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ABSTRACT Blind predictions of intrinsic or-
der and disorder were made on 42 proteins subse-
quently revealed to contain 9,044 ordered residues,
284 disordered residues in 26 segments of length 30
residues or less, and 281 disordered residues in 2
disordered segments of length greater than 30 resi-
dues. The accuracies of the six predictors used in
this experiment ranged from 77% to 91% for the
ordered regions and from 56% to 78% for the disor-
dered segments. The average of the order and disor-
der predictions ranged from 73% to 77%. The predic-
tion of disorder in the shorter segments was poor,
from 25% to 66% correct, while the prediction of
disorder in the longer segments was better, from
75% to 95% correct. Four of the predictors were
composed of ensembles of neural networks. This
enabled them to deal more efficiently with the large
asymmetry in the training data through diversified
sampling from the significantly larger ordered set
and achieve better accuracy on ordered and long
disordered regions. The exclusive use of long disor-
dered regions for predictor training likely contrib-
uted to the disparity of the predictions on long
versus short disordered regions, while averaging
the output values over 61-residue windows to elimi-
nate short predictions of order or disorder probably
contributed to the even greater disparity for three
of the predictors. This experiment supports the
predictability of intrinsic disorder from amino acid
sequence. Proteins 2003;53:566–572.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

Proteins or local protein regions that fail to form specific
3-D structure under physiological conditions have been
called natively unfolded,1 intrinsically unfolded,2 and in-
trinsically disordered.3 Such segments of intrinsic disor-
der have been identified by X-ray diffraction, hypersensitiv-
ity to protease digestion, and NMR spectroscopy, while
wholly disordered proteins have been identified by NMR
and CD spectroscopy and by hydrodynamic measure-
ments. Since each of these methods has limitations, and
since disorder can exhibit differences, from extended chains
to collapsed globules, characterization of intrinsic disorder

should ideally involve several of the methods just men-
tioned (reviewed in ref. 3)

For the fifth Critical Assessment of Structure Prediction
(CASP5) experiment, local regions of disorder were identi-
fied by missing coordinates in their X-ray structures. A
region of missing electron density in an X-ray-determined
structure can result from causes other than intrinsic
disorder, such as crystal packing irregularities or the rigid
body wobble of an ordered domain,4 so this simple measure
sometimes gives incorrect disorder assignments. In addi-
tion, a wholly disordered protein was included in the
target set. The absence of ordered 3-D structure for this
target was indicated both by NMR and by CD spectros-
copy.5

Our interest in intrinsically disordered protein was
sparked in the early 1990s by discoveries on the filamen-
tous phage coat protein. Others showed that a morphologi-
cal change in the phage capsid activated the coat protein
for spontaneous association with fluid lipid bilayers,6,7 and
we extended those findings with experiments indicating
that the morphological transition was accomplished by a
change from tight to loose side chain packing,8,9 correspond-
ing to a molten globule-like form.10,11 These data sug-
gested that a disordered, molten globule-like form, but not
the ordered state, provided the basis for the important
function of membrane penetration for this phage capsid
protein. More recently we mined the literature to assemble
a catalogue of functions for about 110 regions of intrinsic
disorder: 28 distinct functions were found. These functions
could be grouped into four broad categories: molecular
recognition, molecular assembly/disassembly, protein modi-
fication, and entropic chain activities.12,13 Especially impor-
tant appears to be the use of intrinsic disorder for signal-
ing and regulation,14 with �80% of cancer-associated
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proteins predicted to have large regions of disorder.15

Thus, predictions of intrinsic disorder may be useful for
helping to identify regulatory domains, to identify domain
boundaries, and to provide other important insights into
protein structure-function relationships.

We initially attempted the predictions of order and
disorder as a means to test the hypothesis that absence of
3-D structure is encoded by the sequence.16 Later work
used larger datasets and compared different prediction
strategies (reviewed in ref. 13). Unknown to us but almost
20 years before our first published prediction of disorder,
R. J. P. Williams showed that a low ratio of hydrophobic to
charged residues could distinguish between a set of globu-
lar proteins and two proteins that were random coil-like in
solution.17 Using a much larger set of proteins, Uversky et
al.18 again applied the charge-hydropathy combination to
distinguish natively unfolded from folded proteins.

