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Parasitic protozoal infections have long been known to cause profound degrees of sickness and

death in humans as well as animal populations. Despite the increase in the number of annotated

genomes available for a large variety of protozoa, a great deal more has yet to be learned about

them, from their fundamental physiology to mechanisms invoked during host–pathogen

interactions. Most of these genomes share a common feature, namely a high prevalence of low

complexity regions in their predicted proteins, which is believed to contribute to the uniqueness of

the individual species within this diverse group of early-branching eukaryotes. In the case of

Plasmodium species, which cause malaria, such regions have also been reported to hamper the

identification of homologues, thus making functional genomics exceptionally challenging. One of

the better accepted theories accounting for the high number of low complexity regions is the

presence of intrinsic disorder in these microbes. In this study we compare the degree of disordered

proteins that are predicted to be expressed in many such ancient eukaryotic cells. Our findings

indicate an unusual bias in the amino acids comprising protozoal proteomes, and show that

intrinsic disorder is remarkably abundant among their predicted proteins. Additionally, the

intrinsically disordered regions tend to be considerably longer in the early-branching eukaryotes.

An analysis of a Plasmodium falciparum interactome indicates that protein–protein interactions

may be at least one function of the intrinsic disorder. This study provides a bioinfomatics basis

for the discovery and analysis of unfoldomes (the complement of intrinsically disordered proteins

in a given proteome) of early-branching eukaryotes. It also provides new insights into the

evolution of intrinsic disorder in the context of adapting to a parasitic lifestyle and lays the

foundation for further work on the subject.

Introduction

The study of early-branching eukaryotic cells yields great

insights into the evolutionary landscape of cell developmental

biology. Some of the oldest eukaryotic species are single-celled

protozoa, a diverse array of organisms that live freely or have

evolved into parasitic entities. Investigation of the parasitic

varieties not only offers the benefit of studying ‘‘living fossils’’,

but also may have rewards of therapeutic relevance. Among

the myriad of parasitic protozoa are notorious pathogens that

exert significant morbidity and mortality towards humans and

livestock. Consequently, parasitic protozoal infections also

have profound economic and socioeconomic ramifications.

Parasitic protozoa that have a substantial impact on hu-

mans include anaerobic organisms such as Giardia lamblia and

Entamoeba histolytica. G. lamblia, a diplomonad, is one of the

most common intestinal protozoal infections that cause

diarrhoea.1 E. histolytica, causing colitis and liver abscesses,

is the second leading cause of death from parasitic diseases in

the world, killing up to 100 000 people a year.2

The kinetoplastids include Trypanosoma brucei ssp. and

T. cruzi, the causative agents of African sleeping sickness

and Chagas’ disease, respectively. An estimated 18 million

persons are infected with T. cruzi in Latin America3 and

300 000–500 000 cases of African sleeping sickness occur per

year.4 There are not many treatment regimes available for the

Trypanosoma species, and some of these regimes are highly

toxic.

Parasitic protozoa within the phylum Apicomplexa include

Plasmodium spp., the causative agent of malaria. Malaria is

one of the most catastrophic infectious diseases of our time,

infecting B500 million people (in 2002) and resulting in 1–3

million deaths, many of these occurring in children.5,6

Cryptosporidium spp. is an intestinal infection that causes
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substantial water-borne outbreaks that can result in serious

strains on agricultural and medical resources.7 Toxoplasma

gondii causes congenital birth defects and has been linked to

neurological disorders and behavior anomalies.8–10

Cryptosporidium and Toxoplasma are also serious opportunis-

tic infections of AIDS and other immunocompromised indi-

viduals,11 and are classified by NIAID as category B

pathogens that are relevant to biodefense research.12

Paradoxically, the devastating effects of protozoal patho-

gens have not translated into a wealth of research being done

in the area. A great deal more has yet to be learned about these

important organisms, from fundamental physiology to their

host–pathogen interactions. With genome sequences now

available for a wide variety of these protozoa, we now have

the opportunity to explore phenomena that may simulta-

neously reveal valuable insights into basic cell biology and

may ultimately translate into novel and effective therapies in

these species. However, there are several complications that

hamper functional genomic studies in protozoan parasites.13

For example, most protozoal genomes consist of a high

percentage of genes that lack apparent orthologues in other

organisms.14 Additionally, many of the genes in Plasmodium

species have been found to encode relatively large proteins that

contain a large number of low complexity regions.15–17 One

study has reported that490% of all proteins in chromosomes

2 and 3 of P. falciparum contain such low complexity re-

gions.18 The uniqueness of genomes and the high abundance

of the low complexity regions cause difficulties in identifying

homologues of Plasmodium proteins.18 Many Plasmodium

proteins have been shown to be difficult to express in hetero-

logous systems.19 One of the reasons for low expression yields

is the presence of intrinsically disordered regions.18

‘‘Intrinsic disorder’’ refers to the lack of a relatively fixed

structure in proteins. Some terms used to describe proteins

exhibiting such a behavior include ‘‘rheomorphic’’,20 ‘‘natively

unfolded’’,21,22 ‘‘intrinsically unstructured’’,23,24 ‘‘intrinsically

disordered’’,25 and ‘‘natively disordered’’.26 Many biologically

active proteins remain unstructured, or incompletely struc-

tured, under physiological conditions (reviewed in22–38). In-

trinsic disorder has been reported both at a regional as well as

protein level and is characterized by dynamic ensembles of

structures instead of one single structure. Some well-known

functions of disordered proteins include molecular recognition

and assembly (as encountered in signaling pathways), protein

modification (e.g., phosphorylation, acetylation, methylation,

etc.), and entropic chain activities (e.g., linkers, springs, and

spacers).32 The molecular recognition and assembly functions

of disordered proteins are typically a direct consequence of

disorder-to-order transitions that can readily occur in flexible,

disordered regions of proteins. In contrast, the various en-

tropic chain activities depend directly on the unstructured

state without the need to form structure. The functional

diversity provided by disordered regions has been conjectured

to largely complement the functions of ordered proteins.

