinVar 2020 set (Data S3). The main VCF file

containing all variants from ClinVar was downloaded from its

FTP site in December 2020. All steps were identical to those under-

taken for the ClinVar 2019 set, except that filtering against the

tools’ training sets was undertaken at the end after all other

filtering steps. The resulting data set was then cross-referenced

against the ClinVar 2019 set to obtain the final test set of 9,114

variants from 2,197 genes (Figure 1C).

Estimation of the prevalence of pathogenic variants
Estimating the prevalence of pathogenic variants, or the prior

probability of pathogenicity, requires selection of a reference set.

We reasoned that the set of rare variants in gnomAD among Men-

delian disease genes was the most suitable proxy for an unbiased

set due to its broad representativeness, and then adopted a

rigorous estimation approach using the DistCurve algorithm.31

Such an estimation approach is needed as the fraction of patho-

genic variants in ClinVar is not necessarily reflective of that

observed in humans in general.

DistCurve is a nonparametric distance-based method that relies

on a data set of ClinVar variants labeled as pathogenic or likely

pathogenic and a gnomAD reference set of unlabeled variants. It

typically involves the mapping of high-dimensional input data

(variant features) into univariate output data (predictions of path-

ogenicity), from which the priors are then estimated as follows.

First, the same number of variants from the ClinVar 2019 set

that are in the gnomAD set are sampled with replacement. Next,

for each variant in this sample, the most similar variant (nearest

neighbor) in the gnomAD set is removed and its distance recorded.

This yields a distance curve that plots nearest neighbor distances

(y-axis) against the fraction of variants removed (x-axis). After a

certain fraction of variants are removed, the nearest neighbor dis-

tances more rapidly become larger and this inflection point on the

distance curve estimates the prior probability of pathogenicity

(the procedure can be repeated several times to obtain stable esti-

mates). Although any distance function (e.g., Euclidean) may

work to find the most similar points, it is generally advantageous

to carry out a class-prior-preserving univariate transform and

avoid distance calculations in high-dimensional spaces.32 Here,

to obtain the univariate mapping, we trained a neural network-

based ensemble method using the same input features and

training steps as with MutPred219 based on the result that neural

networks can be good approximators of posterior distributions.33

The resulting out-of-bag prediction scores were used as a 1D input

to the DistCurve algorithm.

This procedure yielded a prior probability of pathogenicity

(prevalence in the data set) of 4.41%, higher than that estimated

previously for an exome of a healthy individual19 using a similar

procedure but lower than the prevalence of 10% assumed by

Tavtigian et al.9 for clinical sequencing data.

Statistical framework
The ACMG/AMP recommendations suggested multiple levels

of evidential strength to consider: supporting, moderate, strong,

and very strong for pathogenic and supporting, strong, or

standalone for benign. Here, we have not considered the stand-

alone evidence for benignity further because variants with

AF> 0.05 were excluded from our data by default. We have added

moderate and very strong levels for benign in anticipation of

future needs for such strengths although our work here is appli-

cable to both symmetric and asymmetric notions of strength for

pathogenicity and benignity. In accordance with a recent pro-

posal,34 we included an additional category of indeterminate

for variants not reaching evidential strength of supporting for

either pathogenicity or benignity. Thus, the indeterminate vari-

ants for a given tool would not add evidence strength to variant

classification. Note that predictors differed in the number and

identity of indeterminate variants (see Results section). To reduce

subjectivity and define strengths of evidence in a quantitative

framework, these were mapped to odds ratios of pathogenicity

or positive likelihood ratios,35 as in Tavtigian et al.,9 so that the

posterior probability of combined evidence listed in the

ACMG/AMP recommendations for a likely pathogenic variant
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Figure 1. Data set preparation
Steps taken to prepare the three data sets in this study, extracted from ClinVar (A and C) and gnomAD (B). Numbers on the right side
represent the numbers of variants remaining after each step and numbers in parentheses represent the numbers of genes remaining after
each step. The data set resulting from (A) is referred to as the ClinVar 2019 set, from (B) the gnomAD set, and from (C) the ClinVar 2020
set. The asterisk refers to numbers after removing variants from the MPC training sets. This was done in a post hoc manner after all
filtering and downsampling steps were carried out for the ClinVar 2019 and gnomAD sets.
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was at least 0.9 and less than 0.99, and for a pathogenic variant at

least 0.99. However, as noted above, the estimated prevalence of

pathogenic variants in our gnomAD reference set was 4.41%. vs.

the clinical experience-based 10% value primarily considered in

Tavtigian et al.9

We started by connecting the posterior odds of pathogenicity

given the evidence and the positive likelihood ratio (LR þ) using

the following expression

posterior odds of pathogenicity ¼ LR þ

3prior odds of pathogenicity

(Equation 1)

where, for a variant v, and on a particular reference data

distribution,

posterior odds of pathogenicity

¼ Pðv is pathogenic j evidence of pathogenicityÞ
1 % Pðv is pathogenic j evidence of pathogenicityÞ

(Equation 2)

and

prior odds of pathogenicity

¼ Pðrandomly picked v is pathogenicÞ
1 % Pðrandomly picked v is pathogenicÞ

(Equation 3)

¼ 0:0441

1 % 0:0441
¼ 0:0461:

In Equations 2 and 3, Pðv is pathogenicjevidence of
pathogenicityÞ is the posterior probability of pathogenicity and

Pðrandomly picked v is pathogenicÞ is the prior probability of

pathogenicity on a reference set. When considering computa-

tional methods, the ‘‘evidence of pathogenicity’’ corresponds to

a discretized prediction that the variant is pathogenic.

It can be shown35 that LRþ is independent of the class prior and

can be alternatively expressed as

LR þ ¼ Pðevidence of pathogenicity j v is pathogenicÞ
Pðevidence of pathogenicity j v is benignÞ ;

(Equation 4)

which has a straightforward interpretation for binary classification

models, because Pðevidence of pathogenicityjv is pathogenicÞ is

the true positive rate and Pðevidence of pathogenicityjv is benignÞ
is the false positive rate.

To incorporate the combining nature of multiple lines of evi-

dence and model the ACMG/AMP rules with few parameters, Tav-

tigian et al. sought to express LRþ in an exponential form

LR þ ¼ c
nvs
1 þ nst

2 þ nmo
4 þ nsu

8 (Equation 5)

where nvs, nst, nmo, and nsu are the number of very strong, strong,

moderate, and supporting lines of evidence, respectively. The

value of c can be determined either computationally or manually

so that the ACMG/AMP rules are generally satisfied in that the pos-

terior probability reaches the values of 0.9 and 0.99 for likely path-

ogenic and pathogenic classifications, respectively. More impor-

tantly, one can readily verify from Equation 5 that a single line

of very strong, strong, moderate, and supporting evidence must

reach LRþ ¼ c, LRþ ¼
ffiffiffi
c2

p
, LRþ ¼

ffiffiffi
c4

p
, and LR þ ¼

ffiffiffi
c8

p
, respec-

tively. Given the prior probability of pathogenicity of 0.0441, we

obtained c ¼ 1;124, from which we further obtained the LRþ

values of single lines of evidence (Table 1).

