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ABSTRACT: An important challenge in translational
bioinformatics is to understand how genetic variation
gives rise to molecular changes at the protein level that
can precipitate both monogenic and complex disease. To
this end, we compiled datasets of human disease-
associated amino acid substitutions (AAS) in the
contexts of inherited monogenic disease, complex dis-
ease, functional polymorphisms with no known disease
association, and somatic mutations in cancer, and
compared them with respect to predicted functional sites
in proteins. Using the sequence homology-based tool
SIFT to estimate the proportion of deleterious AAS in
each dataset, only complex disease AAS were found to be
indistinguishable from neutral polymorphic AAS. Inves-
tigation of monogenic disease AAS predicted to be
nondeleterious by SIFT were characterized by a signifi-
cant enrichment for inherited AAS within solvent
accessible residues, regions of intrinsic protein disorder,
and an association with the loss or gain of various
posttranslational modifications. Sites of structural and/or
functional interest were therefore surmised to constitute
useful additional features with which to identify the
molecular disruptions caused by deleterious AAS. A
range of bioinformatic tools, designed to predict structur-
al and functional sites in protein sequences, were then
employed to demonstrate that intrinsic biases exist in
terms of the distribution of different types of human AAS
with respect to specific structural, functional and
pathological features. Our Web tool, designed to potenti-
ate the functional profiling of novel AAS, has been made
available at http://mutdb.org/profile/. Hum Mutat
31:335–346, 2010. & 2010 Wiley-Liss, Inc.

KEY WORDS: amino acid substitutions; AAS; missense
mutations; translational bioinformatics; disease mechan-
ism; association study; SNP

Introduction

Understanding the molecular consequences of the mutations
that cause human genetic disease remains an important research
challenge [Karchin, 2009; Mooney, 2005; Ng and Henikoff, 2006;
Steward et al., 2003]. There are now several resources available
that employ annotations describing biochemical features that are
potentially useful for identifying function-altering and/or disease-
associated amino acid substitutions (AAS), including SNPs3D
[Yue et al., 2006], the SNP Function Portal [Wang et al., 2006],
PolyDoms [Jegga et al., 2007], LS-SNP [Karchin et al., 2005a], and
MutDB [Singh et al., 2007], among others. However, these
resources typically use only sequence and structural features, such
as evolutionary conservation in the vicinity of the site of
mutation, and make no attempt to quantify the relative
contributions made by specific molecular functions (features)
that have either been introduced or disrupted by the mutations in
question. Additionally, various tools have been developed to
predict dysfunctional and/or disease-causing AAS. These include
SIFT [Ng and Henikoff, 2003], PolyPhen [Ramensky et al., 2002],
PMUT [Ferrer-Costa et al., 2005], PANTHER [Mi et al., 2007], LS-
SNP [Karchin et al., 2005a], RCOL profiles [Terp et al., 2002],
SNAP [Bromberg and Rost, 2007], and the SVM at SNPs3D [Yue
et al., 2006], among others. All these tools operate using
approximately the same principles, that is, they are all supervised
and employ features based on protein sequence, sequence
conservation, and/or protein structure. For example, approaches
to classification of mutation sites have used linear regression
[Chasman and Adams, 2001], neural networks [Bromberg and
Rost, 2007], support vector machines [Krishnan and Westhead,
2003], and decision trees [Karchin et al., 2005a; Saunders and
Baker, 2002]. These tools differ, however, in terms of their choice
of training data, which can be datasets of human disease alleles as
in the case of PolyPhen [Ramensky et al., 2002], evolutionary
mutations that differentiate closely related species [Arbiza et al.,
2006; Capriotti et al., 2008b], or experimentally induced
mutations such as those originally studied with SIFT [Ng and
Henikoff, 2003]. Other groups have used additional novel features
such as physicochemical properties [Jiang et al., 2006], structural
information [Tavtigian et al., 2008], information theory [Karchin
et al., 2005b], and Gene Ontology terms [Calabrese et al., 2009].
These features have served to improve predictive accuracy. Despite
differences in dataset construction and statistical inference
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models, the tools listed above yield remarkably similar predictions,
an unsurprising finding because they were designed with a similar
goal in mind: viz. to predict functional versus nonfunctional
mutations or disease versus nondisease mutations.

However, because the features to be examined are nearly all
based on protein sequence and structure, the currently available
tools are inherently incapable of shedding light on the molecular
causes of disease beyond simple disruptions of protein structure or
sequence conservation. We have therefore set out to extend this
area of inquiry by attempting to quantify the relative contributions
made by different protein features when disrupted by mutation. To
this end, we have evaluated the presence (and mutation-induced
disruption) of a range of structural and functional features
predicted by several different bioinformatics tools. Our approach
was conceptually straightforward in that we utilized statistical
inference methods to predict amino acid functions and then
estimated how these predictions were altered by AAS.

Machine-learning methods that predict structural and functional
sites in amino acid sequences are well established and facilitate the
prediction of secondary structure [Dor and Zhou, 2005], solvent
accessibility [Dor and Zhou, 2005], posttranslational modification
[Iakoucheva et al., 2004] and enzyme catalysis [Youn et al., 2007].
These tools typically employ both sequence- and structure-based
features, and have been trained on datasets of well characterized
functional sites. For example, residues involved in enzyme catalysis
can be predicted using machine-learning methods trained on a
database of catalytic sites [Porter et al., 2004]. Here, based on our
previous findings that this approach is useful [Radivojac et al.,
2008], we have assessed the relative contributions of a range of
functional site features to protein disruption in several disease-
associated mutation datasets as well as a dataset of mutations which
(in all likelihood) lack functional significance. We used several
methods to predict structural features, posttranslational modifica-
tion, and catalytic residues in the analysis of five test datasets
containing different types of human amino acid substitutions: (1)
mutations causing inherited disease, (2) somatic cancer-associated
mutations identified in breast and colorectal tumors, (3) somatic
cancer-associated amino acid substitutions identified in protein
kinase genes from diverse human tumors, (4) functional poly-
morphisms (with no known disease association), (5) putatively
functional polymorphisms associated with human inherited
disease, and a control dataset of putatively neutral polymorphisms.
The results of our study indicate a significant difference between
disease and nondisease associated variants in terms of both the
structural and functional features disrupted.

