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Abstract
We consider the problem of active feature elicita-
tion in which, given some examples with all the
features (say, the full Electronic Health Record),
and many examples with some of the features (say,
demographics), the goal is to identify the set of ex-
amples on which more information (say, lab tests)
need to be collected. The observation is that some
set of features may be more expensive, personal or
cumbersome to collect. We propose a classifier-
independent, similarity metric-independent, gen-
eral active learning approach which identifies ex-
amples that are dissimilar to the ones with the full
set of data and acquire the complete set of features
for these examples. Motivated by four real clinical
tasks, our extensive evaluation demonstrates the ef-
fectiveness of this approach.

1 Introduction
Acquiring meaningful data for learning has long been a cher-
ished goal of artificial intelligence, and is especially relevant
in data scarce domains such as medicine. While there are
plethora of data regarding several diseases, in some cases, it is
crucial to obtain information that is particularly relevant to the
learning task. The problem of choosing an example to obtain
its class label has been addressed as active learning [Settles,
2012]. There have been several extensions of active learn-
ing that included presenting a set of features [Raghavan et
al., 2006; Druck et al., 2009], or getting labels over clus-
ters [Hofmann and Buhmann, 1998], or preferences [Odom
and Natarajan, 2016] or in sequential decision making [Lopes
et al., 2009], to name a few.

Our problem is motivated by a different set of medical
problems – that of recruiting patients for a clinical study.
Consider the following scenario of collecting data (cogni-
tive score and fMRI, both structural and functional) for an
Alzheimer’s study. Given a potentially large cohort size, the
first step could be to simply collect the demographic infor-
mation for everyone. Now, given a small amount of complete
data from a related study, say the Alzheimer’s Disease Neu-
roInitiative (ADNI), our goal is to recruit subjects who would

Figure 1: The active feature elicitation setting. The top part is the
fully observed data and the bottom right (grey shaded area) is the
unobserved feature set.

provide the most information for learning a robust, general-
ized model. This scenario is highlighted in Figure 1. The top
part shows the part of the data that is fully observed (poten-
tially from a related study). The bottom left quadrant shows
the observed features of the potential cohorts and the right
quadrant is the data that needs to be collected for the most
useful potential recruits. Given, the labels of the potential re-
cruits, the goal is to identify the most informative cohorts that
would aid the study.

Inspired by the success of active learning methods, we de-
fine the problem of active feature elicitation (AFE) where the
goal is to select the best set of examples on whom the missing
features can be queried on to best improve the classifier per-
formance. At a high level, our algorithm (also called AFE)
at each iteration, identifies examples that are most different
from the current set of fully observed examples. These are
then queried for the missing features, their feature-values are
obtained and added to the training set. Then, the models are
updated and the process is repeated until convergence. This
is a general-purpose framework. Any distance metric that
works well with the data and the model can be employed. So
can a classifier that is capable of handling the specific intri-
cacies of the data. Finally, the convergence criteria can be
decided based on the domain.
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We make a few key contributions. First, we identify and
formally define the problem of actively acquiring features
from a selected set of examples. Second, we show the po-
tential of this approach in four real medical prediction tasks:
Alzheimer’s from fMRI and cognitive score, Parkinson’s
from potential risk factors, rare diseases based on a survey
questionnaire and predicting post-partum depression (PPD)
in a non-clinical setting. Finally, we empirically demonstrate
that AFE is particularly effective in recall while not sacrific-
ing the overall performance in these four real tasks.

2 Related Work
Our work is closely related to active learning where the most
informative examples are chosen based on a scoring metric to
be labeled when learning with semi-supervised data. Active
learning [Settles, 2012] relies on the fact that if an algorithm
can only solicit labels of a limited number of examples, then
it should choose them judiciously since not all examples pro-
vide the same amount of information. Active learning has a
long history of being successfully employed with a variety of
classifiers such as logistic regression [Lewis and Gale, 1994;
Lewis and Catlett, 1994], support vector machines [Tong and
Koller, 2001b], Bayesian network learning [Tong and Koller,
2000; 2001a] and in sequential decision making tasks such as
imitation learning [Judah et al., 2014] and inverse reinforce-
ment learning [Odom and Natarajan, 2016].