Three years ago we contacted the organizers about
including disorder predictions in the CASP experiment
and worked informally with the organizers during CASP4.
Disorder prediction was a new addition to CASP5. In the
CASP5 experiment, we officially participated in two groups,
the Obradovic group (predictors with id 454; first three
authors) and the Dunker group (predictors with id 355;
last three authors). Although all presented work is a result
of our close collaboration over the last several years, we
operated independently for CASP5. Here we report our
joint contribution to the CASP5 experiment on the predic-
tion of intrinsic disorder.

MATERIALS AND METHODS
Data Sets

The character of the datasets used in model training
provided the bases for naming the predictors. The letter V
in the name stands for variously characterized disordered
regions, and X stands for X-ray characterized. The L
designates that long regions of disorder (longer than 30
residues) were used for training while the T designates
that the training sequences were from the termini.

VL1 data set19

The 15 internal long (L) disordered regions used in
model training were characterized by various (V) methods
including X-ray diffraction, NMR spectroscopy, circular
dichroism and limited proteolysis. The order training set
included random samples from NRL-3D.20

XT data set21

This disorder training set consisted of X-ray character-
ized (X) regions, 5-14 amino acids long, from the N- and
C-termini (T), while the order set included the terminal
regions of 130 completely ordered proteins chosen from a
non-redundant set of proteins from the Protein Data Bank
(PDB) called PDB-Select-25,22 abbreviated here as
PDBS25.

VL2 data set23

The VL1 dataset was expanded to 145 variously charac-
terized, long regions of disorder. The set of 130 ordered
proteins used for the XT dataset was also used here.

VL3 data set24

A set of 152 long regions of disorder characterized by
various methods was derived from the VL2 dataset by
removing some incorrectly identified sequences and by
adding proteins (e.g. titin, neurofilament H) that were
characterized by other physical means. The set of ordered
proteins consisted of 290 PDB-Select-25 chains having no
disordered residues.25 These datasets can be found on our
website: http://www.ist.temple.edu/DisProt.

Attribute Construction

An attribute or feature vector is constructed for each
residue in a protein. We used amino acids within a
symmetric input window of size Win, since spatial confor-
mation is largely influenced by neighboring amino acids.
The input window extends/collapses at the N-/C-terminus.
The first twenty attributes were the relative frequencies of
each amino acid within the input window. Several other
attributes were constructed for each position: the flexibil-
ity index,26 hydropathy,27 net charge and coordination
number,28 which were also averaged over the window Win,
and entropy, a measure of sequence complexity.29 Feature
selection was performed independently for each model
such that accuracy was maximized.

Predictors

Naming of predictors follows the names of datasets used
in training, while the designations after the names of the
VL3 group of predictors specifies different techniques used
in model training.

VLXT (CASP5 id: 355–1)

The VLXT predictor integrates three feed-forward neu-
ral networks: the VL1 predictor from Romero et al.19 and
the N- and C-terminal predictors (XT) from Li et al.21 The
attributes used by these predictors are coordination num-
ber, net charge and the relative frequencies of various
combinations of W, F, Y, K, R, D, and E. Output for the
VL1 predictor starts and ends 11 amino acids from the
termini. The XT predictors output predictions up to 14
amino acids from their respective ends. A simple average
is taken for the overlapping predictions; and a sliding
window of 9 amino acids is used to smooth the prediction
values along the length of the sequence. Unsmoothed
prediction values from the XT predictors are used for the
first and last 4 sequence positions.

VL2 (id: 355-2)

The VL2 predictor is a linear predictor23 built using
ordinary least-squares regression. It is based on 20 at-
tributes (18 amino acid frequencies, average flexibility and
sequence complexity) in an input window of length 41. For
CASP5, the raw predictions were not averaged over an
output window.