Data Sources and Methods

Datasets

Five distinct sets of amino acid substitutions (AAS) with
different disease annotations were collected for the purposes of
this analysis. First, heritable AAS from the Human Gene Mutation
Database (HGMD, August 2007; http://www.hgmd.org) [Stenson
et al., 2009] were grouped into three different categories:

1. Germline disease-causing amino acid substitutions underlying
human inherited disease (29,485 AAS from 1,485 different
human nuclear genes), which will henceforth be referred to as
the ‘‘Inherited disease’’ dataset.

2. Disease-associated polymorphisms of putative functional signifi-
cance (761 AAS from 496 different human nuclear genes),

henceforth referred to as the ‘‘Disease-associated polymorphism’’
dataset). To be included in this category, variants had to have
occurred at polymorphic frequency (i.e., a minor allele frequency
of 41% in the population under study). In addition, not only
must a statistically significant (po0.05) association between the
polymorphism and a clinical phenotype have been reported, but
also other information (e.g., in vitro or in vivo expression/
functional data, replicated association studies, epidemiological
information, evolutionary conservation data, etc.) must also have
been presented to support the contention that the polymorphism
in question was of bona fide functional significance.

3. Polymorphisms shown experimentally (e.g., by in vitro reporter
gene expression assays) to be of functional significance albeit
with no known disease association (893 AAS from 177
different human nuclear genes; henceforth referred to as the
‘‘Functional polymorphism’’ dataset). All AAS from HGMD
with reported consequences for the mRNA splicing phenotype
were excluded from this analysis.

Second, two additional datasets of somatic cancer-associated
AAS were obtained from recent cancer resequencing studies
[Greenman et al., 2007; Sjöblom et al., 2006]. The first of these
datasets comprised those AAS identified in exons derived from
20,857 transcripts from 11 breast and colorectal tumors. This
breast and colorectal cancer dataset (henceforth referred to as the
‘‘Cancer’’ dataset) represents 1,099 somatic substitutions from 847
different human genes [Sjöblom et al., 2006]. The second dataset
of cancer-associated AAS comprises 695 somatic substitutions
identified in the exons of 312 protein kinase genes from 210
diverse human tumors, henceforth referred to as the ‘‘Kinase’’
dataset [Greenman et al., 2007].

Finally, a set of AAS (annotated as ‘‘polymorphism’’), down-
loaded from the UniProtKB/Swiss-Prot database [Boeckmann
et al., 2003] (ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/
docs/humsavar.txt], comprised the neutral AAS used in this study.
This dataset represents one of the most extensive sources of
putatively neutral polymorphism data available, but is never-
theless unlikely to represent a truly neutral dataset since at least
some of the component AAS could yet prove to have an
association with disease [Care et al., 2007]. To further improve
the neutral credentials of this dataset, any AAS that were
concurrently annotated in HGMD as being disease-causing or of
potential functional significance were removed (N.B. 1,589 AAS
were excluded in this way). In addition, because rare missense
alleles are inherently more likely to be deleterious than common
missense alleles [Kryukov et al., 2007], only those AAS in the
UniProtKB/Swiss-Prot dataset that occurred at polymorphic
frequencies (41% in a population of European descent; Hap-
Map-CEU) were retained. This putatively neutral set of AAS
therefore contained 8,509 human polymorphisms (taken from a
total of 4,864 different genes) and shall henceforth be known as
the ‘‘Swiss-Prot neutral’’ dataset. Once again, it should be noted
that we cannot wholly exclude the possibility that a subset of these
supposedly neutral polymorphisms could be of functional
importance or that they might have a role either in complex
disease or as modifiers of disease susceptibility. Table 1 sum-
marizes the above mutation datasets.

Inherited Disease-Causing Mutations in Oncogenes and
Tumor Suppressor (TS) Genes

Using Gene Ontology (GO) terms (http://www.geneontology.
org), lists of inherited disease genes matching the GO terms for
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oncogene (GO:0008151) or ‘‘tumor suppressor’’ and ‘‘antionco-
gene’’ (GO:0045786) were compiled. The first subset of AAS in
tumor suppressor genes comprised 1,227 AAS from 33 genes. The
second subset of AAS in oncogenes contained 288 AAS from
26 genes.

Profiling Tools

The tools employed in this analysis were sequence-based and
included measures of structure, function, and posttranslational
modification. The tools chosen were of sufficiently high accuracy
to be useful in testing biological hypotheses. Secondary structure
(80% accuracy) and solvent accessibility (79% accuracy) were
predicted using SPINE [Dor and Zhou, 2005]. Protein structure
stability was assessed using I-mutant [Capriotti et al., 2008a] (77%
accuracy). Regions of intrinsic protein disorder were predicted
using VSL2B predictor [Peng et al., 2006] (485% accuracy). Short
structured or loosely structured helical regions within long
disordered regions (so-called Molecular Recognition Fragments,
MoRFs) were identified using a predictor of calmodulin-binding
targets, CaMBTP [Radivojac et al., 2006] (81% accuracy).
Posttranslational modification sites were identified using DisPhos
to identify phosphorylation sites [Iakoucheva et al., 2004] (75%
accuracy claimed for serine, threonine and tyrosine residues),
OGlycoPred to identify O-linked glycosylation sites (77% accuracy
claimed for serine, threonine, proline, and lysine; Radivojac,
unpublished work), UbPred to predict sites of ubiquitination
[Radivojac et al., 2009] (72% accuracy claimed) and MethylPred to
predict sites of protein methylation [Daily et al., 2005] (71%
accuracy claimed for arginine and lysine residues). Catalytic sites
were ascertained with a catalytic residue predictor termed CRP
[Youn et al., 2007] (65% accuracy claimed over all residues).
Finally, SIFT [Ng and Henikoff, 2003] was used to predict whether
or not the AAS were deleterious. The tools described above were
employed to interrogate both the wild-type and the mutant
sequences; any change in prediction scores between the wild-type
and mutant sequences was recorded. Conservative cutoffs
were employed to minimize the false discovery rates. For the
tools that generated predictions as probabilities (i.e., disorder,
calmodulin-binding sites, phosphorylation, O-linked glycosyla-
tion, ubiquitination, methylation, and catalytic residues), only
‘‘high confidence sites’’ were considered, defined here as sites with
a false positive prediction rate of �0.1 (estimated during model
evaluation).