Active learning has also been used with missing features.
Zheng et al. [2002], for instance, considered a setting where
an imputation method was used to fill the incomplete feature
subset and used scoring methods to acquire the most informa-
tive example for labeling. Melville et al. [2004] used uncer-
tainty sampling to acquire the maximally informative exam-
ples from the partially observed set of features during training
time. There is also a different body of work where instances
are chosen based on individual feature utilities [Melville et
al., 2005; Lizotte et al., 2003].

Our work is heavily inspired by the work of Kanani and
Melville [2008] on active feature acquisition that addressed
a similar problem where a few examples with the full set
of features are present while others are incomplete exam-
ples. Their work also scored these examples based on un-
certainty sampling and then updated the model at prediction
time. There are a few key differences between this work and
ours. First, our model updates occur during training and not
during the test time. Second, we return a single model on the
best set of training data while their approach had two differ-
ent models for testing. Our approach explicitly grows the set
of training examples for a single model iteratively. Finally,
they employed uncertainty sampling on the observed feature
sets (which is a baseline in our approach), while we explicitly
compute the distance between the two sets of points.

This work was later extended by Thahir et al. [2012] for
protein-protein interaction prediction where an extra term
was added to the utility function that explicitly computed
the value of adding an example to the classifier set. While
it is possible to compute the value of adding an example to
the training set in our work, we will pursue this as a fu-
ture research direction. The AFA framework was then later

generalized and rigorously analyzed by Saar-Tsechansky et
al. [2009] where even class labels can be considered to be
missing and acquired. We assume that these labels are ob-
served and that full sets of features need to be acquired. A
key difference to this general direction is that both the ob-
served set of examples and observed set of features are sig-
nificantly smaller in our work compared to the general AFA
setting which is clearly demonstrated in our experiments.

Bilgic and Getoor [2007] took a different approach to a
similar task where they assumed different costs for misclassi-
fication and information acquisition. They proposed a prob-
abilistic framework that explicitly modeled this dependency
and developed an algorithm to identify the set of features that
can be optimally identified. Using such a strategy for dis-
covering sets of features that one could acquire for different
sets of patients is an interesting direction. Feature elicitation
is inspired by the preference framework of concept learning
by Boutilier et al. [2009], where minimax regret is used for
computing the utility of subjective features. The violated con-
straints are repeatedly added to the computation and can po-
tentially make the problem harder to solve.

To summarize, our work is inspired by the contributions
from several of these related works but differs in the mo-
tivation of collecting more features by identifying the right
set of examples during training time to improve the model.
As mentioned, we differ from active feature acquisition in
both motivation and execution – we collect a large number
of features from a small set of examples during training and
use distances to calculate the most diverse set of examples
(Genome sequencing would best exemplify such a scenario).
The other important difference is in the number of observed
features, which is assumed to be much smaller in our work.
And our solution that explicitly computes the relationship be-
tween the observed and unobserved data is independent of the
choices of classifiers and distance functions. One of the key
assumptions that we make is that all unobserved features are
collected for the selected examples and identifying the rele-
vant set of features along the lines of Bilgic and Getoor is an
exciting direction for future work.

3 Motivating Medical Tasks
We motivate active feature elicitation with four medical tasks:

1. Parkinson’s: The Parkinson’s Progression Markers Ini-
tiative (PPMI) is an observational study with the aim
of identifying biomarkers that impact Parkinson’s pro-
gression [Marek et al., 2011]. The data can be divided
broadly into four categories: imaging data, clinical data,
bio-specimens and demographics. Among these data
types, while other modalities are either costly or cumber-
some to obtain, the total Montreal Cognitive Assessment
Score (MoCA) is a standard measure that can be used to
select subjects for whom information from other modal-
ities can improve classifier performance significantly.

2. Alzheimer’s: The Alzheimer’s Disease NeuroIntiative
(ADNI) aims to test whether serial MRI, PET, biolog-
ical markers, and clinical and neuro-psychological as-
sessments can measure the progression of mild cogni-
tive impairment and early Alzheimer’s disease. Given a
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small number of subjects with all the measurements, de-
mographic data can be used to select subjects for whom
obtaining more information such as the cognitive MM-
Score and imaging data could maximize performance in
predicting Alzheimer’s progression.