VL3 (id: 454-1)

The VL3 predictor is based on an ensemble of feed-
forward neural networks and uses the same 20 attributes
as VL2 (18 amino acid frequencies, average flexibility and
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sequence complexity) in an input window of length 41. The
raw predictions are averaged over an output window of
length 61 to obtain the final prediction for a given position.

VL3-BA (boundary augmented; id 355-4)

After prediction of disorder by VL3, the putative bound-
aries between order and disorder were corrected using the
order/disorder boundary predictor described in Radivojac
et al.24 The closest maximum prediction from the bound-
ary predictor (above 0.5) became the new boundary be-
tween the ordered and disordered regions. Input and
output windows (Win � 41, Wout � 31) were set to
maximize the total sensitivity of prediction of long disor-
dered regions.

VL3-H (homology; id: 454-2)

Using PSI-BLAST30, a set of hypothetical disordered
regions was found for each experimentally determined
disordered region, thus enlarging the training set. Only
homologous sequences from the range 10�20 � E-value �
10�5 were retained and subsequently used in model train-
ing. Also, no two homologous sequences were allowed to
have sequence identity above 90%. This predictor uses the
same set of attributes and averages the input values and
raw predictions in the same manner as VL3 (Win � 41,
Wout � 61).

VL3-P (profile; id 454-3)

The VL3-P predictor uses the evolutionary information
both at the stage of training and prediction. In addition to
the attributes exploited in other VL3 models, the sequence
profile, generated by PSI-BLAST was used to derive 20
additional attributes for each example in the prediction
process. Input and output windows were set to Win � 41,
Wout � 61.

Evaluation Criteria

The results presented here are for the 42 proteins
available on Nov. 29, 2002: T0129, T0130, T0132, T0133,
T0134, T0135, T0137, T0138, T0139, T0141, T0142, T0145,
T0146, T0147, T0148, T0149, T0150, T0153, T0157, T0159,
T0160, T0165, T0167, T0168, T0169, T0170, T0172, T0173,
T0174, T0182, T0183, T0184, T0185, T0186, T0187, T0188,
T0189, T0190, T0191, T0192, T0193, T0195.

The frequency of disordered residues is typically small
in proteins characterized by X-ray diffraction. Always
predicting the majority class in such an unbalanced data-
set yields a predictor of very high accuracy that completely
misses the event in which we are interested, in this case,
disorder. A common practice in class-imbalance problems
is to separately estimate accuracies on the minority class
(SN) and the majority class (SP) and take their average to
give the overall accuracy (A � (SN � SP)/2). In such a case,
a random predictor or a predictor outputting only one class
will have an accuracy of 50%.

Large variability in lengths of disordered segments,
however, may cause a few proteins with very long disor-
dered regions to completely outweigh many other proteins
with significantly shorter segments. For example, the

2,174 residue segment of elastic titin (gi:1017427) and the
1,827 residue segment of microtubule-associated protein 2,
isoform 1 (gi:14195624) can dominate many proteins with
significantly shorter disordered segments. Since this is not
the case for this data set, we present the A measure.

RESULTS
Disordered Residues in CASP5 and
in PDB-Select-25

Of the 42 targets used in our evaluation, 14 had no
disordered residues, while 26 had at least one disordered
region (Table I). Most of these 26 proteins had only short
regions of disorder, while almost half of the disordered
residues were in two targets (281 residues total), and the
rest of the residues (284) were distributed among 24
targets (Table II).

The ordered and disordered data from the CASP5 tar-
gets were compared with the data from PDBS25 as of Oct.
31, 2001 (Table II). While the CASP5 set consisted of 42
proteins with 9,609 total residues, the PDBS25 contained
1,223 chains with 239,527 residues. The two datasets have
quite similar percentages of proteins with no disorder, 33%
and 32% for CASP5 and PDBS25, respectively, and also
quite similar percentages of residues in disordered regions
of length �30 residues, 3.0% and 3.5% for CASP5 and
PDBS25, respectively. The CASP5 set had a higher frac-
tion of residues in disordered regions of length �30
residues due to the inclusion of one entirely disordered
protein.