This complementarity hypothesis has been recently sup-

ported by a comprehensive analysis of the correlation of

nearly all keywords in the SwissProt database with the pre-

sence or absence of predicted intrinsic disorder.39–41 Out of the

710 Swiss-Prot functional keywords that were associated with

at least 20 proteins, 238 were found to be strongly positively

correlated with predictions of long intrinsically disordered

regions, whereas 302 were strongly negatively correlated with

such regions. Literature searches showed that the negatively

correlated proteins are typically structured, and the top-rank-

ing keywords for these proteins all end in ‘‘ase’’, indicative of

keywords that describe enzymes, whose functions depend on

active sites resulting from their ability to fold into globular 3D

structures. The disorder-associated function list is rich in

keywords describing signaling, regulation, and control. These

functions often rely on highly-specific yet low affinity interac-

tions of proteins with multiple partners and also on reversible

posttranslational modification, both of which are features of

disordered proteins.39–41

There are several computational studies evaluating the

abundance of intrinsic disorder in proteins of P. falciparum.

For example, 35% of proteins encoded by genes on chromo-

somes 2 and 3 are predicted to contain long (440 consecutive

residues) disordered regions.42 A later study revealed that this

number was an underestimate, suggesting that 52–67% of

P. falciparum proteins harbor long disordered regions.43 A

more recent study evaluated the abundance of disordered

proteins in several apicomplexan parasites, revealing that the

proteomes of human malaria parasites (P. falciparum and P.

vivax) and primate malaria parasites (P. knowlesi) are more

enriched in intrinsically disordered proteins than those of

rodent malaria parasites (P. yoelii, P. chabaudi and P. ber-

ghei).18 Furthermore, proteins expressed in the sporozoites of

P. falciparum were shown to be more intrinsically disordered

compared to those expressed during other life cycle stages.18

In this study, we take advantage of the abundance of

sequenced genomes for numerous eukaryotic microbes, patho-

genic and nonpathogenic, to compare the degree of disordered

proteins predicted to be expressed in these ancient eukaryotic

cells. Our work is different from previous bioinformatics

studies on early-branching eukaryotes as a different set of

disorder predictors was employed. Our findings lend further

support to the idea that abundant intrinsically disordered

proteins in these organisms are likely to play significant,

diverse roles in parasite biology and pathogenesis.

Results

Amino acid compositional profiles

Amino acid compositions of fifteen early-branching eukaryo-

tic organisms (the nine Apicomplexa P. falciparum, P. berghei,

P. chabaudi, P. vivax, P. yoelii, T. gondii, T. parva, C. hominis,

and C. parvum, two yeasts, C. albicans and C. glabrata, the

kinetoplastid T. brucei, the Amoebozoa D. discoideum and

E. histolytica, and the Metamonada G. lamblia) were com-

pared with compositions of proteins from a representative

disordered (Fig. 1A) and ordered (Fig. 1B) dataset, the free-

living non-pathogenic protozoan T. thermophila (Fig. S1, see

ESIw), the model multicellular eukaryote C. elegans (Fig. S2,

see ESIw) and the prokaryote V. cholerae (Fig. S3, see ESIw).
These figures depict fractional relative compositions, with the

amino acids arranged from left to right in increasing order of
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surface accessibility in globular proteins (Vihinen flexibility

scale).

One can observe various general patterns in each of these

figures. For instance, parasitic protozoan datasets are signifi-

cantly depleted in tryptophan (W) and enriched in lysine (K),

in comparison to ordered sequences (Fig. 1A). However, in

comparison to the disordered dataset, most of the protein sets

are depleted in tryptophan (W) (Fig. 1B). It is interesting to

note that in comparison to ordered as well as disordered

sequences of the majority of these thirteen datasets are en-

riched in phenylalanine (F), isoleucine (I) and tyrosine (Y).

Comparison of Fig. 1A and B suggests that early-branching

eukaryotes represent a unique group whose proteomes are

compositionally different when compared to typical ordered

and intrinsically disordered proteins.

The high abundance of phenylalanine and tyrosine residues

might be related to peculiarities of protein folding and/or

functionality. Several intrinsically disordered proteins have

been shown to be highly enriched in these residues. For

example, multiple tyrosine residues were shown to be essential

for the function of the Ewings sarcoma (EWS) fusion proteins

(EFPs). EFPs are potent transcriptional activators interacting

with other proteins required for mRNA biogenesis. A char-

acteristic functionality of EFPs is associated with the EWS

activation domain (EAD), containing multiple degenerate

hexapeptide repeats (consensus SYGQQS) with a conserved

tyrosine residue. This intrinsically disordered domain was

shown to be responsible for transcriptional activation and

cellular transformation.45 Furthermore, these multiply con-

served tyrosines were shown to be essential for the EAD

function. Intriguingly, they can be effectively substituted by

phenylalanine, showing that an aromatic ring can confer EAD

function in the absence of tyrosine phosphorylation.45 Other

examples include a set of phenylalanine–glycine repeat-con-

taining nucleoporins (FG-Nups), specific proteins from nucle-

ar pore complexes (NPCs) that are embedded in the nuclear

envelope of eukaryotic cells. There are 13 such proteins in the

Saccharomyces cerevisiae NPC. They bind karyopherins and

facilitate the transport of karyopherin–cargo complexes. All

these proteins were shown to be intrinsically disordered and

the FG repeat regions of Nups were shown to form a mesh-

work of random coils at the NPC through which nuclear

transport proceeds.46,47 Another example is immunoreceptor

tyrosine-based activation motif (ITAM)-containing cytoplas-

mic domains of many immune receptors, which have been

recently shown to represent a novel class of intrinsically

disordered proteins.48,49

In comparison to their free-living, non-pathogenic counter-

part (i.e., Tetrahymena thermophila), pathogenic early-branch-

ing eukaryotes are observed to be significantly enriched in

aspartic acid (D), proline (P) and valine (V), and polar residues

such as tryptophan (W) and histidine (H). However, depletion

of the polar residue glutamine (Q) appears to be common

across all species in comparison to T. thermophila (Fig. S1, see

ESIw). Compared to C. elegans or V. cholerae, depletion of

tryptophan (W) and valine (V), both order-promoting resi-

dues, is apparent in the microbes analyzed (Fig. S2 and S3w).
Although many other amino acids are also depleted in various

Fig. 1 Compositional profiling of early-branching eukaryotes in comparison with a set of ordered (A) and experimentally characterized

disordered proteins (B). The bar for a given amino acid represents the fractional difference in composition between a given protein (or set of

proteins) and a set of ordered proteins. The fractional difference is calculated as (CX� Creference)/Creference, where CX is the content of a given amino

acid in a given protein (or protein set), and Creference is the corresponding content in a set of reference proteins and plotted for each amino acid. The

amino acid residues are arranged from the most rigid to the most flexible according to the Vihinen’s flexibility scale, which is based on the averaged

B-factor values for the backbone atoms of each residue type as estimated from 92 proteins.44 Negative values indicate residues that the given

protein/set has less than the reference set, positive values correspond to residues that are more abundant in a given dataset in comparison with the

reference set.
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proteomes, W and V are the only two residues with consistent

behavior across all species in comparison to C. elgans and V.

cholerae. These figures also evidence for a pronounced lysine

(K) content amongst most parasites.