3. Rare Diseases: A recent work [MacLeod et al., 2016]
focused on predicting rare diseases from a survey ques-
tionnaire that consisted of questions in the following cat-
egories: demographics, technology use, disease infor-
mation and healthcare provider information. The set
of diseases in the study includes Ehlers Danlos Syn-
drome (23%), Wilson’s Disease (21.9%), Kallmann’s
Syndrome (9.9%), etc. Demographics can be used to
identify the future participants of the survey as this can
avoid more personal questions such as technology use
and the provider details along with the disease informa-
tion itself.

4. Post-Partum Depression: This work collects demo-
graphic information along with several sensitive ques-
tions including relationship troubles, social support, eco-
nomic status, infant behavior and the CDC questions to
identify PPD in subjects outside the clinic [Natarajan et
al., 2017]. As with the earlier cases, demographics can
be used to recruit the subjects on whom more sensitive
information can be collected.

These varied medical tasks demonstrate the need for employ-
ing an active feature elicitation approach that allows for col-
lecting relevant information in an effective manner. While the
presented motivating tasks are medical, one could imagine
the use of such approach in any domain where some features
are either expensive or cumbersome to obtain.

4 Active Feature Elicitation
Let us denote the label of an example i as yi, the set of
fully observed features (i.e., the features that are observed
for the entire data set) as Xo, the set of features that are par-
tially observed as Xu, the set of fully observed examples set
as Eo = 〈〈X1

o,X
1
u, y

1〉...〈Xk
o ,X

k
u, y

k〉〉 and the set of par-
tially observed examples as Eu = 〈〈X1

o, y
1〉...〈X`

o, y
`〉〉. The

learning problem in our setting can be defined as follows:
Given: A data set with Eo and Eu.
To Do: Identify the best set of examples Ea ⊂ Eu for
which to obtain more information Xu such that the classifier
performance improves.

In the above definitions, the notion of best and improve
have been intentionally left vague. This definition allows for
any notion of the best examples and improvement of the clas-
sifier. In our work, to be precise, we consider best to denote
the set of the examples with maximal difference to the ob-
served set and performance to be the log-likelihood of the
classifier. The classifier we consider is the well-understood
gradient-boosting [Friedman, 2001].

Since our focus is on clinical (study) data, our hypotheses
is that the best examples are chosen to obtain extra informa-
tion from those that are significantly different from the re-
maining examples. In principle, any distance function could
be used to determine the set of examples Ea from Eu that are

significantly different from the ones in Eo. We use the mean
Kullback-Leibler (KL) divergence between every example
ei = 〈Xi

o, y
i〉 in Eu and every example ej = 〈Xj

o,X
j
u, y

j〉
in Eo to determine the set of examples in Eu that are dif-
ferent from the observed set Eo. To compute this mean KL-
divergence at every iteration t, we use the current models:
M t
u = Pt(y

i | Xi
o) andM t

o = Pt(y
j | Xj

o, X
j
u), learned on

the two different sets of data. More precisely, we compute the
mean distance of an example Xi

u from all the observed exam-

ples 〈Xj
o, X

j
u〉 as, MDi =

1

|Eo|

|Eo|∑
j=1

Dij , where the distance

Dij is the asymmetric KL divergence:

Dij = KL
(
P(yi | Xi

o) ‖ P(yj | Xj
o, X

j
u)
)
. (1)

A natural question to ask is: what is the need for two different
distributions, even if they are conditionals on the target. Note
that, with the set of examples Eo, all the features are assumed
to be fully observed. Ignoring the informative features (Xj

u)
when computing the distances can lead to a loss of informa-
tion and our experiments confirmed this. Hence, we employ
the model learned over the full set of features for the fully
observed example set Eo, which is typically smaller than the
unobserved set in the initial iterations.

Now that the distances have been computed, we next sort
them to pick the n most distinct examples from Eu. These n
examples are queried for their missing features and are then
added to the training set before the model is retrained. Note
that at each iteration, the model P(yj | Xj

o,X
j
u) is updated

after the examples are appropriately chosen and queried. The
model P(yi | Xi

o) remains unchanged because it is trained on
Xo of the entire example set Eo∪Eu. The process is repeated
until convergence or a predetermined budget is realized.