TABLE I. Number of CASP5 Targets With Various
Percentages of Disordered Residues

Disordered residues (%) No. of CASP targets

0 14
1–5 15
6–10 6
11–15 4
16 1
25 1
100 1

TABLE II. Comparison of Disordered Residues in the
CASP5 Targets and in PDB-Select-25

CASP5 PDBS25

No. of chains 42 1223
No. of residues 9,609 239,527
No. of chains with no disorder 14 527
Chains with no disorder (%) 33 32
No. of disordered regions � 30

(residues)
24 (284) 1,100 (8,428)

Disordered residues in regions
� 30 (%)

3.0 3.5

No. of disordered regions � 30
(residues)

2 (281) 68 (3,710)

Disordered residues in regions
� 30 (%)

2.9 1.5
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Prediction Summary for the 42 Target Proteins

The prediction accuracies and bootstrap estimated stan-
dard errors31 for the six predictors are given in Table III.
For each model all target proteins were connected into a
single long sequence of length 9,609 from which 1,000
bootstrap samples (sequences of length 9,609) were gener-
ated by randomly sampling residues with replacement.
For each bootstrap replicated sample, prediction accuracy
was determined and stored. Finally, the overall accuracy
and its standard error were estimated from each stored
array. The sensitivities were calculated separately for
disordered regions 30 residues or shorter and longer than
30 residues because all of the predictors were trained and
optimized on long regions of disorder.

All of the predictors have greater than 70% average
accuracy on the CASP5 targets, although there is consider-
able variability in sensitivity and specificity. While the
first 2 predictors exhibited about 77% accuracy in the
prediction of ordered residues, the last 4 predictions
exhibited about 90% accuracy. This �10% increase in
accuracy correlated with the use of ensembles of predictors
for the last 4 models.

Dividing the disordered regions into short (�30 resi-
dues) and long (�30 residues) categories revealed addi-
tional information about the various predictors. All 6
predictors had much higher accuracy on long as compared
to short regions of disorder. Three predictors averaged
their output values over 61 residues in order to decrease
short false positive predictions of order and disorder; these
predictors showed an even larger difference in accuracy
between short versus long disordered segments.

VLXT and VL2 Predictions on Individual Proteins

The charge-hydropathy plot developed by Uversky et
al.18 was applied to the CASP5 targets, with the result
that 2 proteins, T0145 and T0170 were predicted to be
entirely unfolded, and 2 other proteins, T0129 and T0174,
were predicted to be ordered but were very close to the
order-disorder dividing line (data not shown). Representa-
tive per-residue predictions using VLXT (green) and VL2
(black) are shown for these 4 proteins in Figure 1. T0145
was revealed to be entirely disordered and T0170 to be

entirely ordered, while T0129 and T0174 were mostly
ordered with various disordered segments as indicated.
Overall, the charge-hydropathy plot, VLXT and VL2 all
concurred that T0145 is a natively unfolded protein and
that T0129 and T0174 are (mostly) ordered proteins. The
various methods gave inconsistent results for T0170, with
the charge-hydropathy plot and VL2 indicating a natively
unfolded protein, but with VLXT indicating an ordered
protein.

DISCUSSION
Order Predictions

The VL3 predictors exhibited a �10% improvement in
the prediction of order as compared to the first 2, from
about 90% as compared to about 77%, respectively. These
four predictors averaged the results from ensembles of
predictors, where the individual predictors used the same
set of disordered residues but different random draws from
the much larger set of ordered residues. This would be
expected to give better coverage of ordered sequence space
and thus could be contributing to the improved prediction
of order. A second factor is that the outputs were averaged
over a larger number of residues. This would improve the
order prediction accuracy by reducing short, false positive
predictions of disorder. The relative importance of these
two factors has not been determined.