Prevalence of long intrinsically disordered regions

To further evaluate the presence of intrinsic disorder in

different proteomes we used a predictor of natural disordered

regions (PONDRs VSL2B).50 The abundance of intrinsic

disorder in various organisms has been evaluated via the

presentation of the fractions of proteins with predicted dis-

ordered regions of a given length.31,51 Earlier, this approach

was used to show the prevalence of intrinsic disorder in

signaling and cancer-associated proteins31 and in proteins

involved in the cardiovascular disease.51 Fig. 2A and S4Aw
show that intrinsic disorder is predicted to be relatively

abundant in early-branching eukaryotes. The percentages of

proteins with 30 or more consecutive residues predicted to be

disordered by PONDRs VSL2 and PONDRs VLXT (corre-

sponding numbers are shown in brackets) were 87.8 (89.8) for

T. gondii, 80.3 (82.5) for P. vivax, 79.0 (81.0) for P. falciparum,

75.3 (76.8) for D. discoideum, 73.8 (75.1) for C. parvum, 72.4

(74.1) for C. albicans, 71.9 (73.1) for C. glabrata, 71.4 (72.4)

for T. thermophila, 70.4 (72.0) for T. brucei, 69.7 (70.9) for C.

hominis, 67.5 (68.9) for T. parva, 63.0 (64.5) for P. yoelii, 62.6

(64.1) for S. cerevisiae, 63.0 (64.3) for C. elegans, 58.2 (59.5)

for E. histolytica, 52.1 (53.2) for G. lamblia, 42.5 (43.4) for P.

berghei, 40.3 (41.3) for P. chabaudi and 24.9 (25.1) for V.

cholerae. Earlier, using PONDRs VLXT it has been shown

that a set of eukaryotic proteins from Swiss-Prot, EU_SW,

and a set of ordered proteins from PDB, O_PDB_S25, con-

tained 47(�4)% and 13(�4)% proteins with 30 or more

consecutive residues predicted to be disordered.31,51 Therefore,

being compared to a set of ordered proteins, all the microbial

proteomes were significantly enriched in proteins with long

disordered regions. Furthermore, the vast majority of the

early-branching eukaryotic organisms (except for G. lamblia,

P. berghei, and P. chabaudi) had more proteins with long

disordered regions than a set of typical eukaryotic proteins in

Swiss-Prot.

When analyzed by percentages of residues, the proteins with

30 or more consecutive residues predicted to be disordered by

PONDRs VSL2 (PONDRs VLXT) were distributed as

follows (see Fig. 2B and S4Bw): 58.3 (36.1) for T. gondii,

42.7 (7.3) for P. falciparum, 41.5 (21.2) for P. vivax, 37.9

(6.5) for T. thermophila, 37.1 (6.9) for P. yoelii, 34.4 (16.4) for

D. discoideum, 29.6 (6.1) for P. chabaudi, 29.5 (13.7) for C.

albicans, 29.2 (4.2) for P. berghei, 28.5 (14.5) for C. glabrata,

27.7 (15.6) for C. elegans, 27.6 (13.5) for S. cerevisiae, 27.5

(17.8) for T. brucei, 27.2 (10.4) for C. hominis, 26.2 (9.4) for C.

parvum, 24.6 (12.5) for G. lamblia, 23.5 (9.4) for T. parva, 19.6

(6.6) for E. histolytica, and 6.2 (6.7) for V. cholerae. According

to earlier PONDRs VLXT estimations, there were (6.5 �
0.5)% and (1.48 � 0.45)% residues in long disordered regions

of eukaryotic proteins from Swiss-Prot and of non-homolo-

gous ordered proteins from PDB, respectively.31,51

The data suggest that sequences from early-branching eu-

karyotes contained more disordered residues than eukaryotic

Swiss-Prot proteins and ordered PDB proteins. Finally, we

have established that many protozoan sequences (between 20

and 60% depending on the organism) contained very long

Fig. 2 PONDRs VSL2 disorder prediction results on 19 proteomes: C. parvum, C. hominis, P. falciparum, P. berghei, P. chabaudi, P. vivax,

P. yoelii, T. parva, T. gondii, E. histolytica, G. lamblia, T. brucei, C. albicans, C. glabrata, D. discoideum, T. thermophila, S. cerevisiae, C. elegans,

and V. cholerae. (A) Percentages of proteins in the 19 proteomes with Z 30 to Z 90 consecutive residues predicted to be disordered. (B)

Percentages of residues in these 19 proteomes predicted to be disordered within segments of length Z the value on the x-axis.
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disordered regions (with lengths Z 90 consecutive residues).

Thus, early-branching eukaryotic proteins are heavily enriched

in predicted disorder in comparison with typical eukaryotic

proteins from Swiss-Prot and especially with ordered proteins

from PDB.