Most computational tools, however, do not discretize their pre-

dictions and instead only provide a raw score s˛R for a given

variant v, thus leaving it up to the variant analyst to interpret

the score and define an appropriate threshold. This suggested

that in such cases we needed to use a continuous score s as evi-

dence of pathogenicity for which Equation 4 breaks down. To

address this, we defined a local positive likelihood ratio lrþ, an

equivalent of LRþ that could be used with continuous evidence,

as a density ratio between score distributions on pathogenic and

benign variants; that is,

lr þðsÞ ¼ pðs j v is pathogenicÞ
pðs j v is benignÞ

; (Equation 6)

and sought to estimate it from prediction data on a set of variants

for each considered tool. From here, we computed the local poste-

rior probability values as

Pðv is pathogenic j sÞ

¼ lr þðsÞ,Pðrandomly picked v is pathogenicÞ
ðlr þðsÞ % 1Þ,Pðrandomly picked v is pathogenicÞ þ 1

:

(Equation 7)

Equation 7 can be derived from Equations 1, 2, and 3 with lrþ in

place of LRþ. To contrast LRþ with lrþ, we will refer to LRþ as the

global likelihood ratio. Note further that the posterior probability

and the likelihood ratio can be expressed as functions of each

other and the prior probability of pathogenicity. In this study,

since the same prior probability of pathogenicity (0.0441) is

Table 1. Posterior probability and positive likelihood ratio values (reduced to four significant digits) that define the varying strengths of
evidence in this study for the PP3 and BP4 criteria

Criterion
Evidence
Strength

Posterior probability of pathogenicity
(for PP3) and benignity (for BP4)

Positive likelihood
ratio

Reciprocal of positive
likelihood ratio

PP3 very strong 0.9811 1,124:1 0.0009:1

strong 0.6073 33.53:1 0.0298:1

moderate 0.2108 5.790:1 0.1727:1

supporting 0.0999 2.406:1 0.4156:1

BP4 supporting 0.9812 0.4156:1 2.406:1

moderate 0.9921 0.1727:1 5.790:1

strong 0.9986 0.0298:1 33.53:1

very strong 1.0000 0.0009:1 1,124:1
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used for all analyses, local posterior probabilities and local likeli-

hood ratios are considered equivalent and are used interchange-

ably. The density ratio and the posterior can be practically esti-

mated using a narrow sliding window around each score value s

(Figure 2). This approach is sound and the local posterior corre-

sponds to the local positive predictive value for a computational

tool, an equivalent of the local false discovery rate.36,37

Computational objective
The objective of our approach was to develop a framework that

discretizes the prediction range for any given computational tool

into a set of nine intervals, corresponding to the various levels

of evidential strength: supporting, moderate, strong, and very

strong for both benign and pathogenic, and indeterminate (for

the scores not satisfying any of the levels of desired evidential

strength). To do so, we considered an in silico tool, or a scoring

function, that outputs a pathogenicity score s˛R for a variant v

where the higher scores were designed to suggest stronger evi-

dence for pathogenicity than the lower scores. We searched for a

set of score thresholds T P ¼ ftPsu; tPmo; t
P
st; t

P
vsg such that a predic-

tion score s ˛ ½tPsu; tPmoÞ, s ˛ ½tPmo; t
P
stÞ, s ˛ ½tPst; tPvsÞ, and s ˛ ½tPvs;NÞ

could be considered supporting, moderate, strong, and very strong

evidence for pathogenicity, respectively. We will refer to T P as the

pathogenicity threshold set and for convenience, we will refer to

the above-mentioned contiguous prediction intervals as IPðsuÞ ¼
½tPsu; tPmoÞ, I

PðmoÞ ¼ ½tPmo; t
P
stÞ, I

PðstÞ ¼ ½tPst; tPvsÞ, and IPðvsÞ ¼ ½tPvs;
NÞ. Equivalently, the evidence supporting benignity upon seeing

a prediction output s requires us to determine the benignity

threshold set T B ¼ ftBvs; tBst; tBmo; t
B
sug, with the interpretation

that s˛ ð%N; tBvs' ¼ IBðvsÞ is the very strong evidence level for

benignity, etc. Variants with predictions s˛ ðtBsu; tPsuÞ were consid-

ered to lie in the indeterminate region, thus supporting neither

pathogenicity nor benignity for such variants. Without loss of

generality, we assumed that each predictor reached all four levels

of evidential support for pathogenicity and benignity; however,

this was not the case in practice as the evidence levels achieved

by different predictors depended on the characteristics of each

tool’s score distributions.

Estimating intervals for levels of evidential support
We then turned to determining the threshold sets T P and T B for

each model to establish a set of up to nine intervals (four for path-

ogenicity, four for benignity, and the indeterminate region, see

Table 1). We focused on the set T P ¼ ftPsu; tPmo; t
P
st; t

P
vsg first, which

defined the contiguous intervals IP (evidence level), where

evidence level˛ fsu; mo; st; vsg. To define the threshold set T P

and, ultimately, the pathogenic intervals IP (evidence level), we

defined the threshold for the supporting level of evidence as

tPsu ¼ minft : cs R t; blr þðsÞ % D R 2:406g; (Equation 8)

where lrþ(s) is estimated lrþ(s) using an e neighborhood around s;

that is, all prediction scores s˛ ½s % e; s þ e' are considered patho-

genic and used to compute lrþ(s) and the local positive predictive

value. The parameterD is a nonnegativemargin of error selected so

that blr þðsÞ % D is the value of the one-sided 95% confidence

bound of the estimated lrþ(s) and was determined via 10,000 boot-

strapping iterations. In other words, the threshold for the support-

ing level of evidence was the smallest value t in the prediction

range such that for all scores s greater than or equal to t, the lower

error bound of lrþ(s) was greater than or equal to 2.406. The re-

maining thresholds from T P are determined in the same manner,

and the procedure is then repeated for T B using

tBsu ¼ max

"
t : cs % t; blr þðsÞ þ D %

1

2:406

#
; (Equation 9)
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Figure 2. Conceptual representation of
the estimation of intervals for evidential
support
An example in silico tool that is supposed
to assign higher scores to pathogenic vari-
ants is shown. Each filled circle represents
a variant, either pathogenic/likely patho-
genic (red) or benign/likely benign (blue)
as recorded in the ClinVar 2019 set. All
unique scores were first sorted and each
score was then set as the center of the
sliding window or the local interval
(black-colored braces), within which pos-
terior probabilities were calculated. Here,
to ensure that a sufficient number of vari-
ants were included in each local interval, e
was adaptively selected to be the smallest
value so that the interval ½s % e; s þ e'
around a prediction score s incorporated
at least 100 pathogenic and benign vari-
ants (combined) from the ClinVar 2019
set and at least 3% of rare variants from
the gnomAD set with predictions in the
given local interval, separately for each