This presents a generalized and unifying framework, which
can be adapted in multiple ways:

1. As we discuss in Section 4.1, this formulation admits a
large class of divergences and distance metrics for com-
puting distances between examples in Eo and Eu. One
could imagine the use of other classifiers, kernels or
learned metrics [Kunapuli and Shavlik, 2012] as well.

2. The gradient boosting classifier can be replaced with any
classifier. Our framework is classifier-agnostic, allowing
the user to select the best one for the task at hand.

3. Various convergence criteria can also be used. For in-
stance, one could simply preset the number of iterations,
or employ a tuning set to determine the change in perfor-
mance from the previous iteration or compute the dif-
ference between scores from successive iterations. We
employ this final strategy: computing the difference be-
tween log-likelihoods of the training data in successive
iterations. If the difference is smaller than ε, we termi-
nate the algorithm. One could also imagine reducing the
number of queries at every iteration (i.e., successively
reduce n = n

n+∆ ) such that the number of examples se-
lected at each iteration naturally comes down to 0.

We present the algorithm for active feature elicitation in
Algorithm 1. The AFE algorithm takes as input the set of
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Algorithm 1 Active Feature Elicitation

1: function ActiveFeatureElicitation(Eo, Eu, n, ∆)
2: t = 0 . iteration counter
3: Mt = TrainInitialModel(Eo, Eu, Xo, Xu)
4: while n ≥ 1 do . while not converged
5: MD = 0 . initialize mean divergences
6: for i = 1 to |Eu| do
7: D = 0 . init divergence for unobserved ex. i
8: for j = 1 to |Eo| do
9: Dj = ComputeDistance(Ei, Ej , Mt)

10: end for

11: MDi =
∑|Eo|

j=1
Dj

|Eo| . average distance
12: end for
13: Equ = GetTopN(MD)
14: . n most divergent partially-observed examples
15: Eqo = AppendNewFeature(Equ)
16: . actively query to elicit missing features
17: Eo = Eo ∪Eqo . add queried to observed
18: Eu = Eu \Equ . remove queried from unobs.
19: Mt = UpdateModel(Eo, Eu, Xo, Xu)
20: . retrain or update classifier
21: n = n

n+∆ . check convergence/update budget
22: end while

return TrainFinalModel(Eo)
23: end function

fully labeled examples (Eo), the set of partially labeled ex-
amples (Eu), the number of active learning examples for each
query step (n) and step size (∆). In this algorithm, suf-
ficient decrease in step size ( n

n+δ ) is used as the stoppage
criterion (lines 4, 21) as an example. This can be replaced
by other task-relevant budgets or convergence criteria as dis-
cussed previously.

After initializing mean distances of each unlabeled exam-
ple, AFE iterates through every partially-labeled example in
Eu, and computes the mean distance to all the fully labeled
examples in Eo based on the divergence between the respec-
tive current models. The n-most divergent (dissimilar) exam-
ples are selected and features are actively obtained for these
examples (AppendNewFeature). These examples are then
added to Eo and removed from Eu. A new model can be
trained (or updated depending on the choice of classifier), and
the process is repeated. Note that Mt consists of two classi-
fiers – one trained on Eo, which contains new examples pro-
vided by the user after active feature elicitation with all the
features, and the other trained on entire data Eo ∪ Eu. After
convergence, Eo has the full set of training examples.

In our experiments, we employ gradient boosting as the
classifier, KL-divergence to identify the unobserved examples
whose features we would like to acquire, and the difference
in average log-likelihoods between two iterations as our con-
vergence criterion.