CDF and CH-plot analyses

The sequences of protozoan proteins were also used to predict

whether these proteins are likely to be mostly disordered using

two binary predictors of intrinsic disorder: the charge-hydro-

pathy plot (CH-plot)22,52 and the cumulative distribution

function analysis (CDF analysis).52 Both these methods per-

form binary classification of whole proteins as either mostly

disordered or mostly ordered, where mostly ordered indicates

proteins that contain more ordered residues than disordered

residues and mostly disordered indicates proteins that contain

more disordered residues than ordered residues.52 A simulta-

neous observation of low mean hydropathy and relatively high

net charge is typical for the ‘‘natively unfolded’’ proteins,

which are characterized by the lack of compact, collapsed

structure.22 Therefore, ordered and disordered proteins

plotted in CH-space can be separated to a significant degree

by a linear boundary, with proteins located above this bound-

ary line being natively unfolded and with proteins below the

boundary line being ordered.22,52 CDF analysis summarizes

the per-residue disorder predictions by plotting PONDR

scores against their cumulative frequency, which allows or-

dered and disordered proteins to be distinguished based on the

distribution of prediction scores. In this case, order–disorder

classification is based on whether a CDF curve is above or

below a majority of boundary points: proteins with high

PONDR scores will have CDF curves that have low cumula-

tive values over most of the CDF curve, and proteins with low

PONDR scores will have CDF curves that have high cumu-

lative values over most of the CDF curve.52 The results of CH-

plot and CDF analyses are shown in Fig. S5, S6 and S7.w

Data presented in Fig. S5A, S6w and Table 1 show that

early-branching eukaryotes appear to contain many compact

proteins. In fact, for the majority of proteomes studied the

average content of proteins predicted to be natively unfolded is

B4.5%. However, P. falciparum, P. berghei, P. chabaudi,

P. yoelii and T. thermophila are predicted to contain a very

significant number of proteins that are potentially natively

unfolded (34%, 22%, 21%, 24% and 22%, respectively). The

curves presented in Fig. S5B and S7w clearly indicate that most

pathogenic protozoa as well as C. albicans have high cumula-

tive values over most of the CDF curve and hence are largely

ordered. Fig. S5w also shows that V. cholerae contains the

most ordered proteome amongst all organisms studied. This is

in accordance with earlier reports suggesting that eukaryotes

have higher disorder content in comparison to prokar-

yotes.42,52 C. elegans and S. cerevisiae appear to have an

apparent balance between the number of ordered and dis-

ordered proteins. The results of CDF and CH-plot analyses

are further summarized in Table 1, which shows that most of

the pathogenic proteomes are predicted to be ordered by both

these methods. T. gondii however, appears to serve as the

single exception to this rule with only 31% of proteins unan-

imously predicted as ordered. V. cholerae appears to be the

most ordered of all organisms with as much as 88% agreement

between CH-plot and CDF analyses.

Table 1 also shows that there is a sizeable discrepancy

between these two methods and the level of disorder predicted

by CDF is on average 1.25-fold higher than that predicted by

CH-plots. The difference between these two methods in the

magnitude of predicted disorder is generally similar to pre-

viously published data.51,52 This difference was explained by

the fact that the CH-plot is a linear classifier that takes into

account only two parameters of the particular sequence—

charge and hydropathy,22 whereas CDF analysis is dependent

upon the output of the PONDRs VLXT predictor, a non-

linear neural network classifier, which was trained to distin-

guish order and disorder based on a significantly larger feature

Table 1 CH and CDF prediction results for all 19 organisms with number of predicted a-MoRFs

Organism

Total
proteins
used for
predictions

Number of
proteins with
one or more
a-MoRFs

Number of
a-MoRFs

Number of proteins
predicted disordered
by both CH and CDF

Number of proteins
predicted disordered
only by CH

Number of proteins
predicted disordered
only by CDF

Number of proteins
predicted ordered by
both CH and CDF

C. parvum 3801 810 1375 367 238 357 2839
C. hominis 3884 720 1165 438 258 365 2823
P. falciparum 5400 1348 2757 509 1854 69 2968
P. berghei 10 459 787 1204 745 2262 188 7264
P. chabaudi 12 968 1133 1614 1235 2748 245 8740
P. vivax 5330 1878 4832 1287 440 897 2706
P. yoelii 7238 1155 2083 660 1729 159 4690
T. parva 4070 595 866 463 232 305 3070
T. gondii 7793 3761 11 889 1300 73 3969 2451
E. histolytica 9766 991 1389 1113 705 487 7461
G. lamblia 9646 1242 1993 792 239 2025 6590
T. brucei 8758 2016 3530 944 146 2221 5447
C. albicans 6068 1472 2738 949 255 809 4055
C. glabrata 5271 1292 2390 763 210 849 3449
D. discoideum 4031 1153 2305 666 189 552 2624
T. thermophila 26 212 5873 12 121 2562 5703 726 17 221
S. cerevisiae 10 868 2302 4247 1448 433 1552 7435
C. elegans 38 336 8379 15 002 4339 751 6890 26 356
V. cholerae 3829 72 76 92 60 327 3350
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space that explicitly includes net charge and hydropathy.53,54

According to these methodological differences, CH-plot ana-

lysis is predisposed to discriminate proteins with substantial

amounts of extended disorder (random coils and pre-molten

globules) from proteins with globular conformations (molten

globule-like and rigid well-structured proteins). On the other

hand, PONDR-based CDF analysis may

discriminate all disordered conformations including molten

globules from rigid well-folded proteins. Therefore, this dis-

crepancy in the disorder prediction by CDF and CH-plot

might provide a computational tool to discriminate ‘‘natively

unfolded’’ proteins from native molten globules, which might

predicted to be disordered by CDF, but compact by CH-plot.

This model is consistent with the behavior of several intrinsi-

cally disordered proteins. Work is currently in progress to

analyze the generality of this hypothesis. In application to

protozoan proteins this means that some of them are predicted

to be extended, whereas others can possess molten globule-like

properties.

Fig. 3 compares the results of the CH-plot and CDF

analyses by showing the distributions of proteins in each

proteome within the CH–CDF phase space. In these plots,

each spot corresponds to a single protein and its coordinates

are calculated as a distance of this protein from the boundary

in the corresponding CH-plot (y-coordinate) and an averaged

distance of the corresponding CDF curve from the boundary

(x-coordinate). Positive and negative y values correspond to

proteins which, according to CH-plot analysis, are predicted

to be natively unfolded or compact, respectively. Whereas

positive and negative x values are attributed to proteins that,

by the CDF analysis, are predicted to be ordered or intrinsi-

cally disordered, respectively. Therefore, each plot contains

four quadrants (see an explanatory panel in the low right

corner of Fig. 3): (�, �) contains proteins predicted to be

disordered by CDF, but compact by CH-plot (i.e., proteins

possibly with molten globule-like properties); (�, +) includes

proteins predicted to be disordered by both methods (i.e.,

random coils and pre-molten globules); (+, �) contains

ordered proteins; (+, +) includes proteins predicted to be

disordered by CH-plot, but ordered by the CDF analysis. The

sharp cut-off at the right side of each plot is due to the upper

limit of a difference between the CDF curve (which has a

maximum value of 1.0) and the boundary separating IDPs and

ordered proteins in CDF plots. Analysis of the (�, �) and

(�, +) quadrants in Fig. 3 shows that the majority of the

wholly disordered proteins from C. elegans, S. cerevisiae, and

V. cholerae likely possess molten globule-like properties. In

contrast, protozoan proteomes are generally characterized by

a more balanced distribution between compact and extended

disordered proteins. This balance is also observed in the case

of C. albicans and C. glabrata proteomes demonstrating some

prevalence for the extended disordered proteins.