method (technically, e is a function of score s for each predictor). These numbers were proportionally scaled at the ends of the score
range. The estimated posterior probabilities were then plotted against the output scores. Using posterior probability thresholds defined
in Table 1, score thresholds were subsequently obtained for pathogenicity (PP3) and benignity (BP4) for eachmethod. Here, the number
of benign variants was weighted to calibrate methods according to the prior probability of pathogenicity. The weight was calculated by
dividing the ratio of pathogenic and benign variant counts in the full data set by the prior odds of pathogenicity; see Equation 3. The
pathogenic and benign counts (and this weight) slightly varied for each method because scores were not available for all variants in the
data set for some tools. In this study, the estimated prior probability of pathogenicity (0.0441) was used to account for the enrichment of
pathogenic/likely pathogenic variants in ClinVar. The estimated prior probability of benignity was assumed to be 1–0.0441 ¼ 0.9559.
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and so on. The parameter D was incorporated to lead to a more

stringent threshold selection.

Validating the local approach for interval estimation
Variants in the ClinVar 2020 set and the gnomAD set were used to

determine whether our local approach for the estimation of

strength-based intervals was robust. For each tool, the thresholds

selected using the above procedure were applied to assign each

variant into an interval of evidential strength. Within each inter-

val, two measures were computed: (1) an interval-based likelihood

ratio was calculated to verify that our estimated intervals did

indeed provide evidence for pathogenicity/benignity with the ex-

pected strength on variants not seen by our estimation procedure

(ClinVar 2020 set), and (2) the fraction of variants in the gnomAD

set that fell into each interval was calculated to assess overpredic-

tion of pathogenic variants, particularly at higher evidential

strengths.

The interval-based likelihood ratio is simply the global likeli-

hood ratio calculated over a given score interval:

LR þða; bÞ ¼ Pðs˛ ½a; bÞ j v is pathogenicÞ
Pðs˛ ½a; bÞ j v is benignÞ

; (Equation 10)

where a and b are the lower and upper bound of the score interval,

respectively, and s and v are defined as above. In this case, rather

than considering a variant’s score directly or a binarized version

of it as the evidence for pathogenicity/benignity, the categoriza-

tion of the variant into one of the strength categories was used

as evidence. We expected LR þðtPsu; tPmoÞR2:406, LR þðtPmo; t
P
stÞR

5:790, LR þðtPst; tPvsÞR33:53, and LRþðtPvs; NÞR1124. In other

words, the interval-based likelihood ratio had to be greater than

or equal to that obtained using the local likelihood ratio approach.

This should have held for benignity intervals as well. Here, each

interval [a,b) was instantiated from the sets of optimal thresholds

obtained using the local likelihood ratio approach, T P ¼

ftPsu; tPmo; t
P
st; t

P
vsg and T B ¼ ftBsu; tBmo; t

B
st; t

B
vsg. The interval-based

likelihood ratio was then operationalized as the ratio of the true

positive rate to the false positive rate within the interval using

the ClinVar 2020 set. Depending on whether the interval was

for pathogenicity or benignity, the true positive rate was either

the fraction of pathogenic/likely pathogenic variants falling

within the interval or the fraction of benign/likely benign vari-

ants. Similarly, the false positive rate was the fraction of benign/

likely benign variants and the fraction of pathogenic/likely path-

ogenic variants within the interval, respectively.

Results

Several in silico tools yield levels of evidence beyond
supporting
Our local posterior probability-based approach allowed for
the systematic identification of thresholds corresponding
to different strengths of evidence for a given tool. To this
end, using the ClinVar 2019 set, we applied this approach
on thirteen tools: BayesDel,13 CADD,14 EA,15 FATHMM,16

GERPþþ,17 MPC,18 MutPred2,19 PhyloP,20 PolyPhen-2,21

PrimateAI,22 REVEL,23 SIFT,24 and VEST4.25 We first ob-
tained scores from these tools for variants in this data set
and then calculated local posterior probabilities for each
unique score, as shown in Figure 2. Scores that satisfied
the posterior probability thresholds presented in Table 1
were then deemed to provide the corresponding strengths
of evidence (Table 2).
We were able to identify thresholds for supporting and

moderate levels of evidence for pathogenicity (PP3) and
benignity (BP4) for all tools, except for GERPþþ, which
did not yield supporting evidence for PP3, and MPC,

Table 2. Estimated threshold ranges for all tools in this study corresponding to the four pathogenic and four benign intervals

Method

Benign (BP4) Pathogenic (PP3)

Very Strong Strong Moderate Supporting Supporting Moderate Strong Very Strong

BayesDel – – % %0.36 (%0.36, %0.18] [0.13, 0.27) [0.27, 0.50) R0.50 –

CADD – %0.15 (0.15, 17.3] (17.3, 22.7] [25.3, 28.1) R28.1 – –

EA – – %0.069 (0.069, 0.262] [0.685, 0.821) R0.821 – –

FATHMM – – R4.69 [3.32, 4.69) (%5.04, %4.14] % %5.04 – –

GERPþþ – – % %4.54 (%4.54, 2.70] – – – –

MPC – – – – [1.360, 1.828) R1.828 – –

MutPred2 – %0.010 (0.010, 0.197] (0.197, 0.391] [0.737, 0.829) [0.829, 0.932) R0.932 –