Evaluation of In Silico Predictions

The large size of the combined datasets (41,442 AAS in total)
from this study makes it impractical for each individual AAS to be

functionally investigated in vitro. However, it should be possible,
at least in principle, to validate a subset of our in silico predictions
against a series of amino acid residues of known structural/
functional importance. To this end, a test sample of 6,073 AAS
(from 1,209 distinct proteins) was selected from the total (41,442)
AAS under study. These AAS represented all AAS from the
proteins for which functional data on stability, secondary
structure, solvent accessibility, disordered regions, calmodulin-
binding sites, catalytic site residues, and posttranslational
modification (methylation, phosphorylation, O-linked glycosyla-
tion, and ubiquitination) could be obtained. This test sample of
AAS was then assessed to establish whether the original structural/
functional predictions were true positives (TP), false positives
(FP), true negatives (TN), or false negatives (FN).

The in vitro data on the 6,073 AAS test sample, required for
validating our original in silico predictions, were obtained from
publically available databases augmented by searches of the
scientific literature. In vitro data on the consequences of AASs
(in 16 human proteins) for protein stability were obtained from
Allali-Hassani et al. [2009]. The program DSSP [Kabsch and
Sander, 1983] was used to extract secondary structure and solvent-
accessibility information from 12 human proteins with known
X-ray crystallographic structures. The locations of disordered
regions within 61 human proteins were obtained from DisProt v.
4.9 [Sickmeier et al., 2007]. The locations of known calmodulin-
binding sites in 10 human proteins were obtained from the
Calmodulin Target Database [Yap et al., 2000]. The locations of
catalytic site residues in 65 human proteins were obtained from
the Catalytic Site Atlas (v. 2.2.11) [Porter et al., 2004]. Finally, the
UniProt Knowledgebase (release 15.7) and Human Protein
Reference database (HPRD) [Keshava Prasad et al., 2009] together
yielded data on posttranslational modifications for 1,140 human
proteins.

Disease Annotations

For the Inherited disease AAS, the disease terms recorded in the
original publications were mapped to the Unified Medical
Language System (UMLS) using a simple word permutation-based
method developed and tested by Shah et al. [2006, 2007]. The
disease names were mapped to UMLS concept identifiers (CUI)
using the open source UMLS-Query module [Shah and Musen,
2008]. UMLS-Query provides a function called maptoId, which
accepts a phrase (up to 10 words) and maps it to a CUI (and can be
restricted by a vocabulary if so desired). The function first looks for
an exact match for the phrase; if none is found, it will generate all
possible permutations and attempt an exact match for each one.
The function also performs right truncation to look for partial

Table 1. Summary of Mutation Datasets (Comprising Exclusively Human Missense Mutations) Used in the Analysis

Name of dataset Description

Number of amino acid

substitutions (AAS)

Number of distinct

genes

Inherited disease Heritable disease-causing mutations from HGMD 29,485 1,485

Disease-associated

polymorphisms

Heritable disease-associated polymorphisms from HGMD, of putative functional

significance

761 496

Functional

polymorphisms

Heritable polymorphisms of functional significance from HGMD but with (as yet) no

reported disease phenotype

893 177

Kinase Somatic mutations in kinase genes identified in an analysis of 4200 individual tumors 695 312

Cancer Somatic mutations from breast and colorectal cancer tumors 1,099 847

Swiss-Prot neutral Validated polymorphic AAS from Swiss-Prot annotated as ‘‘polymorphism’’ 8,509 4,864

See text for full descriptions and sources of datasets. HGMD 5 Human Gene Mutation Database.
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matches. For example, calling the function to find a CUI belonging
to the SNOMED-CT for ‘‘intraductal carcinoma of prostate’’ will
match concepts ‘‘intraductal’’ (C0007124) as well as ‘‘carcinoma of
prostate’’ (C0600139). Permutation generation along with right
truncation is conceptually similar to using skip n-grams for
matching concepts. Skip bigrams have been shown to perform at or
above state-of-the-art measures with less complexity, for the
purpose of identifying matching concepts [Reeve and Han, 2007].
Some 23,594 (�80% of the total) disease terms relating to the
Inherited disease AAS were mapped to the UMLS with high
confidence. The hierarchy of disease terms from the SNOMED-CT
ontology was used to explore the relationships between the disease
states and the underlying molecular phenotypes.

Enrichment Analysis

Using Swiss-Prot neutral as a control dataset, we compared the
distribution of the structural and functional sites for each dataset
(Inherited disease, Disease-associated polymorphism, Functional
polymorphism, Kinase, and Cancer) against the Swiss-Prot neutral
distribution. To allow for multiple testing, the significance of any
difference noted was then assessed by means of Fisher’s exact test
with Bonferroni correction. Only p values o0.00172 (0.05/29)
were considered significant.

Results and Discussion

In Silico Profiling of Amino Acid Substitutions of Potential
Pathological Importance

Identifying the biological functions disrupted by specific amino
acid substitutions (AAS) is an important challenge that has
relevance both for understanding the underlying molecular
mechanism(s) of a given disease and for identifying functional
polymorphic sites that may impact upon both complex disease
and disease susceptibility. The enrichment of AAS at residues of
structural or functional importance in each dataset was compared
and contrasted, as depicted in Figures 1 and 2.