a-MoRF predictions

Often, intrinsically disordered regions in proteins are involved

in protein–protein interactions and molecular recogni-

tions.24,25,33–36 It has been pointed out that many flexible

proteins or regions undergo disorder-to-order transitions

upon binding, which is crucial for recognition, regulation,

and signaling.22,23,25,37,38,55–57 A correlation has been estab-

lished between the specific pattern in the PONDRs VL-XT

curve and the ability of a given short disordered region to

undergo disorder-to-order transitions on binding.58 Based on

these specific features an a-MoRF predictor was recently

Fig. 3 Comparison of the PONDRs CDF and CH-plot analyses of whole protein order-disorder via distributions of proteins in each proteome

within the CH-CDF phase space. Each spot represents a single protein whose coordinates were calculated as a distance of this protein from the

boundary in the corresponding CH-plot (y-coordinate) and an averaged distance of the corresponding CDF curve from the boundary

(x-coordinate). Four quadrants in each plot correspond to the following predictions: (�, �) proteins predicted to be disordered by CDF, but

compact by CH-plot; (�, +) proteins predicted to be disordered by both methods; (+, �) contains ordered proteins; (+, +) includes proteins

predicted to be disordered by CH-plot, but ordered by the CDF analysis. This is further illustrated by an explanatory plot at the bottom right corner.
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developed.55 Not all MoRF regions share these same features

and some of them form b- or irregular structures rather than
the a-helix.56,57 Therefore, these predicted MoRFs are only

fractions of the total numbers of MoRFs for each organism.

Interestingly, recent studies showed that not all specific inter-

actions between intrinsically disordered proteins are necessa-

rily accompanied by the disorder-to-order transitions.48,59,60 It

has been hypothesized that such interactions of the immune

receptor signaling subunits could play a crucial role in immune

signaling.61

The application of the a-MoRF predictor to various data-

sets reveals that helix forming molecular recognition features

are highly abundant in proteins from early-branching eukar-

yotes, suggesting the potential for extensive interaction net-

works in these proteomes. Table 1 shows that, on average,

B20% protozoan proteins contain a-MoRFs, ranging from

7.5% in P. berghei and ending with 48.3% in T. gondii. The

number of a-MoRF-containing proteins in the prokaryotic

representative V. cholerae is considerably smaller (1.9%).

Importantly, in each proteome some long, highly disordered

proteins have multiply predicted a-MoRF regions (Table S1w)
that may potentially serve as binding sites for multiple pro-

teins. For example, C. elegans protein CE25234 (4900 amino

acid residues) has 49 predicted a-MoRFs. Similarly, T. gondii

proteins 44.m02695 (putative protein phosphatase 2C, 3966

amino acids) and 42.m03467 (mediator complex subunit

SOH1-related, 4253 amino acids) contain 24 and 22 predicted

a-MoRFs, respectively.

Analysis of the P. falciparum protein–protein interaction map

One goal with this analysis was to study a published interac-

tion map of P. falciparum with special emphasis on the role of

intrinsic disorder in such a network. This map includes 2321

proteins involved in 19 979 protein–protein interactions.62 A

log–log plot of the number of proteins versus the number of

interactions reveals that the network closely mimics the pro-

perties of a scale-free network (Fig. 4). In other words, there

are few proteins participating in a high number of interactions

(hubs) and a large number of proteins having few or no

interactions. This finding is further supported by the regres-

sion analysis which shows that the data fits a linear equation

with a negative slope. The fact that the R2 value (0.9) is close

to 1 is indicative of a reasonably good fit.

According to PONDRs VSL2B, the level of

predicted intrinsic disorder in proteins form the interaction

map of P. falciparum is about 45%. This number is marginally

higher than the overall amount of disorder present in

all annotated proteins from P. falciparum (41.6%) and is

significantly higher than the level of intrinsic disorder in

the C. elegans proteome (35.9%), the V. cholerae

proteome (22.2%), as well as the mean disorder in all early-

branching eukaryotes (39.0%, see Table 2). Furthermore, a

correlation score of 0.13 (p-value = 0.0001) was obtained

between the per protein PONDRs VLXT score and the

number of interactions in which it participates. This indicates

the presence of a weak association between intrinsic

disorder and connectivity in the P. falciparum protein–protein

interaction map.

Fig. 4 Analysis of P. falciparum interaction map. (A) Number of

protein–protein interactions (x-axis) vs. number of proteins (y-axis)

based on P. falciparum interaction map published in Wuchty and

Ipsaro.62 (B) Log–log plot obtained using data from Fig. 4A. Data

regressed onto linear equation obtained using least squares method.

Table 2 PONDRs VLXT and VSL2 scores for all organisms

EARLY-BRANCHING EUKARYOTES: PATHOGENIC

Organism VLXT (%) VSL2B (%)

C. parvum 23.33 36.86
C. hominis 24.14 38.18
P. falciparum 17.83 41.57
P. berghei 12.59 32.78
P. chabaudi 13.97 33.78
P. vivax 30.25 44.31
P. yoelii 15.90 37.94
T. parva 22.26 34.48
T. gondii 46.14 57.40
E. histolytica 21.05 32.28
G. lamblia 30.56 40.16
T. brucei 33.76 38.09
C. albicans 27.56 39.43
C. glabrata 29.35 38.20
NON-PATHOGENIC

T. thermophila 17.85 42.69
D. discoideum 25.94 39.32
S. cerevisiae 26.84 37.05
MODEL EUKARYOTE

C. elegans 27.49 35.93
MODEL PROKARYOTE

V. cholerae 23.02 22.24
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It is intriguing to note that 10 randomly selected P. falci-

parum proteins that are largely disordered (i.e., possessed a

predicted disorder score 497%) but participate in one or no

interactions have almost no PROSITE functional or CDD

structural annotations associated with them. Likewise, almost

no functional information is available for 10 randomly picked

proteins involved in one or no interactions and with a pre-

dicted disorder score less than 5% (Table 3B, C). In contrast

to earlier cases, most functional as well as structural informa-

tion was available for the top 10 proteins with the highest

number of protein–protein interactions and the top 10

proteins with more than 15 interactions (i.e., putative hub

proteins) but with a predicted disorder score less than 5%

(Table 3A, D).