PhyloP – – %0.021 (0.021, 1.879] [7.367, 9.741) R9.741 – –

PolyPhen2 – – %0.009 (0.009, 0.113] [0.978, 0.999) R0.999 – –

PrimateAI – – %0.362 (0.362, 0.483] [0.790, 0.867) R0.867 – –

REVEL %0.003 (0.003, 0.016] (0.016, 0.183] (0.183, 0.290] [0.644, 0.773) [0.773, 0.932) R0.932 –

SIFT – – R0.327 [0.080, 0.327) (0, 0.001] 0 – –

VEST4 – – %0.302 (0.302, 0.449] [0.764, 0.861) [0.861, 0.965) R0.965 –

A ‘‘–’’ implies that the given tool did not meet the posterior probability (likelihood ratio) threshold. See Table S1 for comprehensive results that include point
estimates and one-sided confidence intervals. Intervals follow standard mathematical notation in which ‘‘(’’ and ‘‘)’’ indicate exclusion of the end value and ‘‘[’’
and ‘‘]’’ indicate inclusion of the end value
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which did not yield supporting evidence for BP4. Interest-
ingly, the local posterior probability curves showed that, at
appropriate thresholds, several tools could provide strong
evidence for pathogenicity (BayesDel, VEST4), benignity
(CADD), or both (MutPred2, REVEL), as shown in Figure 3,
Table 2, and Table S1.
Second, we verified that these intervals were stringent

in their assignment of strong levels of pathogenicity to
variants in the gnomAD set. We reasoned that the prior
probability of a pathogenic variant in a population such
as that of the gnomAD set is low. Therefore, the strong
pathogenic score interval should ideally assign only a
small fraction of variants as eligible for strong evidence.
We found that for tools that reached the strong level of
evidence for pathogenicity, the fraction of gnomAD vari-
ants with strong levels of evidence ranged from 1.4% to
1.7% (Figure 4B). These fractions were smaller than the
experience-based prior probability assumed by Tavtigian
et al.9 (10%) and the prior probability that was estimated
in this study using the gnomAD set (4.41%). Furthermore,
when considering the strong and moderate intervals
together, all tools except CADD yielded a smaller fraction
of variants than 10%. Interestingly, for benignity, 6 out of
13 tools assigned amajority of variants to moderate rather
than strong or supporting evidence. Most tools output a
score in the indeterminate range (or did not have scores)
for 26%–50% of variants and would not provide any evi-
dence strength for classification of these variants.
FATHMM, GERPþþ, and MPC were outliers, resulting in
more than half of variants in the indeterminate range.
Taken together, these results suggest that our local poste-
rior strategy generally yields robust intervals that are un-
likely to overestimate the evidential strength that they
provide.

Validation of estimated score intervals on an
independent data set
Two approaches were adopted to assess the correctness
of our local posterior probability strategy. First, we veri-
fied whether the intervals that we estimated corre-
sponded to similar lrþ values on an independent data
set as did those on the estimation data set. We reasoned
that the likelihood ratios in each interval should equal
or exceed those estimated using the sliding window al-
gorithm. To this end, we classified variants in the
ClinVar 2020 set into each of the four intervals for
pathogenicity and benignity, and calculated likelihood
ratios within each interval. We found that all methods
that reached the strong level of evidence for pathoge-
nicity exceeded the likelihood ratio value in Table 1
(Figure 4A). In addition, all tools that met the threshold
for moderate levels of evidence for pathogenicity re-
sulted in likelihood ratios exceeding the corresponding
likelihood ratio threshold required, except for PhyloP
which had a marginally lower likelihood ratio. Similarly,
all tools that met the supporting level of evidence on
the ClinVar 2019 data exceeded the likelihood ratio

threshold for the supporting evidence interval of 2.41
on the ClinVar 2020 data. For benignity, a tool must
have had an interval-based likelihood ratio lower than
those in Table 1 for the relevant evidential strength, a
criterion met by all tools.

Investigation of commonly used developer-
recommended thresholds and simple consensus
approaches
SIFT, PolyPhen-2, and CADD were among the first
methods developed to classify coding and all variants
and remain among the most frequently used in silico tools
in clinical variant interpretation.5 In practice, these tools
are used either individually or in combination with each
other, with the default developer-recommended score
thresholds being used to gather evidence for variant clas-
sification. To assess the validity of this common practice,
we investigated whether the default score thresholds of
these three tools individually and in combination met
the quantitative definition of supporting evidence as
described in Table 1. Using the local posterior probability
curves derived above on the ClinVar 2019 data set, we
checked the local likelihood ratio values at the devel-
oper-recommended thresholds against those in Table 1
to assess the strength of evidence obtained at these
thresholds.
At the developer-recommended thresholds, SIFT,

PolyPhen-2, and CADDdid notmeet the local likelihood ra-
tio thresholds for supporting evidence for PP3 (Table 3).
Interestingly, the developer-recommended threshold of
20.0 for CADD was in the score interval corresponding to
moderate evidence for BP4 (Figure 3; Table 2), suggesting
an inappropriate use of this threshold as evidence for patho-
genicity. Furthermore, all tools classified a substantial frac-
tion of variants in the gnomAD set as damaging (50.4% by
SIFT, 29.3% by PolyPhen-2, and 65.1% by CADD) at devel-
oper-recommended thresholds. These fractionswere consid-
erably larger than 4.41%, our estimate of the prior probabil-
ity of pathogenicity (prevalence of pathogenic variants) in
the gnomAD set, suggesting a high false positive rate with
respect to PP3, in agreement with previous studies.3

We also implemented a simple consensus-based pre-
dictor using these three tools, emulating an approach
adopted in some clinical laboratories. We considered
all possible pairs of tools and all three tools together by
estimating lr þðsÞ, where s is a two-dimensional score
s ¼ ðs1; s2Þ or three-dimensional score s ¼ ðs1; s2; s3Þ.
We found that no combination of the three tools met
the supporting level of evidence PP3 using developer-rec-
ommended thresholds, although PolyPhen-2 individu-
ally, with score 0.902, was close to the desired lrþ(s)
threshold of 2.41. It is worth mentioning that this does
not mean that there was no combination of scores for
which these tools did not reach the supporting evidence
level, but rather that the appropriate evidential support
was not met when all tools predicted scores at, or slightly
better than, the developer-recommended minimum
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Figure 3. Local posterior probability curves
Shown are (A) BayesDel, (B) CADD, (C) Evolutionary Action (EA), (D) FATHMM, (E) GERPþþ, (F) MPC, (G) MutPred2, (H) PhyloP, (I)
PolyPhen-2, (J) PrimateAI, (K) REVEL, (L) SIFT, and (M) VEST4. For each panel, there are two curves: the curve on the left is for
pathogenicity (red horizontal lines) and the curve on the right is for benignity (blue horizontal lines). The horizontal lines represent
the posterior probability thresholds for supporting, moderate, strong, and very strong evidence. The black curves represent the posterior
probability estimated from the ClinVar 2019 set. The grey curves represent one-sided 95% confidence intervals calculated from 10,000
bootstrap samples of this data set (in the direction of more stringent thresholds). The points at which the grey curves intersect the
horizontal lines represent the thresholds for the relevant intervals.
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scores (or maximum, for SIFT). To the best of our knowl-
edge, separate developer-recommended thresholds for
predictions of benignity for these tools do not exist,
and therefore could not be evaluated.