4.1 Other Model Divergences
The KL divergence is a special case of the Csiszár f -
divergence [Csiszár, 1967], which is a generalized measure
for the difference between two probability distributions, in

our case P(yi | Xi
o) and P(yj | Xj

o, X
j
u). Df (P ‖

Q) =
∫

Ω
f (dP/dQ) dQ. Generally, given two distributions

P and Q over some space Ω, for a convex function f (with
f(1) = 0), the divergence of P from Q is defined as Df (P ‖
Q) =

∫
Ω
f (dP/dQ) dQ. Such f -divergences satisfy non-

negativity, monotonicity and convexity, though they are not
always symmetric. Several well-known distribution distance
measures are special cases of the f -divergence. For exam-
ple, the χ2-divergence might be well-suited for histogram
data [Kedem et al., 2012], while the Hellinger distance might
benefit applications with highly-skewed data [Cieslak et al.,
2012].

Recently it was shown that families of divergences includ-
ing the α- and β-divergence are also a special cases of the f -
divergence [Cichocki and Amari, 2010]. The latter includes
generalizations of measures such as the Euclidean distance
and the Itakura-Saito distance, which are appropriate for un-
supervised and semi-supervised learning problems. See Deza
& Deza [2013] for other useful distance functions. We con-
sider the usefulness of various divergences to different ma-
chine learning problem types and applications in future work.

4.2 Multi-class and Other Extensions
As our approach is algorithm- and divergence-agnostic, it can
be seamlessly extended to multi-class settings. As long as
the underlying classification algorithm can produce (multino-
mial) distributions over the label space: p = P(yi | Xi

o)
and q = P(yj | Xj

o, X
j
u), we can use any model divergence

discussed in Section 4.1.
There are several other possible extensions of the proposed

approach. First is the necessity to move beyond active learn-
ing; while standard methods acquire a label for each exam-
ple, in many situations where the goal is to understand why
an event happens (such as clinical studies), it is necessary to
obtain more tests/features. Also, given that the original model
is learned from a small set of features, the model will not be
necessarily generalizable. Second, it is possible that some
specific set of features are the most informative for specific
example. For instance, some subjects’ predictions will bene-
fit from some lab test while a different test is a better indicator
for someone else. Extending our framework to handle these
different types of examples/feature combinations is outside
the scope and is an interesting future direction.

5 Empirical Evaluation
We now present evaluation results on one standard UCI data
set (PIMA, [Smith et al., 1988]) and four real medical tasks
to demonstrate the efficacy of our approach. It must be men-
tioned clearly that while healthcare is one domain, the data
sets are varied: from online behavior to images to risk factors
to survey. The goal is to demonstrate the versatility of the
approach with real problems. It must also be noted that while
healthcare is considered in this work, the ideas are not limited
to this domain and any problem where a small set of data is
fully observed and the rest are partially observed can render
itself as a useful domain for the proposed approach.

1. Parkinson’s prediction from clinical study: The task
is to predict the occurrence of Parkinson’s disease from
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Figure 2: Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD and PIMA.
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Data set # Pos # Neg # Features # Examples
FO PO FO PO

PPMI 554 919 1 35 5 1174
ADNI 76 260 6 69 10 294

Rare Disease 87 174 6 63 10 198
PPD 38 115 8 33 6 147
PIMA 268 500 4 4 10 681

Table 1: Data set details. FO - Fully observed, PO - Partially ob-
served. # Pos is number of positive examples, # Neg is number of
negative examples, # Features (FO) is the number of features in the
fully observed feature set, # Features (PO) is number of features
in the partially observed feature set, # Examples (FO) is number
of examples in the fully observed example set, # Examples (PO) is
number of examples in the partially observed example set.

different modalities. We focus on a smaller set of fea-
tures, primarily motor and non-motor assessments re-
sulting in a set of 37 attributes including the class label.
The observed feature is the MoCA test result, while the
other 35 motor scores are treated as unobserved.

2. Alzheimer’s prediction from ADNI: We assume that
demographics are observed, while cognitive score (MM-
Score) and fMRI image features are unobserved. We use
the AAL Atlas (http://www.slicer.org.) to segment the
image into 108 Regions of Interest (RoIs), and for each
RoI, we derive their summary attributes: white matter,
cerebral spinal fluid, and gray matter intensities along
with regional variance, size and spread.
While the original data set has three classes:
Alzheimer’s (AD), Cognitively Normal (CN) and
Mildly Cognitively Impaired (MCI), we consider the bi-
nary task of predicting AD vs. the rest. The presence of
MCI subjects makes this particular task challenging, yet
interesting; this is because these subjects may or may
not end up having Alzheimer’s eventually. Identifying
the right set of subjects to target for feature elicitation
can considerably improve classifier performance.