Interestingly, a-MoRF predictions for these data reveal

that, of the 529 putative hub proteins (i.e., proteins involved

in 10 or more protein–protein interactions), 134 contain one or

more predicted a-MoRF regions (25.3%). In comparison to

this, 600 of the 1792 likely non-hub proteins had a correspond-

ing a-MoRF prediction (33.5%). Both these numbers are

higher that the average number of eukaryotic proteins with

predicted a-MoRFs (B23%) and are significantly higher than

a number of MoRF-containing proteins in bacteria (B3%)

and archaea (B2.5%). In other words, both protein sets are

highly enriched in disordered segments that are potentially

involved in molecular recognition and that undergo disorder-

to-order transitions upon interaction with their binding part-

ners. Interestingly, non-hub proteins on average contain more

a-MoRFs than hubs. On the other hand, hub and non-hub

proteins are characterized by the PONDRs VLXT scores of

24.5% and 19.7%, respectively. This apparent discrepancy can

be explained by the fact that MoRFs are short ordered regions

(around 20 residues) located within long disordered regions.

Therefore, higher MoRF content should correspond to lower

overall disorder score.

Discussion

Despite a significant increase in the number of annotated

genomes available for many protozoan and other early-

branching eukaryotic organisms, much still remains to be

learned about them. A large part of their fundamental phy-

siology remains to be better understood, and the nature of

many aspects of host-pathogen interactions continues to evade

us. Many of these genomes are predicted to encode an

abundance of low complexity regions. Such low complexity

regions are typically indicative of the presence of intrinsic

disorder. This study analyzes sequenced genomes correspond-

ing to both pathogenic and non-pathogenic protozoa as well

as fungi in order to study and compare the degree of dis-

ordered proteins expressed in these ancient eukaryotic cells.

Our results indicate that early-branching eukaryotic proteins

are generally enriched in predicted disorder as compared to

typical eukaryotic proteins found in Swiss-Prot as well as

ordered proteins from PDB. On average, the number of

regions from protozoa with Z 30 consecutive disordered

residues is twice the number found in a representative set of

proteins from Swiss-Prot. This number translates to a 7-fold

increase in comparison to the number of similar regions from a

PDB Select 25 set of proteins.

Results from fractional amino acid compositions derived

using ordered and disordered datasets from parasitic protozoa

are found to be significantly depleted in tryptophan while

continuing to remain enriched in lysine, in comparison to

ordered proteins. Interestingly, in comparison to disordered

proteins, most of the pathogenic early branching eukaryotes

are found to be depleted in tryptophan. It is worthy to note

that in comparison to ordered as well as disordered sequences,

a majority of the 13 apicomplexan pathogen datasets are

enriched in phenylanaline, isoleucine and tyrosine. Collec-

tively, these observations may indicate unique properties

associated with protozoal proteomes that differentiates them

from typical ordered and intrinsically disordered proteins. For

example, the overall reduction of tryptophan in T. gondii

proteins is likely to be an adaptation of its intracellular life-

style; T. gondii has evolved tryptophan auxotrophy and thus

may have minimized its reliance on this essential amino acid

by excluding it from its proteins.63

Cumulative distribution fraction curves clearly indicate that

most pathogens have high cumulative values over most of

their respective CDF curves. This suggests the possibility that

most such organisms may largely contain compact proteins.

Vibrio cholerae is the most ordered organism amongst all

organisms studied. However, exceptions to this observation

exist in the cases of P. falciparum, P. berghei, P. chabaudi,

P. yoelii and T. thermophila (Table 1). These organisms

contain a significant number of proteins that are potentially

natively unfolded. This observation supports earlier findings

suggesting that eukaryotes have higher disorder content in

comparison to prokaryotes.42,52 C. elegans and S. cerevisiae

appear to have an apparent balance between ordered and

disordered proteins.

We also studied a published protein–protein interaction

dataset from P. falciparum consisting of 2321 proteins and

19 979 protein–protein interactions.62 We find this network

closely mimicking the properties of a scale-free network. 45%

of these proteins contained intrinsic disorder.

This number is slightly higher than the overall amount of

disorder present in all annotated proteins from P. falciparum

(41.6%) and significantly higher than the level of intrinsic

disorder in the C. elegans proteome (35.9%) and the

V. cholerae proteome (22.2%), as well as the mean disorder

in all early-branching eukaryotes (39.0%). A correlation study

between overall disorder scores for each of these proteins and

the number of interactions partaken by it indicates a low

correlation coefficient of 0.13 (p-value = 0.0001). This number

is suggestive of a weak association between intrinsic disorder

and the degree of connectivity of proteins from this interaction

dataset.

These data are in a good agreement with the results of

several recently published studies, where the roles of disorder

in protein–protein interaction networks were tested.34,64–68

First, a set of structurally characterized hub proteins was

assembled and analyzed.34 Several hub proteins were found

to be entirely disordered from one end to the other, and yet

capable of binding large numbers of partners. Other hubs

contained both ordered and disordered regions. For these
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Table 3 Functional and structural annotations corresponding to top 10 proteins with (A) Highest number of interactions; (B) One or no
protein–protein interaction(s) while having predicted disorder greater than 97%; (C) One or no protein–protein interaction(s) while having
predicted disorder less than 5%; (D) Functional and structural annotations corresponding to top 5 proteins with more than 15 protein–protein
interactions while having a predicted disorder score less than 5%

Prosite domains associated Conserved structural domains

Top 10 proteins with

highest number of

protein–protein interactions

A

PF11_0061 Histone H4 signature Histone H4
PF13_0061 ATP synthase gamma subunit signature ATP synthase
PFD0665c AAA-protein family signature AAA (involved in membrane fusion,

proteolysis and DNA replication)
PF14_0655 DEAD-box RNA helicase Q motif

profile,
Superfamilies 1 and 2 helicase ATP-
binding
type-1 domain profile, Superfamilies 1
and 2
helicase C-terminal domain profile