Disorder Predictions on Short Regions of Disorder

All of the predictors discussed here were trained on long
regions of disorder, with one result being that VLXT gives
a high error rate predicting short regions of disorder.
Thus, in our submission to CASP5 we included in the
REMARKS section the caveat that internal regions of
predicted disorder less than 15 amino acids in length were
too short to be considered significant. Similarly, the VL3
predictors were optimized to remove short regions of both
predicted order and disorder thus sacrificing prediction
accuracy on short segments. Since over half of the disor-
dered residues in the CASP5 targets are in short regions, it
is not surprising that these predictors had fairly low
sensitivities. VL2 was also originally optimized on an
output window size of 41,23 however, for CASP5 the output

TABLE III. Prediction Accuracies and Standard Errors (%) Estimated on CASP5
Targetsa

Model SNb SPc Ad SN (�30)e SN (�30)f

VLXT 68.5 � 1.9 77.1 � 0.4 72.8 � 1.0 58.0 � 3.0 79.0 � 2.5
VL2 78.1 � 1.7 76.6 � 0.5 77.4 � 0.9 65.9 � 2.8 90.1 � 1.8
VL3 56.3 � 2.1 90.9 � 0.3 73.6 � 1.0 25.0 � 2.6 86.2 � 2.1
VL3-BA 61.6 � 2.0 89.3 � 0.3 75.5 � 1.0 49.2 � 3.0 75.2 � 2.7
VL3-H 58.7 � 2.0 89.4 � 0.3 74.1 � 1.0 35.9 � 2.9 86.1 � 2.1
VL3-P 62.8 � 2.0 89.8 � 0.3 76.3 � 1.0 31.0 � 2.8 95.0 � 1.4
aEstimated on 42 target structures released on Nov. 29, 2002 (including T0145).
bSN, % correct predictions of disorder.
cSP, % correct predictions of order.
dA, (SN � SP)/2.
eSN (�30), % correct predictions of disordered regions 1–30 residues in length (N � 284).
fSN (�30), % correct predictions of disordered regions greater than 30 residues in length (N � 281).
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window size was changed to 1. This change resulted in
increased sensitivity as compared to the VL3 models.

Disorder Predictions on Long Regions of Disorder

All of the predictors had better sensitivity on long
regions of disorder than on short regions. The VL3-P
predictor had the highest sensitivity on long disordered
regions of any of the remaining five predictors. To train
this predictor, sequence profiles for disordered proteins
were developed based upon the alignment of homologous
disordered regions. The profiles were then used to train an
ensemble of neural networks exploiting an inherent ability
of ensembles to sample from a larger pool of ordered
regions for each network, improving the overall specificity.
The fundamental assumption made in this method is that
regions of proteins that are homologous to a disordered
region of a protein are also disordered. The high success
rate of this predictor indicates that this assumption is
likely to be correct, and that disordered structure is
conserved even when disordered sequence is poorly con-
served.32

Prediction Comparisons

VLXT had the lowest overall accuracy of the six predic-
tors and VL2 had the highest (Table I). The training set

differences between VLXT and VL2 may explain these
results. VL2 was trained on a much larger set of disor-
dered proteins, and it was trained on a non-redundant set
of completely ordered proteins. Another difference is that
VL2 was a linear predictor, while VLXT was an integra-
tion of 3 neural networks. We do not believe that the use of
a linear predictor rather than a neural network predictor
accounts for the improved accuracy of VL2, however,
because neural network predictors developed on the same
data sets had slightly higher training accuracy than the
linear predictor.

The apparent prediction accuracy on short disordered
regions is reduced by averaging over large windows such
as for VL3, VL3-H, and VL3-P, while the prediction
accuracy for long disordered regions is improved. This
leads to a greater disparity in the prediction accuracy of
short versus long regions of disorder (Table III).

Since all of the predictors were trained on long regions
for both order and disorder, it is reasonable to compare
their performance using just these data. By this measure,
VL3-P appears to be the best of the 6 predictors in this
experiment, with about 90% correct prediction of order and
about 95% correct prediction of long regions of disorder.