Discussion

Our results provide the basis for refining how computa-
tional tools can be used to provide evidence for or against
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Figure 4. Evaluation of the robustness of
our approach and estimated score inter-
vals
(A) The likelihood ratios within each inter-
val on the independent ClinVar 2020 set.
(B) The percentage of variants predicted to
be within the interval in the gnomAD set.
Blue and red distinguish between the
evidential strength intervals for benignity
and pathogenicity, respectively, with the
indeterminate interval colored grey. The
color gradient corresponds to the value in
the cells, regardless of color.
In (A), darker colors indicate higher values
for pathogenicity and lower values for
benignity (because these are positive likeli-
hood ratios). The limits for the color gradi-
ents are asymmetric, with ranges set be-
tween 0 and 1 for benignity and between
1 and 100 for pathogenicity. In (B), darker
colors indicate higher proportions. A grey
rectangle is introduced at the center of
(A) for comparability across the two
panels. White cells without values indicate
that the tool did not yield thresholds corre-
sponding to the relevant intervals. The
indeterminate interval in (B) also included
variants without any scores. For each tool,
the fraction of variants with missing pre-
dictions is reported in Table S2. When in-
terpreting these findings, the totality of
the results in (A) and (B) must be consid-
ered to account for the effects of binning
of continuous scores into discrete inter-
vals. For example, although a tool such as
CADD provides most predictions classified
to be supporting and moderate for PP3 (B),
it does so with lower accuracy (A),
measured by the smaller number of true
positive predictions for the same number
of false positive ones, than a tool such as
REVEL. Due to the effects of binning,
many of the true positive predictions for
REVEL are in its strong evidence category,
further obscuring interpretation. Thus,
the results in Table 2 and this figure must
be considered with utmost care for any
use outside our recommendations; see
below.

pathogenicity of variants using the
Bayesian adaptation of the ACMG/
AMP framework. The thresholds
that we calculated show that these
tools can provide stronger than sup-
porting evidence and that computa-

tional tools varied in their ability to reach these levels of
evidence.

Recommendations for updates to PP3 and BP4 criteria
For missense variants, to determine evidence for codes PP3
and BP4, we recommend that, for most situations, clinical
laboratories use a single tool, genome-wide, that can reach
the strong level of evidence for pathogenicity and moder-
ate for benignity (BayesDel, MutPred2, REVEL, or VEST4
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among the tools evaluated here). This recommendation
maximizes the strength of evidence that can be applied
while minimizing the number of false positive predictions
in the supporting and moderate categories. However, any
method described here is valid to use for in silico evidence
for PP3 and BP4 at the thresholds described and their rele-
vant strengths. The choice of which tool to use for PP3/BP4
missense evidence must always be made before seeing pre-
diction results and preferably other lines of evidence, to
avoid issues such as those that arise from multiple trials.
In situations where variant curation expert panels

(VCEPs), clinical laboratories, or research groups have
developed gene-specific guidance, such as for RYR1 in ma-
lignant hyperthermia,11 laboratories could select the rec-
ommended alternative single tool and thresholds for these
variants, instead of their standard tool otherwise used in
genome-wide application. The importance of selecting a
single tool to use for PP3/BP4 missense evidence is to avoid
biases that could be introduced by, for example, scanning
multiple tools for the strongest evidence for a given
variant. Refinement of thresholds for specific gene fam-
ilies, genes, and domains using the methods described
herein could be developed when a sufficient number of
variants are available for statistical rigor, with attention
to the distinguishing features described below.
We have not evaluated the use of combining missense

impact prediction methods for PP3/BP4 with methods
that predict other mechanisms of genetic variant impact
(e.g., splicing, expression) that could also be reported as
PP3/BP4. However, computational methods that predict
mechanistic consequences of the missense event (e.g., pro-
tein stability) should not be combined with other missense
impact predictors, such as those evaluated here. Addition-
ally, we have introduced caveats about combining rules for
the moderate and strong PP3/BP4 with other evidence co-
des, as described below. The proposed recommendations
for the use of computational tools, contrasted with those
from the 2015 ACMG/AMP recommendations, are sum-
marized in Table 4.
We have invoked a level of evidence strength that was

not included in the original ACMG/AMP recommenda-
tions (benign moderate, reflected by BP4_Moderate). This
evidence level, while straightforward to derive from the
data we present here, is not compatible with Table 5 ‘‘Rules

for combining criteria to classify sequence variants’’ in the
ACMG/AMP recommendations.2 There are several prag-
matic, interim solutions for this issue. The first is that if a
variant is shown to have BP4_Moderate evidence, Table 5
can be adapted by allowing that ‘‘likely benign’’ combining
rule i, which is ‘‘1 strong (BS1–BS4) and 1 supporting (BP1–
BP7),’’ be invoked if there is a strong benign criterion
met (BS1–BS4) and use of an in silico tool generates
BP4_Moderate. For the second ‘‘likely benign’’ combining
rule (ii), it could be invoked if the only evidence generated
is BP4_Moderate or if BP4_Moderate evidence is present
along with an additional benign supporting evidence
type (BP1–BP3, BP5, or BP7). Other combinations of
BP4_Moderate evidence are not germane to those
combining rules. A second approach would be to use the
Tavtigian et al. framework,9 in either its initial iteration
(see supplemental methods for suggested modifications),
or in its simplified, points-based iteration,34 in which
BP4_Moderate evidence would count as %2 points toward
variant classification.

Alternative strategies for interval definition
We selected the local approach as our main strategy owing
to its theoretical foundation and simplicity compared with
other statistical methods. We investigated two alternative
strategies to define intervals corresponding to the relevant
evidential support. The first alternative strategy calculated
the global positive likelihood ratio over the entire data set
above (for PP3) or below (for BP4) a certain score; see sup-
plemental methods. Score thresholds were then defined in
the same manner as those in the local approach, i.e., by se-
lecting the desired likelihood ratio levels from Table 1,
yielding a global interpretation for evidential strength.
However, this strategy had two critical flaws: (1) each
desired likelihood ratio level was satisfied only on average
within any interval, likely misclassifying the evidence
strengths for variants at the extremes of the range; and
(2) unlike the local approach, it did not guarantee that
the threshold for PP3_Supporting was always higher than
BP4_Supporting, resulting in difficulties of reconciling
the threshold sets obtained in this way.
The second alternative strategy for selecting threshold

sets sought to estimate all thresholds simultaneously by
optimizing the interval-based likelihood ratios in Equation