Prediction of Deleterious Amino Acid Substitutions

SIFT was used to predict the proportion of deleterious AAS in
each missense mutation dataset. The Inherited disease, Functional
polymorphism, Cancer, and Kinase datasets were all characterized
by a significant enrichment in the proportion of substitutions
predicted to be deleterious when compared to the putatively
neutral Swiss-Prot neutral dataset (see Fig. 1; SIFT). For the
Inherited disease dataset, �76% of AAS were predicted to be
deleterious (average SIFT score 0.072), a value very similar to the
proportion (69%) previously predicted to be deleterious using
disease-causing AAS from UniProtKB/Swiss-Prot [Ng and Henik-
off, 2003]. For the Functional polymorphisms, 59% of AAS were
predicted to be deleterious using SIFT (average SIFT score 0.162).

By contrast, SIFT predicted that only �25% of Disease-
associated polymorphisms were deleterious (average SIFT score
0.38), a proportion almost identical to the 22% noted for the
Swiss-Prot neutral control dataset. Because the 720% accuracy
range of the SIFT method [Ng and Henikoff, 2003] renders
reliable discrimination of these datasets impossible, we must
conclude that there is no evidence for a significant difference
between the two datasets. There are two plausible explanations to
account for the marked similarity between the Swiss-Prot neutral
and Disease-associated polymorphism datasets in terms of their

SIFT scores. First, the contribution of disease-associated poly-
morphisms to disease may well be additive via the net effect of
multiple subtle modifications to function [Schork et al., 2009]. In
agreement with this assertion, we found that the Disease-associated
polymorphisms were located mainly in exposed residues (55.2%)
or within disordered regions (19.2%). Such residues tend to be
less highly conserved evolutionarily than those which are buried
within the protein structure. Hence, polymorphic variants in these
locations may exert a subtle influence on protein function rather
than a drastic one. Because SIFT employs evolutionary conserva-
tion as a proxy to predict function, it may be beneficial to retrain
the method with these AAS when using SIFT to make predictions
regarding polymorphic AAS located within exposed residues or
disordered regions. For example, disordered protein regions have
been shown to exhibit different rates of evolution [Brown et al.,
2002] and different amino acid substitution patterns [Radivojac
et al., 2002] than ordered regions. The alternative possibility is
that a large proportion of disease-associated polymorphisms
(considered by the original authors reporting them to be directly
causative of the disease association) are not in reality the variants
directly responsible for the disease association. Instead, they may
simply be closely linked to (and/or in strong linkage disequili-
brium with) those additional, and hitherto undetected, functional
variants actually responsible for the observed disease associations.

Under the assumption that all the AAS in the Inherited disease
dataset do indeed represent causative variants underlying the
various genetic diseases as claimed by the original reporting
authors, it can be seen that only 76% of them are predicted by
SIFT to disrupt protein function. If we break down the SIFT
predictions on a gene-wise basis for inherited disease, we see
that SIFT prediction accuracy (i.e., the proportion of inherited
disease-causing AAS predicted to disrupt protein function) ranged
from 31–100% (Supp. Tables S1 and S2). Analyzing a subset of
6,457 Inherited disease AAS that SIFT had predicted not to be of
functional significance (i.e., ‘‘tolerant,’’ denoting tolerated),
revealed that �50% (3,210 AAS) were located in surface exposed
regions, representing a significant enrichment over the Inherited
disease dataset as a whole (120%; p 5 4.15 � 10�199, Fisher’s exact
test). The predicted ‘‘tolerant’’ Inherited disease subset was also
significantly depleted, compared to the entire Inherited Disease
dataset, with respect to AAS giving rise to a decrease in protein
stability of Z1 kcal/mol (�5.4%; p 5 2.14 � 10—7, Fisher’s exact
test) and enriched for AAS located in disordered regions (11.5%;
p 5 3.2 � 10�4, Fisher’s exact test). The ‘‘tolerant’’ Inherited disease
subset also exhibited a significant enrichment for AAS predicted
to result in the loss of phosphorylation sites (10.4%;
p 5 2.55 � 10�5, Fisher’s exact test) and AAS giving rise to a gain
of ubiquitination sites (10.3%; p 5 1.06 � 10�3, Fisher’s exact test).

The ‘‘tolerant’’ Inherited disease subset exhibited similarities to
both the Disease-associated polymorphism and Cancer datasets, for
example, in terms of the distribution of mutations in both surface-
exposed residues (450%) and within disordered regions (�20%).
It may nevertheless be important, when evaluating AAS in exposed
or disordered regions, to attribute a lower confidence level to the
‘‘tolerant’’ label assigned by SIFT; this may hold true, especially
when evaluating polymorphic AAS, which by their very nature tend
to be located in evolutionarily less highly conserved regions.

Evaluation of In Silico Predictions

The 6,073 AAS of the test sample represented all AAS from the
proteins for which functional data on stability, secondary
structure, solvent accessibility, disordered regions, calmodulin-
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binding sites, catalytic site residues, and posttranslational mod-
ification (methylation, phosphorylation, O-linked glycosylation,
and ubiquitination) could be obtained. Nine examples of these
AAS, representing nine of the features being considered here, and
known to be associated with a human inherited disease, are listed
in Supp. Table S3.

The standard benchmarking statistics used to evaluate the
structural/functional predictions made on the test sample of 6,073
AAS were the false positive rate (FPR); sensitivity; specificity;
Matthews Correlation Coefficient (MCC) [Matthews, 1975] and the
accuracy (the mean of sensitivity and specificity scores). The MCC
was employed because it represents one of the best available

Figure 2. Relative enrichment of functional sites by comparison with a dataset of putatively neutral polymorphisms (Swiss-Prot neutral). For
each feature, the bars represent the relative proportion ([Dataset�Swiss-Prot neutral]/[Dataset 1 Swiss-Prot neutral]) of entries in the dataset
associated with that feature compared to the Swiss-Prot neutral polymorphism dataset. �Indicates significant p-value with Fisher’s exact test
after Bonferroni correction for multiple comparisons (po1.72 � 10�3).