3. Rare disease prediction from self-reported survey
data: The task is to predict if a subject has a rare dis-
ease [MacLeod et al., 2016]; by definition, a rare dis-
ease is hard to diagnose and affects less than 10% of
the world’s population. The data for this prediction task
arises from survey questionnaires and we assume that
demographic data are fully observed. Other survey an-
swers concerning technology use, disease information
and healthcare details are treated as unobserved.

4. Post-partum depression prediction from online ques-
tionnaire data: Recently, Natarajan et al. [2017] em-
ployed online questionnaires to predict PPD from demo-
graphics, social support, relevant medical history, child
birth issues and screening data. We assume that demo-
graphics are observed and are used to select subjects on
whom the rest of the data can be collected for learning.

We also test our algorithm on the well-studied PIMA Indi-
ans Diabetes data to demonstrate generality. Table 1 shows
the details of these domains; a common characteristic across
all domains is class imbalance where it is important that the
most informative subjects are added to the training set.

Evaluation Methodology: All data sets are partitioned

into 80% train and 20% test. Results are averaged over 10
runs with a fixed test set. At each active learning step, we
solicit 5 new data points until convergence. As mentioned
earlier, Friedman’s [2001] gradient-boosting was employed
as the underlying classifier with the same settings across all
methods and KL-divergence is our distance metric. We com-
pare three different evaluation metrics: recall (to measure the
clinically relevant sensitivity), F1-score, and geometric mean
of sensitivity and specificity (gmean), that provide a reason-
ably robust evaluation in the presence of class imbalance. We
considered AUCROC but as pointed out by Davis and Goad-
rich [2006], for severe class imbalance data sets, this is not
ideal and hence we settled on our metrics.

Baselines: In addition to the proposed AFE approach,
we considered three other baselines: (1) Randomly choos-
ing points to query which can potentially yield strong results
when closer to convergence. This method is denoted as RND;
(2) We also used uncertainty sampling on partially observed
example set using only the fully observed features. The top
5 instances that have the highest entropy were then queried
for unobserved features and added to the training set. This
is denoted as USObs; (3) In the third approach, we imputed
all missing features using mode as the feature value; uncer-
tainty sampling is then employed by computing the entropy
on the full feature set, following which the top 5 values were
chosen for querying. This baseline is denoted as USAll.
Other active-learning baselines can be considered (such as
min-max), but these generally tend to be prohibitively expen-
sive in large feature spaces.
Results: We aim to answer the following questions:

Q1: Does AFE perform better than choosing the examples ran-
domly for active learning?

Q2: Does AFE outperform other active baselines that employ
entropy to choose examples?

Q3: Does AFE robustly handle imbalanced data?
Q4: Can AFE be useful for a semi-supervised formalism?
Q5: Is AFE faithful to the motivation and is the proposed so-

lution effective in modeling clinical data?
The results across the five domains and all the three metrics

are presented in Figure 2. It can be observed that AFE out-
performs RND on all domains across all metrics, specifically
in recall in the first few iterations in 4 of the 5 domains where
the effect of choosing the most informative set of examples
can have the maximal impact on the classifier performance.
As expected, the variance in recall due to random selection
of examples is high. This can be seen in the left column,
where the performance does not increase steadily in all do-
mains. Similar observations can be made for the geometric
mean. This allows us to answer Q1 affirmatively.

Observe that as we add more informative examples, the
performance improves significantly for the proposed AFE ap-
proach over the rest of the classifiers. This demonstrates that
the gains are not necessarily at the beginning alone. Adding
more useful examples can construct a more robust training set
that can lead the classifier to a superior performance. Note
that one of the reasons that we are averaging over 10 runs is
to alleviate/minimize the effect of sampling bias in the con-
struction of training set (particularly in the initial samples).
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As expected, the variance is initially on the higher side indi-
cating the effect of sampling bias on smaller training sets but
it decreases as more examples are added. However, this ef-
fect is minimal for AFE that chooses good training examples
compared to other methods. Understanding the effect of the
initial choice of samples on the performance of the classifier
is itself an interesting future research direction.