Table 3. Assessment of the strength of evidence for PP3 through local likelihood ratios provided by three commonly used tools using
default developer-recommended thresholds

Method
Pathogenicity score
threshold lrþ Evidence strength

Fraction of predicted pathogenic
variants in the gnomAD set

SIFT 0.050 0.048 (0.025, 0.075) not met 0.504

PolyPhen-2 0.902 1.993 (1.560, 2.492) not met 0.293

CADD 20.000 0.157 (0.107, 0.215) not met 0.651

Numbers in parentheses indicate lower and upper (95%) confidence intervals as calculated by the bootstrappingmethod. ‘‘Evidence strength’’ was determined on
the basis of the point estimate of the positive likelihood ratio. The Pearson correlation between outputs of SIFT and PolyPhen-2 on our gnomAD set was 0.47, the
correlation between SIFT and CADD was 0.49, and the correlation between PolyPhen-2 and CADD was 0.67. Correlation between other tools is provided in
Figure S1.
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10 directly, such that each interval resulted in a positive
likelihood ratio value equal to or greater than the corre-
sponding one in Table 1. This approach, however, had
three significant flaws: (1) it may not have yielded a unique
solution and further required an optimization algorithm to
select thresholds; (2) the threshold set was determined
jointly and thus each resulting interval of evidential sup-
port depended on the number of levels for evidential
strength prescribed by the ACMG/AMP recommendations,
which could change in the future, altering the results; and
(3) as above, the likelihood ratios were still determined on
average within intervals.
Therefore, we selected the local approach, which is also

themost stringent approach to determining the thresholds
(with respect to avoiding overestimation of evidence) as
the appropriate evidence level holds for any score in the
determined evidence interval.

Implications for the assessment of additional clinical
variant interpretation tools, including those developed
in the future
Several studies have attempted to benchmark methods to
identify tools and tool-threshold combinations that are
the most accurate and appropriate for clinically relevant
variants.3,38–41 Key distinguishing aspects of our approach
include: (1) constructing evaluation sets that exclude vari-
ants in the training sets of tools (for meta-predictors, even
those from the training sets of the constituent tools must
be excluded), (2) carefully inspecting whether the precom-
puted scores for a particular tool suffer from issues arising
from missing data, outdated versions, and identifier map-
ping discrepancies and, if so, using a tool directly rather
than precomputed scores deposited elsewhere, (3) calibrat-
ing tool scores and/or its assessment to account for the

prior probability of pathogenicity that must be estimated
for each reference set of interest, (4) reporting local poste-
rior probabilities or local likelihood ratios, which provide
additional information to standard evaluation metrics
used in machine learning, and (5) providing thresholds
for clinical use of a tool and the highest strength of evi-
dence that it can provide. Laboratories using this strategy
should choose one method and consistently use that
method in evaluating all genes and variants at the deter-
mined evidential strength, rather than ‘‘cherry picking’’
among multiple methods. We nevertheless endorse
gene family-specific, gene-specific, or gene domain-specific
evaluations to identify evidence that demonstrates that
the appropriateness of a given tool and thresholds may
be different from the general recommendations that
we have specified (such as those in ClinGen VCEP
recommendations).

Implications for combining rules
Within the ACMG/AMP variant classification guidelines,
there are several evidence criteria that can be applied
independently of the PP3/BP4 computational tools, but
whose underlying data may partially be captured by
them, especially by the meta-predictor tools. The most
obvious fall into two groups: allele frequency-related co-
des, i.e., PM2 (absent from controls) and BS1 (more
frequent than expected for disorder); and the key domain
or critical residue(s) codes PM1 (located in functional
domain or mutation hot spot), and PS1/PM5 (located at
an amino acid where pathogenic variants have been
seen). Increasing the strength of the PP3/BP4 computa-
tional tool codes, while at the same time including these
other codes in the final classification, poses a risk of dou-
ble-counting shared underlying attributes of these criteria

Table 4. Summary of recommendations for updates to PP3 and BP4 criteria in the ACMG/AMP recommendations and comparisonwith the
2015 ACMG/AMP recommendations

Guidance 2015 ACMG/AMP recommendations Our recommendation

Evidential strength of
in silico tools

supporting PP3_Strong, PP3_Moderate, PP3_Supporting, Indeterminate,
BP4_Supporting, BP4_Moderate, and BP4_Strong

Tools to be used no specific recommendation, although a list
of tools provided with the caveat that they
have not been validated

tools that reach at least strong evidence for pathogenicity and
moderate for benignity; it is valid to use any tool at the
indicated evidential strength level as determined by our
approach, so long as it is chosen before seeing its scores
and preferably any other evidence.

Score thresholds for tools no explicit recommendations but often defaults
to developer-recommended thresholds

specific score thresholds calibrated to different evidential
strengths

Number of tools to be used multiple lines of evidence, often interpreted as
multiple tools (no number provided)

combinations of tools was not systematically assessed
but results suggest the use of a single tool rather than
an uncalibrated consensus of multiple tools

Decision-making if multiple lines of evidence agree, evidence can
be counted as supporting; otherwise, evidence
from tools cannot be used

evidence can be counted at the appropriate strength
depending on the tool and score threshold chosen; the
maximal strength of a tool must be committed to, i.e., if
a tool provides at most PP3_Moderate strength and a
variant satisfies the corresponding score threshold, it
can only be counted as moderate evidence

Combing rules with other
evidence codes

PP3 and BP4 can be applied for supporting
evidence without consideration of other
codes used

limit the combined evidence from PM1 and PP3 to strong
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and over-estimating the strength of evidence for or
against pathogenicity.
There are reasonable approaches that can reduce double

counting. For allele frequency data, classification should
use in silico tools that do not make direct use of allele fre-
quency, e.g., REVEL or BayesDel with the allele frequency
option turned off (as was done in this study). Therefore,
we recommend that the PM2 and BS1 codes may be com-
bined with the PP3/BP4 codes at the strengths we have
recommended here without any limits or additional
criteria. However, the overlap of key domain/critical resi-
due codes is more difficult to separate because it is often-
times highly correlated with attributes measured by an in
silico tool (e.g., evolutionary conservation). Furthermore,
it is challenging to separate these shared attributes for
tools such as MutPred2 and VEST4 that implicitly incor-
porate some notion of structural and functional impor-
tance to each variant position. To address this potential
overlap or double-counting of PP3/BP4 and PM1, we
recommend that laboratories limit the sum of the evi-
dence strength of PP3 and PM1 to strong. This would
allow PP3 to be invoked as supporting or moderate along
with PM1 to be invoked as moderate, which would be the
same as limiting the sum of PP3 and PM1 to 4 points in
the Bayes points implementation. Future stratified ana-
lyses, or integrated predictors amalgamating multiple co-
des, will be required to determine if or when these codes
can be combined to provide even stronger evidence and
the appropriate maximum allowable points for the
different combinations.