Figure 1. Relative enrichment of structural amino acid residues by comparison with the dataset of putatively neutral polymorphism (Swiss-
Prot neutral). For each feature, the bars represent the relative proportion ([Dataset�Swiss-Prot neutral]/[Dataset 1 Swiss-Prot neutral]) of
entries in the dataset associated with that feature compared to the Swiss-Prot neutral polymorphism dataset. For SIFT, the bars represent the
proportion of entries in each dataset that are predicted to be deleterious. �Indicates a significant p-value with Fisher’s exact test after
Bonferroni correction for multiple comparisons (po1.72 � 10�3).
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measures of prediction quality. It returns a value between �1 and
11; a coefficient of�1 represents the worst possible prediction, 0 a
random prediction, and 11 a perfect prediction. The validation of
the original in silico predictions for the test sample of 6,073 AAS is
summarized in Supp. Table S4. MCC values for the various
predictors were in the range of 0.125–0.701. Our combined
algorithm would therefore appear to have performed best on the
features; secondary structure, solvent accessibility, calmodulin-
binding, O-linked glycosylation, and ubiquitination (MCC 4
0.50). The in silico predictions for phosphorylation sites had by far
the lowest MCC score (0.125), but it should be appreciated that even
in quite well-characterized proteins, it is highly likely that not all
bona fide phosphorylation sites will have been identified experi-
mentally. In summary, using our combined algorithm on our test
sample of 6,073 AAS, we were able to achieve a sensitivity of 0.62 and
a specificity of 0.88 with respect to identifying sites of known
structural/functional importance. Despite the relatively small size of
the test sample, this validation serves to confirm that our original in
silico predictions are, at the very least, of sufficient quality for the
generation and testing of biological hypotheses. Furthermore,
because virtually all the prediction models we employed were
trained on data derived from a number of different species, the
chance of ‘‘overfitting’’ to human data is minimized.

Structural Properties

The structural properties of the sites altered by amino acid
substitution in the different datasets are also summarized in
Figure 1. Buried residues located within the core of a protein have
long been known to be important for protein folding and stability
[Sandberg et al., 1995], whereas residues located at or close to the
surface of a protein are more likely to be involved in protein-
protein interactions [Ye et al., 2006]. When solvent accessibility
was considered, a significant enrichment of AAS at buried sites
was noted for both the Inherited disease and Functional
polymorphism datasets: 70% (po2.2 � 10�16; Fisher’s exact test)
and 58% (po2.2 � 10�16; Fisher’s exact test) respectively, com-
pared to 41% of Swiss-Prot neutral (Fig. 1, solvent accessibility,
‘‘buried’’). By contrast, the Kinase (solvent accessibility, 43% AAS
buried), Cancer (solvent accessibility, 43% AAS buried), and
Disease-associated polymorphism datasets (solvent accessibility,
44% AAS buried) were indistinguishable from the Swiss-Prot
neutral dataset in terms of their solvent accessibility, indicating
that the pathogenic effects of their AAS may not be biased toward
the disruption of intrinsic structural properties in the same way
that Inherited Disease and Functional polymorphisms are.

Because our prediction algorithms are sequence-based, we can
readily evaluate (without structural modeling) changes in prediction
for specific AAS by running the bioinformatics tools on both the
wild-type and mutant sequences. It should be noted that large
predicted structural changes are based primarily upon local sequence
features and do not take the entire protein sequence into account.
However, although these features may not indicate actual mutation-
induced conformational changes (e.g., the conversion of an alpha-
helix into a beta-sheet), by performing this experiment we are testing
whether these features represent good indicators of a disruptive
mutation. To test whether these findings were significant by
comparison with the putatively neutral AAS, we calculated the
enrichment (or depletion) with respect to the Swiss-Prot neutral
dataset, determining significance using Fisher’s exact test with a
Bonferroni correction. When we examined the change in protein
stability consequent to a given amino acid substitution, we observed
a significant enrichment for AAS that give rise to a decrease in

stability of Z1 kcal/mol but only for the Inherited disease dataset (1
9.7%; p 5 3.9 � 10�24; Fisher’s exact test). In terms of the change of
predicted solvent accessibility due to amino acid substitution
(Exposed 4 Buried and Buried 4 Exposed; Fig. 3), only the Cancer
and Kinase datasets exhibited a significant enrichment for AAS
predicted to be located at surface exposed residues in the wild-type
protein but buried as a consequence of the amino acid substitution
(Exposed 4 Buried; Cancer 5 12.9%; p 5 1.3 � 10�3; Kinase 5

13.9%; p 5 6.2 � 10–4; Fisher’s exact test; Fig. 3). Such Exposed 4
Buried transitions are likely to exert a dramatic effect upon protein
function.

When secondary structure was explored, the Inherited disease
and Functional polymorphism datasets were both found to be
significantly enriched in AAS within alpha-helical regions
(Inherited disease 5 14.3%; p 5 8.9 � 10�14; Functional polymorph-
ism 5 119.2%; p 5 1.7 � 10�29; Fisher’s exact test) but significantly
reduced in AAS located in coiled regions; compared to the Swiss-
Prot neutral dataset (Inherited disease 5�11.2%; p 5 6.4 � 10�73;
Functional polymorphism 5�17.3%; p 5 9.8 � 10�23; Fisher’s exact
test; Fig. 1). The increased number of AAS in the alpha-helical
regions for both the Inherited disease and Functional polymorphism
datasets may be attributed to the fact that helices constitute one of
the most common recognition motifs in proteins [Che et al.,
2007]. It follows that modifying these regions may alter the
biological activities of the protein involved. An example of a
protein with an enrichment of disease-causing AAS within alpha-
helical regions is keratin 12 (KRT12), in which AAS often only
occur in the highly conserved alpha-helical regions essential for
keratin filament assembly (alpha-helix-initiation motif of rod
domain 1A or alpha-helix-termination motif of rod domain 2B)
[Nishida et al., 1997]. The depletion of AAS within coiled regions
for Inherited disease mutations and Functional polymorphisms may
be related to the lack of a specific three dimensional structure
(barring a few exceptions) in coiled regions.