DEAD box helicases, helicase superfamily
C-terminal domain

PF14_0068 Fibrillarin signature Fibrillarin
PF11_0096 Serine/Threonine protein kinases

active-site signature
S/T kinase domains

PF07_0054 Histone H2B signature Histone 2B
PF10_0366 Solute carrier (Solcar) repeat profile Mitochondrial carrier protein
PFC0400w No information available Ribosomal protein (N)
PFL0585w Ubiquitin domain profile, Ubiquitin

domain signature
Ubiquitin (all-through)

Top 10 proteins with 0/1

protein–protein interaction

& 497% predicted disorder (VSL2)

B

PF10_0252 No information available Cyt. C. oxidase chaperone (C)
PFE0990w No information available No information available
PF10_0280 No information available No information available
PFB0490c No information available No information available
PFA0475c No information available Domain with unknown function
PFA0420w No information available No information available
PF11_0035 No information available No information available
PF13_0342 No information available No information available
PFL0155c No information available No information available
PFB0095c No information available SbcC, ATPase involved in DNA repair

[DNA replication, recombination, and
repair],
PPE-repeat proteins [Cell motility and
secretion],
Spumavirus gag protein

Top 10 proteins with 0/1

protein–protein interaction

& o5% predicted disorder (VSL2)

C

PF11_0150 No information available Rhomboid, Rhomboid family. This family
contains integral membrane proteins that
are related to Drosophila rhomboid protein.
Members of this family are found in bacteria
and eukaryotes.

PF14_0415 Dephospho-CoA kinase (DPCK)
domain profile

Dephospho-coenzyme A kinase (DPCK, EC
2.7.1.24) catalyzes the phosphorylation of
dephosphocoenzyme A (dCoA) to yield CoA,
which is the final step in CoA biosynthesis

PFC0935c No information available Glycosyl transferase family 4
MAL13P1.117Zinc finger DHHC-type profile Uncharacterized protein containing

DHHC-type Zn finger
PFA0455c ELO family signature ELO, GNS1/SUR4 family. Members of this

family are involved in long chain fatty acid
elongation systems that produce the
26-carbon precursors for ceramide
and sphingolipid synthesis. Predicted
to be integral membrane proteins,
in eukaryotes they are probably
located on the endoplasmic reticulum.

PF14_0317 No information available Microsomal signal peptidase 12 kDa subunit
PFE0660c No information available Uridine phosphorylase
PF14_0399 G-protein coupled receptors family

1 signature, ADP-ribosylation factors
family signature

Arl2, Arl2 subfamily. Arl2 (Arf-like 2)
GTPases are members of the Arf family that
bind GDP and GTP with very low affinity

PF11_0370 No information available No information available
PFE0730c No information available Ribose 5-phosphate isomerase type A

(RPI_A) subfamily; RPI catalyzes the
reversible conversion of ribose-5-phosphate
to ribulose 5-phosphate
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hubs, many, but not all, of the interactions mapped to the

regions of disorder. Two highly structured hubs were found.

For both of these structured hubs, the binding regions of the

partners were entirely disordered.34 Overall, this initial study

suggested two primary mechanisms by which disorder is

utilized in protein–protein interaction networks, either using

disordered regions to interact with multiple structured part-

ners or using structured proteins to interact with multiple

disordered partners.

These ideas were further tested via bioinformatics studies

on collections of hub proteins. Several of these studies

support one of the two primary mechanisms, namely the

common use of disordered regions by hub proteins to bind

to multiple partners.64–68 Further bioinformatics studies refine

the analysis further with the suggestion that disorder is very

commonly used for regions that bind sequentially to multiple

partners (so called ‘‘date hubs’’68). Finally, bioinformatics

investigations of the binding partners of two mostly structured

hubs, calmodulin and 14-3-3, suggest that the binding regions

of their partners are very likely to be located in regions of

disorder.69,70

Analysis of the possible roles of intrinsic disorder in pro-

tein–protein interactions suggested that one disordered region

could bind to many partners (one-to-many signaling) and that

flexibility would enable multiple disordered regions to bind to

one site on one partner (many-to-one signaling).71 The pecu-

liarities of these two binding mechanisms were recently studied

via the careful analysis of the illustrative structures of a one-to-

many example (namely, the disordered regions in p53 binding

to their many partners) and a many-to-one example (namely

the binding site of 14-3-3 associating with many different

disordered partners).72

For the one-to-many signaling example (using the structures

currently in the PDB), a single disordered region of p53

was observed to form a helix when associating with

one partner, a sheet with a second partner, an irregular

structure with a third partner, and an irregular structure

with a completely different trajectory with a fourth partner.

The set of residues involved in these interactions exhibited a

very high extent of overlap along the sequence.72 Plotting the

changes in the solvent accessible surface area for each amino

acid versus its position in the sequence gives a binding profile.

The binding profiles for the single region of p53 bound to

four different partners were completely different. It is as if the

same sequence is ‘‘read’’ by the different partners in entirely

different ways.72

Table 3 (continued )

Prosite domains associated Conserved structural domains

Top 5 proteins with ^15 protein–protein

interactions & o5% predicted disorder

(VSL2)

D

PFB0200c Aminotransferases class-I
pyridoxal-phosphate
attachment site

TyrB, Aspartate/tyrosine/aromatic
aminotransferase

PF13_0156 Proteasome B-type
subunits signature

Proteasome_beta_type_7, proteasome beta
type-7 subunit

PF14_0142 Serine/threonine specific
protein phosphatases
signature

Protein phosphatase 2A homologues,
catalytic
domain. Large family of serine/threonine
phosphatases, including PP1, PP2A and
PP2B
(calcineurin) family members

PF14_0676 Proteasome B-type
subunits signature

Proteasome_beta_type_2, proteasome beta
type-2 subunit

Table 4 Summary of number of sequences, average sequence length, and ambiguous residues corresponding to each dataset used in this study

Organism
Number of annotated sequences
available and used

Average sequence length
(rounded to the nearest integer)

Number ambiguous residues
(replaced by alanine)

C. parvum 3806 597 355
C. hominis 3886 452 318
P. falciparum 5411 751 71
P. berghei 12 235 245 2029
P. chabaudi 15 007 194 2223
P. vivax 5352 682 368
P. yoelii 7861 433 8689
T. parva 4079 465 4
T. gondii 7793 720 10 287
E. histolytica 9766 389 0
G. lamblia 9646 351 0
T. brucei 8758 502 8779
C. albicans 6125 479 128
C. glabrata 5271 502 204
D. discoideum 4032 668 4124
T. thermophila 27 424 605 60 746
S. cerevisiae 11 081 435 1316
C. elegans 38 398 465 718
V. cholerae 3887 299 20
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For a many-to-one signaling example (using structures

currently in the PDB), five disordered sequences associated

within a single binding groove in 14-3-3 were studied. The

flexibility of the disordered regions enabled them to fit into a

common binding site. Not only backbone flexibility, but also

side-chain flexibility is implicated in the movements needed for

the different sequences to be able to fit into the common

binding site.72 Importantly, this analysis also revealed that

flexibility on the structured protein side of the complex (i.e.,

within the 14-3-3 protein) also played a very important role in

enabling the binding of many disordered segments to a single

partner.72 We believe that signaling and regulation interac-

tions in protein–protein interactions networks of early-

branching eukaryotes can also be described in terms of one-

to-many and many-to-one models.