Limitations and future directions
There are caveats to our evaluation framework and, as a
consequence, our recommendations. In this study, we
estimated prior probabilities, calibrated tools, and esti-
mated score thresholds using a genome-wide set of
known disease-associated genes. As we noted above, in
some circumstances it may be appropriate for a laboratory
that focuses on a single or a few genes to independently
calibrate one of these tools using the method we describe
here, which could lead to distinct numerical thresholds
for the various evidence levels for that (those) specific
gene(s). As well, VCEPs that assess specific genes can use
our approach to establish predictive thresholds that can
optimize the performance of computational tools in their
specific systems.
Determination of different thresholds for the use of

computational tools merits investigation of variants in
ClinVar and potential re-classification of those where pre-
diction models with insufficiently high (or low) scores
played deciding roles. At the same time, the use of our
approach will require detailed cataloguing of information
in ClinVar such as the exact version of the tool, the raw
prediction score, as well as whether a standalone tool or
precomputed scores were used. This will be necessary to
avoid circularities in future evaluations of computational
tools. If our approach is adopted, we also suggest periodic

investigation of the accuracy of the calibration we have
proposed as ever-increasing data sets offer future potential
to further improve the precision and accuracy of our
thresholds.
Finally, it is important to emphasize that the approach

presented herein is intended for the use alongside the
ACMG/AMP rules2 and could lead to unintended conse-
quences if used for variant classification outside of this
setting.

Consortia

The ClinGen Consortium Sequence Variant Interpretation
Working Group members include Leslie G. Biesecker, Ste-
ven M. Harrison (co-chairs), Ahmad A. Tayoun, Jonathan
S. Berg, Steven E. Brenner, Garry R. Cutting, Sian Ellard,
Marc S. Greenblatt, Peter Kang, Izabela Karbassi, Rachel
Karchin, Jessica Mester, Anne O’Donnell-Luria, Tina Pe-
saran, Sharon E. Plon, Heidi L. Rehm, Natasha T. Strande,
Sean V. Tavtigian, and Scott Topper.

Data and code availability

The three datasets are available as Excel files as part of the supple-

mental data. Intermediate result files and code to calculate local

posterior probabilities, estimate thresholds, and plot figures in

the paper are available here: https://github.com/vpejaver/

clingen-svi-comp_calibration.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.10.013.

Acknowledgments

We thank Drs. Joseph Rothstein and Weiva Sieh for filtering out

variants in our set that were present in REVEL’s and constituent

tools’ training sets. We thank Drs. Panagiotis Katsonis and Olivier

Lichtarge for generating prediction scores for the evolutionary ac-

tion approach. We also thank Drs. John Moult and Shantanu Jain

for productive discussions. V.P. was supported by NIH grant K99

LM012992. A.B.B. and S.M.H. were supported by NIH grant U24

HG006834. A.O’D.-L. was supported by NIH grants U24

HG011450, U01 HG011755, and UM1 HG008900. S.V.T. was sup-

ported by NIH grants R01 CA121245 and R01 CA264971. M.S.G.

was supported by NIH grant U24 CA258119. L.G.B. was supported

by NIH grant ZI AHG200359. P.R. and S.E.B. were supported by

NIH grant U24 HG007346. P.R. was also supported by NIH grant

U01 HG012022. S.E.B. was also supported by NIH grants U41

HG009649 and U24 HG009649 and a research agreement with

Tata Consultancy Services. R13 HG006650 supported participants’

conference and working group attendance. ClinGen is primarily

funded by the National Human Genome Research Institute

(NHGRI) with co-funding from the National Cancer Institute

(NCI), through the following grants: U24 HG009649 (to Baylor/

Stanford), U24 HG006834 (to Broad/Geisinger), and U24

HG009650 (to UNC/Kaiser). The authors thank Julia Fekecs of

NHGRI for graphics support. The content is solely the

The American Journal of Human Genetics 109, 2163–2177, December 1, 2022 2175



responsibility of the authors and does not necessarily represent

the official views of the National Institutes of Health.

Declaration of interests

The PERCH software, for which B.-J.F. is the inventor, has been

non-exclusively licensed to Ambry Genetics Corporation for their

clinical genetic testing services and research. B.-J.F. also reports

funding and sponsorship to his institution on his behalf from

Pfizer Inc., Regeneron Genetics Center LLC., and Astra Zeneca.

A.O’D.-L. is a compensated member of the Scientific Advisory

Board of Congenica. L.G.B. is an uncompensated member of the

Illumina Medical Ethics committee and receives honoraria from

Cold Spring Harbor Laboratory Press. V.P., B.-J.F., K.A.P., S.D.M.,

R.K., A.O’D.-L., and P.R. participated in the development of

some of the tools assessed in this study.While every care was taken

to mitigate any potential biases in this work, these authors’ partic-

ipation in method development is noted.

Received: March 18, 2022

Accepted: October 21, 2022

Published: November 21, 2022

References

1. McInnes, G., Sharo, A.G., Koleske, M.L., Brown, J.E.H., Nor-

stad, M., Adhikari, A.N., Wang, S., Brenner, S.E., Halpern, J.,

Koenig, B.A., et al. (2021). Opportunities and challenges for

the computational interpretation of rare variation in clinically

important genes. Am. J. Hum. Genet. 108, 535–548. https://

doi.org/10.1016/j.ajhg.2021.03.003.

2. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J.,

Grody,W.W.,Hegde,M., Lyon, E., Spector, E., et al. (2015). Stan-

dards and guidelines for the interpretation of sequence variants:

a joint consensus recommendation of the American College of

Medical Genetics and Genomics and the Association forMolec-

ular Pathology. Genet. Med. 17, 405–424.

3. Ghosh, R., Oak, N., and Plon, S.E. (2017). Evaluation of

in silico algorithms for use with ACMG/AMP clinical variant

interpretation guidelines. Genome Biol. 18, 225. https://doi.

org/10.1186/s13059-017-1353-5.

4. Peterson, T.A., Doughty, E., and Kann, M.G. (2013). Towards

precision medicine: advances in computational approaches

for the analysis of human variants. J. Mol. Biol. 425,

4047–4063.

5. Hu, Z., Yu, C., Furutsuki, M., Andreoletti, G., Ly, M., Hoskins,

R., Adhikari, A.N., and Brenner, S.E. (2019). VIPdb, a genetic

variant impact predictor database. Hum. Mutat. 40, 1202–

1214. https://doi.org/10.1002/humu.23858.