The Inherited disease dataset was also significantly enriched for
AAS in beta-sheet regions (16.8%; p 5 1.62 � 10�49, Fisher’s exact
test) and for changes of predicted secondary structure due to amino
acid substitution from a beta-sheet region to a coiled or alpha-helical
region (Sheet 4 Helix,Coil; 10.9%; p 5 3.4 � 10�7; Fisher’s exact test;
Fig. 3). The conversion of a beta-sheet into an alpha-helical region
may lead to new and deleterious interactions in the disease state
because helical regions are the most common recognition motifs of
proteins [Che et al., 2007]. The strong bias of Inherited disease
mutations and (especially) Functional polymorphisms toward alpha-
helical regions suggests that secondary structure may represent a
particularly informative feature for machine learning and the
computational classification of deleterious AAS.

Role of Intrinsically Disordered Proteins in Both Complex
and Somatic Disease

Intrinsically disordered (ID) protein regions lack a unique
3D structure and exist in a dynamic ensemble of different
conformations [Dunker et al., 2001]. Their functional roles are
well documented, and they tend to be enriched in regulation and
signaling via protein–protein and protein–nucleic acid interac-
tions [Dyson and Wright, 2005; Radivojac et al., 2007]. The
number of AAS from the Inherited disease (3034 AAS; �17.83%;
p 5 2.2 � 10�16; Fisher’s exact test), Disease-associated polymorph-
ism (146 AAS; �8.89%; p 5 6.2 � 10�8; Fisher’s exact test),
Functional polymorphism (58 AAS; �21.63%; p 5 8.83 � 10�56;
Fisher’s exact test) and Kinase (120 AAS; �10.86%; p 5

1.44 � 10�10; Fisher’s exact test) datasets occurring within ID
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Figure 3. Relative enrichment of changes at structural amino acid sites brought about by amino acid substitution. For each mutation, if the
prediction method altered its prediction in a given context upon substitution of the wild-type residue, then the nature of that alteration is
indicated. Enrichment was then compared with a dataset of putatively neutral polymorphisms (Swiss-Prot neutral). �Indicates significant
p-value with Fisher’s exact test after Bonferroni correction for multiple comparisons (po1.72 � 10�3).

Figure 4. Relative enrichment of change at functional amino acid sites brought about by amino acid substitution. For each mutation, if the
prediction method altered its prediction in a given context upon substitution of the wild-type residue, then the nature of that alteration is
specified. �Indicates significant p-value using Fisher’s exact test after Bonferroni correction for multiple comparisons (po1.72 � 10�3).
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regions was significantly reduced by comparison with the Swiss-
Prot neutral dataset (Fig. 1). Although ID regions were
significantly depleted in the vicinity of Disease-associated
polymorphisms, AAS within ID regions still account for �19%
of this dataset, compared to 10% of the Inherited Disease dataset.

Disease-associated polymorphisms in ID regions may play an
additive role in complex disease (e.g., p.G460W [ADD1; MIM]
102680], which is associated with hypertension) [Cusi et al., 1997] or
may in some cases act as disease modifiers for disease-causing
mutations (as in the case of p.H558R [SCN5A; MIM] 600163]),
which modifies the effects of the disease-causing p.T512I on Na1

channel function [Viswanathan et al., 2003] or p.A115S in
xylosyltransferase I (XYLT1; MIM] 608124), which is associated with
higher serum XT activity and acts as a disease modifier in
pseudoxanthoma elasticum (PXE; MIM] 264800) [Schön et al., 2006].

It was also noted that 26% of those entries in the Disease-
associated polymorphism dataset, which were located within ID
regions, were associated with cancer susceptibility. This supports
previous work that has highlighted the importance of intrinsic
disorder in cell signaling and cancer-associated proteins [Iakoucheva
et al., 2002]. One example is the missense polymorphism p.A538T
(HIF1A; MIM 603348), which is located within an ID region and is
associated with renal carcinoma [Ollerenshaw et al., 2004].

Functional Sites

The distributions of AAS predicted at functional amino acid
residues are summarized in Figure 2 for the different datasets. The
Inherited disease dataset was characterized by a significant
enrichment of AAS located at catalytic residues (12.32%;
p 5 7.54 � 10�10; Fisher’s exact test) but displayed a significant
paucity of AAS at calmodulin-binding sites (�0.62%;
p 5 1.12 � 10�3; Fisher’s exact test) and at three different sites of
posttranslational modification including O-linked glycosylation
(�0.64%; p 5 7.29 � 10�17; Fisher’s exact test), ubiquitination
(�0.45%; p 5 1.12 � 10�12; Fisher’s exact test), and phosphoryla-
tion (�2.01%; p 5 1.47 � 10�54; Fisher’s exact test) (Fig. 2). The
Functional polymorphism dataset also displayed a paucity of AAS
at phosphorylation sites (�2.1%; p 5 2.17 � 10�6; Fisher’s exact
test). The Cancer dataset was significantly enriched for AAS at
calmodulin-binding sites (11.82%; p 5 1.62 � 10�3; Fisher’s exact
test; Fig. 2, Calmodulin-binding sites). When we examined the
change in functional site (gain or loss) consequent to a given
amino acid substitution, the Functional polymorphisms dataset was
significantly enriched for gains of catalytic residues (12.63%;
p 5 3.76 � 10�4; Fisher’s exact test; Fig. 4) consequent to AAS. The
Inherited disease and Functional polymorphism datasets both
displayed a paucity of AAS giving rise to losses or gains of
phosphorylation while the Inherited disease dataset also exhibited
a paucity of AAS resulting in the loss of O-linked glycosylation
sites and the gain or loss of ubiquitination sites.

In terms of functional sites, the Inherited disease dataset was
found to be enriched in AAS at catalytic residues but depleted
in AAS at three types of posttranslational modification tested.
The Functional polymorphisms dataset was also enriched in AAS
giving rise to the gain of catalytic sites whereas the Cancer dataset
was enriched for AAS at calmodulin-binding sites.