Similar results can be observed when comparing AFE to
USObs and USAll in that AFE consistently outperforms the
two active learning baselines across all the domains in all the
metrics. In general, the use of only observed features still ap-
pears better than using imputation (mode) to fill in the miss-
ing values and then use them for entropy. We speculate that
the use of better imputation techniques may improve the per-
formance. However, the difference between AFE and USAll
in recall and gmean across all domains is statistically signifi-
cant in several iterations. This suggests that other imputation
techniques may marginally improve the performance, but it
appears that the use of imputation may not influence the final
performance and a good selection of examples is necessary.
This strongly answers Q2 affirmatively.

Another natural question to ask is how the variance in per-
formance of the different methods tend to behave across all
data sets? It was generally observed that the AFE had the
smallest variance both in the selection of the first few exam-
ples and in the last few iterations of the algorithms. The vari-
ance of AFE across all data sets was at least half the variance
of the Random baseline (RND) on an average in the first few
iterations and as low as 10% of random selection’s variance
in later iterations. This is also consistent across all metrics.
When compared to USObs and USAll, in general, the aver-
age variance of AFE was lower across all metrics and all data
sets. While AFE’s variance is significantly better than the
random selection, the differences to the uncertainty methods,
while better, are not necessarily significant.

As shown in Table 1, all domains are imbalanced. The
class prior ratio is particularly skewed in the case of ADNI
and PPD data sets. In these two domains, it can be seen
clearly that the proposed approach achieves a recall of over
0.8 after just a few early iterations. This demonstrates that
AFE can identify the most important examples that allow
for increasing the clinically relevant sensitivity effectively en-
abling us to answer Q3 positively as well. Our results in all
domains show that this method achieves high recall without
significantly sacrificing precision making it an ideal choice
for semi-supervised imbalanced data sets (Q4). The intuition
here is that because AFE obtains high recall across all data
sets, in domains where many examples are labeled, it pro-
vides an opportunity for selecting the right sets of examples
that can be labeled or extended with more features. Although
AFE is not semi-supervised, it provides an opportunity for de-
veloping methods that can learn from partially labeled data.

Our original motivation was to identify the set of subjects
on whom to perform specific lab tests, given some basic in-
formation about the potential recruits. Our algorithm does
not use any extra information about the potential recruits be-
yond the observed features and their labels (whether they are
cases or controls) for identifying the best set of subjects to
elicit more information about. Secondly, we do not make any

assumptions about the underlying distributions of the data or
the classifier employed while learning. Finally, we make ef-
fective use of the fully observed data (from possibly a related
study) by using them to compute the distance with the po-
tential cohorts. This clearly demonstrates that AFE is indeed
faithful to the original goals and the results clearly show the
efficacy of AFE thus answering (Q5) in the affirmative.

6 Conclusion
We considered the problem of eliciting new sets of features
based on a small amount of fully observed data. We address
this problem specifically in the context of medical domains
with severe class imbalance. Our proposed active feature elic-
itation approach computes the similarity between the poten-
tially interesting examples with the fully observed examples
and chooses the most significantly different examples to elicit
the feature information. These are then added to the fully
observed set and the process continues until convergence.
Experiments on four real high-impact medical tasks clearly
demonstrate the effectiveness and efficiency of the proposed
approach. Our approach has a few salient features – it is do-
main, model and distance, i.e., representation agnostic in that
any reasonable classifier and a compatible distance metric for
a specific domain can be employed in a plug and play manner.

We currently elicit all missing features for every chosen
example at every iteration. One could extend this work by
identifying sets of features that are most informative for ev-
ery example (i.e., the most relevant lab test for each subject)
along the lines of the work of Krishnapuram et al. [2005] that
addressed a similar problem using multi-view, co-training
setting which could allow for the realization of the vision
of personalized medicine. Another interesting future re-
search direction could be to identify groups of examples (sub-
populations) that would provide the most information at each
iteration. Extending the work to handle fully relational/graph
data is another possible direction. Finally, rigorous evalua-
tion of the approach on more clinical data sets can yield more
interesting insights into the proposed approach.
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