6. Vihinen, M. (2020). Problems in variation interpretation

guidelines and in their implementation in computational

tools. Mol. Genet. Genomic Med. 8, e1206. https://doi.org/

10.1002/mgg3.1206.

7. Harrison, S.M., Dolinsky, J.S., Knight Johnson, A.E., Pesaran,

T., Azzariti, D.R., Bale, S., Chao, E.C., Das, S., Vincent, L.,

and Rehm, H.L. (2017). Clinical laboratories collaborate to

resolve differences in variant interpretations submitted to

ClinVar. Genet. Med. 19, 1096–1104. https://doi.org/10.

1038/gim.2017.14.

8. Grimm, D.G., Azencott, C.-A., Aicheler, F., Gieraths, U., Mac-

Arthur, D.G., Samocha, K.E., Cooper, D.N., Stenson, P.D.,

Daly, M.J., Smoller, J.W., et al. (2015). The evaluation of tools

used to predict the impact of missense variants is hindered by

two types of circularity. Hum.Mutat. 36, 513–523. https://doi.

org/10.1002/humu.22768.

9. Tavtigian, S.V., Greenblatt, M.S., Harrison, S.M., Nussbaum,

R.L., Prabhu, S.A., Boucher, K.M., Biesecker, L.G.; and ClinGen

Sequence Variant Interpretation Working Group ClinGen SVI

(2018). Modeling the ACMG/AMP variant classification guide-

lines as a Bayesian classification framework. Genet. Med. 20,

1054–1060.

10. Brnich, S.E., Abou Tayoun, A.N., Couch, F.J., Cutting, G.R.,

Greenblatt, M.S., Heinen, C.D., Kanavy, D.M., Luo, X.,

McNulty, S.M., Starita, L.M., et al. (2019). Recommendations

for application of the functional evidence PS3/BS3 criterion

using the ACMG/AMP sequence variant interpretation frame-

work. Genome Med. 12, 3. https://doi.org/10.1186/s13073-

019-0690-2.

11. Johnston, J.J., Dirksen, R.T., Girard, T., Gonsalves, S.G., Hop-

kins, P.M., Riazi, S., Saddic, L.A., Sambuughin, N., Saxena,

R., Stowell, K., et al. (2021). Variant curation expert panel rec-

ommendations for RYR1 pathogenicity classifications in ma-

lignant hyperthermia susceptibility. Genet. Med. 23, 1288–

1295. https://doi.org/10.1038/s41436-021-01125-w.

12. The CAGI Consortium (2022). CAGI, the Critical Assessment

of Genome Interpretation, establishes progress and prospects

for computational genetic variant interpretation methods.

Preprint at arXiv. 2205.05897. https://doi.org/10.48550/

arXiv.2205.05897.

13. Feng, B.-J. (2017). PERCH: a unified framework for disease

gene prioritization. Hum. Mutat. 38, 243–251. https://doi.

org/10.1002/humu.23158.

14. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper,

G.M., and Shendure, J. (2014). A general framework for

estimating the relative pathogenicity of human genetic var-

iants. Nat. Genet. 46, 310–315. https://doi.org/10.1038/

ng.2892.

15. Katsonis, P., and Lichtarge, O. (2014). A formal perturbation

equation between genotype and phenotype determines the

evolutionary action of protein-coding variations on fitness.

Genome Res. 24, 2050–2058.

16. Shihab, H.A., Gough, J., Cooper, D.N., Stenson, P.D., Barker,

G.L.A., Edwards, K.J., Day, I.N.M., and Gaunt, T.R. (2013). Pre-

dicting the functional, molecular, and phenotypic conse-

quences of amino acid substitutions using hidden Markov

models. Hum. Mutat. 34, 57–65.

17. Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow,

A., and Batzoglou, S. (2010). Identifying a high fraction of

the human genome to be under selective constraint using

GERPþþ. PLoS Comput. Biol. 6, e1001025.

18. Samocha, K.E., Kosmicki, J.A., Karczewski, K.J., O’Donnell-Lu-

ria, A.H., Pierce-Hoffman, E., MacArthur, D.G., Neale, B.M.,

and Daly, M.J. (2017). Regional missense constraint im-

proves variant deleteriousness prediction. Preprint at bioRxiv,

148353. https://doi.org/10.1101/148353.

19. Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K.A., Lin, G.N.,

Nam, H.-J., Mort, M., Cooper, D.N., Sebat, J., Iakoucheva,

L.M., et al. (2020). Inferring the molecular and phenotypic

impact of amino acid variants with MutPred2. Nat. Commun.

11, 5918.

20. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., and Siepel, A.

(2010). Detection of nonneutral substitution rates on

mammalian phylogenies. Genome Res. 20, 110–121.

2176 The American Journal of Human Genetics 109, 2163–2177, December 1, 2022



21. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gera-

simova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R.

(2010). A method and server for predicting damaging

missense mutations. Nat. Methods 7, 248–249.

22. Sundaram, L., Gao, H., Padigepati, S.R., McRae, J.F., Li, Y., Kos-

micki, J.A., Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J., et al.

(2018). Predicting the clinical impact of human mutation

with deep neural networks. Nat. Genet. 50, 1161–1170.

https://doi.org/10.1038/s41588-018-0167-z.

23. Ioannidis, N.M., Rothstein, J.H., Pejaver, V., Middha, S.,

McDonnell, S.K., Baheti, S., Musolf, A., Li, Q., Holzinger, E.,

Karyadi, D., et al. (2016). REVEL: an ensemble method for pre-

dicting the pathogenicity of rare missense variants. Am. J.

Hum. Genet. 99, 877–885.

24. Ng, P.C., and Henikoff, S. (2001). Predicting deleterious amino

acid substitutions. Genome Res. 11, 863–874.

25. Carter, H., Douville, C., Stenson, P.D., Cooper, D.N., and

Karchin, R. (2013). Identifying mendelian disease genes with

the variant effect scoring tool. BMC Genom. 14 (Suppl 3 ),

S3. https://doi.org/10.1186/1471-2164-14-s3-s3.

26. Liu, X., Li, C., Mou, C., Dong, Y., and Tu, Y. (2020). dbNSFP v4:

a comprehensive database of transcript-specific functional

predictions and annotations for human nonsynonymous

and splice-site SNVs. Genome Med. 12, 103.

27. Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C.,

Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., et al.

(2018). ClinVar: improving access to variant interpretations

and supporting evidence. Nucleic Acids Res. 46, D1062–

D1067.

28. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Al-
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