Germline AAS in Oncogenes and Tumor Suppressor Genes

Two subsets of missense mutations were derived from the
Inherited disease dataset viz. germline AAS from tumor suppressor
genes (1,227 AAS; 33 genes) and germline AAS from oncogenes (288

AAS; 26 genes). Disease-causing missense substitutions in oncogenes
are usually dominant gain-of-function mutations, whereas their
counterparts in tumor suppressor genes tend to be recessive loss-of-
function mutations. Overall, disease-causing AAS in oncogenes and
tumor suppressor genes exhibited significant differences in terms of
both their SIFT-predicted deleteriousness and the distribution of
AAS within regions of intrinsic protein disorder (Table 2). Some
69.2% of tumor suppressor AAS and 82.3% of oncogene AAS were
predicted by SIFT to be deleterious (‘intolerant’) (p 5 1.2 � 10�5;
Fisher’s exact test). With respect to the distribution of AAS within
protein regions of intrinsic disorder, these two subsets exhibited
significant differences, with 15.1% of tumor suppressor AAS and
4.3% of oncogene AAS located within disordered regions
(p 5 1.8 � 10�7; Fisher’s exact test).

Enrichment of Specific Features by Disease

Inspection of a ‘‘heat map’’ depicting the enrichment or
depletion of all AAS by disease category (Fig. 5) reveals that only a
few of the inherited disease AAS classes exhibit statistically
significant differences in terms of the underlying molecular
function disrupted. Blood coagulation disorders were found to
exhibit a significant depletion in terms of posttranslational
modification sites, including a 19-fold depletion in AAS at O-
linked glycosylation sites (p 5 1.2 � 10�6; Fisher’s exact test; Fig. 5),
and a 13-fold depletion at ubiquitination sites (p 5 1.7 � 10�4;
Fisher’s exact test; Fig. 5). Genitourinary disorders exhibited a
sixfold depletion in AAS at phosphorylation sites (p 5 2.4 � 10�10;
Fisher’s exact test; Fig. 5). Nutritional diseases exhibited a 13-fold
depletion for AAS located both within disordered regions and at
phosphorylation sites (p 5 6.7 � 10�80 and p 5 1.6 � 10�8, respec-
tively; Fisher’s exact test; Fig. 5). Developmental and psychiatric
disorders both showed a twofold enrichment for AAS located in
calmodulin-binding sites (p 5 3.6 � 10�4 and p 5 2.9 � 10�4, re-
spectively; Fisher’s exact test; Fig. 5). Overall, however, the
predicted enrichment or depletion of specific protein features was
not found to be an inherited disease-specific phenomenon.

Inherited Disease, Disease-Associated Polymorphisms,
and Functional Polymorphisms

The Inherited disease dataset displayed significant differences
with respect to the Swiss-Prot neutral dataset in terms of SIFT
predictions, structural features (protein stability, secondary
structure, solvent accessibility, protein disorder) and functional
sites (catalytic residues, sites of phosphorylation, ubiquitination,
and O-linked glycosylation). When the Disease-associated poly-
morphism dataset was compared against the neutral Swiss-Prot
neutral dataset, the only significant differences identified were
those involving the depletion of AAS in intrinsically disordered
regions of proteins. Functional polymorphisms were found to be
intermediate between the Inherited disease mutations and the
Disease-associated polymorphisms, and differed from the neutral
Swiss-Prot neutral dataset in terms of SIFT prediction, solvent
accessibility, secondary structure, disordered regions, phosphor-
ylation sites, and gain of catalytic residues. Disease-associated
polymorphisms are often associated with complex traits, and it is
therefore very likely that they exert subtle effects which, either
singly or in combination with other genetic or environmental
factors, give rise to a disease state/susceptibility. This contrasts
with monogenic disease in which we show and others have
previously shown [Wang and Moult, 2001; Yue et al., 2005] that
disruption of protein stability is the main underlying causative
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factor. We further postulate that disease-associated polymorph-
isms are biased toward exerting their influence via the subtle
modification of functional sites at exposed residues (�55%) or by
modifying functional sites within disordered regions (�20%).

Somatic Disease (Cancer and Kinase Datasets)

Both the somatic datasets are likely to contain a proportion of
‘‘passenger’’ as opposed to ‘‘driver’’ mutations. Consistent with
this expectation, SIFT predicted 47% of Cancer mutations and
54% of Kinase mutations to be deleterious. Although one might
intuitively expect there to be fewer passenger mutations in the
more focused Kinase dataset [Torkamani and Schork, 2008], in
practice. the slight excess of deleterious mutations in this dataset
was not statistically significant.

The Kinase dataset was significantly depleted in disordered
regions reflecting the idiosyncrasies of the structure of the proteins
in the Kinase dataset. Both the Cancer and Kinase datasets
exhibited significant enrichment for radical changes to protein
structure via changes of solvent accessibility from buried to
exposed, consequent to AAS. The Cancer dataset was found to be
significantly enriched for AAS at calmodulin-binding sites which
are short or loosely structured helical segments within otherwise
disordered regions and can be seen as being analogous to
Molecular Recognition Fragments (MoRFs) [Mohan et al.,
2006]. Because MoRFs exhibit molecular recognition and binding
functions [Mohan et al., 2006], the Cancer AAS in these regions
are likely to disrupt a wide range of functions in the cell including
signaling and protein–protein interaction sites. We speculate that
the ‘‘drivers’’ in the Cancer and Kinase datasets act via radical
changes to protein structure, indicated by the significant
enrichment of AAS predicted to alter solvent accessibility (Buried

4 Exposed), while ‘‘drivers’’ in Cancer are also likely to exert their
effects via the disruption of molecular recognition sites (e.g.,
protein–protein interaction sites).

Limitations of the Study

The limitations of our study revove around both the datasets
and the prediction tools employed. For the Inherited disease and
Disease-associated polymorphism datasets, multiple lines of evi-
dence were used to assign an AAS as being causative of a disease
phenotype. Despite the best efforts of the reporting authors and
database curators, there are likely, however, to be a proportion of
AAS in each dataset that are not actually causative of the
associated disease even although they have been reported as being
so. This is especially true for the Disease-associated polymorphism
dataset where the majority of AAS have been reported as being
causative despite there often being no direct evidence for this
assertion (e.g., from functional studies, etc.). Therefore, a
proportion of the AAS in the Disease-associated polymorphism
dataset may simply be in linkage disequilibrium with the actual
causative variant(s) rather than being the causative variant(s)
themselves. The future use of data derived from emerging
functional assays holds out the promise of generating improved
disease mutation datasets that can be used to train computational
classifiers [Couch et al., 2008].