Comparing the predictors for several specific proteins
illustrates their successes and failures. Figure 1 illus-

Fig. 1. VLXT (green) and VL2 (black) disorder scores for targets: A. T0145, an entirely disorderd protein; B. T0170, an entirely ordered protein (a
3-helix bundle); C. T0129, contains disordered region: 172-182; D. T0174, contains disordered regions: 1-7, 29-38, 190-194, 375-417. Disordered
regions are marked in red. A prediction score above or equal to 0.5 is considered disordered and below 0.5 is considered ordered.
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trates the predictions for four targets, the wholly disor-
dered T0145, the ordered T0170, and two mostly ordered
proteins, T0129 and T0174. As indicated above, T0145 and
T0170 were indicated to be wholly disordered by the
charge-hydropathy plot,18 while T0129 and T0174 were
indicated to be ordered, but were close to the order-
disorder dividing line in this plot (data not shown).

All 6 predictors and the charge-hydropathy plot all
correctly indicated that T0145 is natively unfolded. Inter-
estingly, our 6 predictors concurred in indicating a short
region of order at the N-terminus as shown in Figure 1 for
two of the predictors. Perhaps these results suggest latent
3-D structure, such as a short �-helix, in this region.
Indeed, VLXT has successfully detected several binding
sites that undergo disorder-to-order transitions upon bind-
ing with a partner by predicting short regions of order
within longer stretches of predicted disorder,33 and this
short prediction of order might correspond to just such a
region.

Although T0170 is ordered, both the charge-hydropathy
plot and 4 of the 6 predictors indicated this protein to be
completely or at least mostly unfolded. This protein is a
3-helix bundle, which indicates a rather large surface-to-
volume ratio. In addition, this protein binds to DNA and
has a very high positive charge. The high net charge and
large-surface to volume ratio accounts for the prediction
error by the charge-hydropathy plot and certainly contrib-
utes to the large errors made by 4 of the 6 predictors. VLXT
predicted 88% of this protein to be ordered, but this
apparent success may relate to the small training set used
to develop this predictor. Interestingly, VL3 predicted just
28% of the residues to be ordered, while VL3-BA predicted
78% to be ordered, suggesting perhaps that the boundary
augmentation improved the prediction of this protein. As
indicated in Table III, boundary augmentation led to a
general improvement in the VL3 predictor on short regions
of disorder, but led to degradation of the accuracy for long
regions of disorder. Since the long regions of disorder in
this study comprised just 2 segments, further study on a
larger sample is needed to further test the effects of
boundary augmentation.

The last 11 residues of T0129 (Fig. 1C) are disordered,
and only one of our six predictors, VLXT, correctly pre-
dicted this region. All 6 of the predictors mistakenly
indicated that a highly charged coil from residues 136-146
is disordered. The atoms in this coil have very high
B-factors. It would be interesting to know whether this
region is involved in crystal contacts.

T0174 contained the second largest amount of disorder
of the CASP5 targets, one segment of 43 residues, as well
as 3 short regions of disorder. All of our predictors accu-
rately predicted the disordered termini, however, their
disorder predictions extended into the ordered region by
varying lengths; VL3-H incorrectly predicted an addi-
tional 178 residues to be disordered in the C-terminus!
With regard to disorder prediction for the N-terminus, the
presence of a second disordered region from residues 29-38
probably contributed to the over-prediction of disorder in
this region. Furthermore, the false positive disorder predic-

tion errors are not consistent across different predictors
(Figure 1D), suggesting that development of combined
predictors is worth exploring.

Future Directions

The 6 predictors included 2 that were described in
previous publications, VLXT and VL2, and 4 new ones.
The evident improvement of the new ones on long regions
of disorder suggest that progress is being made, with the
VL3-P accuracy exceeding 90% for long regions order and
disorder. The poor performance on short disordered re-
gions calls for additional work on these. Such short
disordered regions are likely to be more context dependent
than long disordered regions. Furthermore, the same
boundary error contributes a greater percentage to a short
as compared to a long region of disorder. Thus, predicting
disorder in short regions is likely to be more difficult than
predicting disorder in long regions, but, compared to
predictions on long regions of disorder, predictions on
short regions have much greater room for improvement.
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