Both the somatic datasets (Cancer and Kinase) are also
problematic in that they are expected not only to contain
mutations that lead to neoplastic progression (‘‘drivers’’) but also
neutral mutations that have arisen as a consequence of the greatly
increased mutation rates in tumor cells but do not directly
influence the process of tumorigenesis in any way (‘‘passengers’’)
[Greenman et al., 2007].

Table 2. Comparison of Inherited Disease Amino Acid Substitutions (AAS) Subsets from Tumor Suppressor Genes (1,227 AAS from
33 Genes) and Oncogenes (288 AAS from 26 Genes)

Structural/functional features Germline AAS in oncogenes (% of dataset) Germline AAS in tumor suppressor genes (% of dataset) p-Value

Deleterious (SIFT)a 82.33 69.24 1.17E�05

Coil (secondary structure) at wild-type residue 41.52 43.77 5.02E�01

Sheet (secondary structure) at wild-type residue 25.27 18.11 8.89E�03

Helix (secondary structure) at wild-type residue 33.21 38.12 1.30E�01

Buried (solvent accessibility) at wild-type residue 64.98 63.46 6.78E�01

Exposed (solvent accessibility) at wild-type residue 35.02 36.54 6.78E�01

Disordered protein region at wild-type residuea 4.33 15.12 1.83E�07

Phosphoryation site at wild-type residue 0.36 0.83 7.00E�01

O-linked glycosylation site at wild-type residue 0.36 0.25 5.64E�01

Methylation site at wild-type residue 0.00 0.50 6.01E�01

Ubiquitination site at wild-type residue 0.00 0.58 3.59E�01

Calmodulin-binding site at wild-type residue 1.81 2.24 8.20E�01

Catalytic residue site at wild-type residue 14.80 8.97 5.40E�03

Decrease in stability Z1 kcal/mol 66.10 67.79 7.44E�01

Coil-helix, sheet (secondary structure) 1.44 2.91 2.13E�01

Helix-coil, sheet (secondary structure) 1.81 3.41 2.47E�01

Sheet-helix, coil (secondary structure) 2.17 3.07 5.52E�01

Buried residue to exposed (solvent accessibility) 3.61 6.64 6.85E�02

Exposed residue to buried (solvent accessibility) 7.94 8.39 9.04E�01

Loss of phosphoryation site 0.00 0.75 2.23E�01

Gain of phosphoryation site 1.81 0.42 2.45E�02

Loss of O-linked glycosylation site 0.36 0.17 4.63E�01

Gain of O-linked glycosylation site 0.72 0.00 3.49E�02

Loss of methylation site 0.00 0.42 5.91E�01

Gain of methylation site 0.36 0.25 5.64E�01

Loss of ubiquitination site 0.00 0.58 3.60E�01

Gain of ubiquitination site 0.00 0.42 5.91E�01

Loss of catalytic residue 8.66 4.73 1.26E�02

Gain of catalytic residue 3.97 3.99 1.00E100

aIndicates significant p-value with Fisher’s exact test after Bonferroni correction (po1.72 � 10�3).
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The selection of a proper neutral set was a particular challenge
in this work. We decided to select only a subset of polymorphisms
from Swiss–Prot that had polymorphic allele frequencies of 41%
in the population of European descent. Such selection resulted in
polymorphisms that were substantially enriched in disordered
regions, which in turn may have biased our comparisons of
enrichment and depletion.

The in silico tools selected for this study were validated by
assessing the accuracy of predictions made for known functional
sites (Supp. Table S4). The accuracy of the predictions used in
subsequent analyses should therefore have been high enough to be
useful both in generating and in testing the various biological
hypotheses put forward.

Conclusions

Our prediction that 70% of Inherited disease AAS and 58% of
Functional polymorphisms are located within buried residues is
consistent with the view that disruption of protein stability is a
key feature of mutations that cause inherited disease. By
contrast, Inherited disease AAS predicted to be nondeleterious
(‘‘tolerant’’) by SIFT were characterized by significant enrichment
for AAS within solvent accessible residues, regions of intrinsic
protein disorder, and in association with the loss or gain of
various posttranslational modifications. Although sequence
conservation is a powerful feature for the prediction of

deleterious AAS in the Inherited disease dataset, it lacks
resolution, especially when examining polymorphic AAS within
exposed (solvent accessible) or disordered regions. It is
important not to neglect the role that the disruption of
functional residues undoubtedly plays in disease pathogenesis
especially for complex disease. Therefore, the incorporation of
structural and functional sites as additional features in machine-
learning algorithms is likely to improve our ability to identify
computationally deleterious AAS especially in the case of
polymorphic AAS.

Finally, we have constructed a Web resource that can be used
for in silico functional profiling. This Feature Server tool can be
found at http://mutdb.org/profile/. Using the CakePHP develop-
ment framework, users can submit their own mutations for
characterization. Once a protein sequence and amino acid
substitution(s) has been submitted, a script is run that calculates
the predicted gain and/or loss of all the bioinformatic features
discussed here.
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Figure 5. Fold-enrichment for the distribution of wild-type structural and functional sites for different disease concepts from the UMLS
(Unified Medical Language System). Fold enrichment for each disease concept is compared against a dataset of putatively neutral
polymorphisms (Swiss-Prot neutral). Datasets are shown in bold. Statistically significant results are underlined (Bonferroni correction,
po1.72 � 10�3). Color coding indicates the magnitude of the fold enrichment (see below). Datasets are UBIQ 5 ubiquitination; GLY 5 O-linked
glycosylation; METH 5 protein methylation; PHOS 5 phosphorylation; CALM 5 calmodulin-binding site; HELIX 5 secondary structure helix;
CAT 5catalytic site; ACC 5 solvent accessibility; DIS 5 protein disorder; COIL 5 secondary structure, coil; SHEET 5secondary structure, beta
sheet; BUR 5 buried; SIFT 5 SIFT score; STAB 5 protein stability.
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