The abundance of intrinsic disorder we have identified using

a set of bioinformatics tools which include compositional

profiling, disorder prediction by PONDRs VLXT and

VSL2, CH-plot and CDF analysis as well as a-MoRF predic-

tion in the proteomes of early-branching eukaryotes, many of

which are pathogenic, emphasizes the need for more research

into their contribution to cellular physiology. While our

analysis of a published P. falciparum interactome revealed a

weak correlation between disorder and the proclivity to engage

in protein–protein interactions, more such networks need to be

evaluated to address this function. Additionally, it has been

proposed that regions of intrinsic disorder in pathogenic

protozoa provide a flexible means to facilitate host cell inva-

sion and thwart immune mechanisms.18 Given the high degree

and unusual nature of the intrinsically disordered regions we

have analyzed here, it is clear that further steps to elucidate

their biological roles in the context of parasite physiology and

pathogenesis would be effort well spent.

Conclusions

The abundance of intrinsically disordered proteins in several

early-branching eukaryotic organisms has been evaluated. An

unusual bias in the amino acids comprising protozoal

proteomes, high abundance of intrinsic disorder among

their proteins and prevalence of long disordered regions

were indicated by bioinformatics methods. An analysis of

a Plasmodium falciparum interactome indicated that

protein–protein interactions may be at least one function of

the intrinsic disorder. This study provides the results of the

large-scale bioinformatics analysis of proteins expressed by

several genomes of early-branching eukaryotes, involves the

computational identification of all the intrinsically disordered

proteins in these organsims and provides some clues of the role

of these disordered proteins in physiological and pathological

functions. Therefore, we provide here bioinformatics basis for

the discovery and analysis of unfoldomes (the complement of

intrinsically disordered proteins in a given proteome) of early-

branching eukaryotes. Altogether, these analyses provide new

insights into the evolution of intrinsic disorder in the context

of adapting to a parasitic lifestyle and lay the foundation for

further work on the subject.

Materials and methods

Sequences and datasets

Various online databases were used as sources for annotated

genomes corresponding to the following species: Plasmodium

falciparum (excluding mitochondrial and plastid proteins),

P. berghei, P. chabaudi, P. vivax, P. yoelii (Release 3.4),73

Toxoplasma gondii (Release 4.1),74 Theileria parva

(http://www.tigr.org),75 Cryptosporidium hominis and

Cryptosporidium parvum (http://cryptodb.org/cryptodb/),76,77

Candida albicans and C. glabrata,78 Entamoeba histolytica

(http://www.tigr.org), Giardia lamblia79 and Trypanosoma

brucei (http://www.tigr.org). In addition to these, annotated

data corresponding to the non-pathogenic free-living

protozoan Tetrahymena thermophila (http://www.tigr.org),

the slime mold Dictyostelium discoideum (http://dicty-

base.org/), and the yeast Saccharomyces cerevisiae (http://

www.yeastgenome.org/), were obtained to serve as control

organisms. Caenorhabditis elegans (http://www.worm-

base.org/) and Vibrio cholerae (http://www.tigr.org) were used

as models for a multicellular eukaryote and prokaryote,

respectively. All occurrences of ambiguous residues such as

B, X, or Z in the datasets were replaced by alanine, due to its

neutrality to order as well as disorder. The total numbers of

sequences, mean sequence lengths, and number of ambiguous

residues for each working dataset have been summarized in

Table 4.

A brief description of these organisms and their correspond-

ing pathologies is presented below. P. falciparum causes the

most dangerous form of malaria in humans. P. vivax is the

most frequent and widely distributed cause of benign, but

recurring (tertian) malaria in humans. P. berghei, P. chabaudi,

and P. yoelii are three of the four malaria parasites of African

murine rodents. T. gondii causes toxoplasmosis in warm-

blooded vertebrates. T. parva is the causative agent of East

Coast Fever (ECF), an acute, tick-borne disease causing high

rates of morbidity and mortality in cattle. Cryptosporidium

species cause diarrhoeal illness. C. albicans is a diploid fungus

(a form of yeast) capable of causing opportunistic oral and

genital infections in humans. C. glabrata is now recognized as

a highly opportunistic pathogen of the urogenital tract as well

as of the bloodstream in immunocompromised individuals.

E. histolytica and G. lamblia are anaerobic protozoan parasites

that infect the GI tract. T. brucei is parasitic protist that causes

African trypanosomiasis (sleeping sickness) in humans and

animals. D. discoideum (slime mold) is a soil-living amoeba

that exists in uni- and multi-cellular forms. T. thermophila is a

non-pathogenic free-living ciliated protozoan. Saccharomyces

cerevisiae is a species of the budding yeast. C. elegans is a free-

living nematode. V. cholerae is a gram negative bacterium that

causes cholera in humans.

Compositional profiling

To gain an insight into the relationships between sequence and

disorder, amino acid compositions from different datasets

were compared using an approach recently developed for

intrinsically disordered proteins.25,80 To this end, the frac-

tional difference in composition between a given set of proteins
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and a set of reference proteins (either a set of ordered

proteins54 or disordered proteins form DisProt database,81,82

or proteins from Tetrahymena thermophila, Caenorhabditis

elegans or Vibrio cholerae) was calculated for each amino

acid residue. The fractional difference was calculated as

(CX � Creference)/Creference, where CX is the content of a given

amino acid in a given protein (or protein set), and Creference is

the corresponding content in a set of reference proteins and

plotted for each amino acid. In corresponding plots, the amino

acids were arranged from the most rigid to the most flexible

according to the Vihinen’s flexibility scale, which is based on

the averaged B-factor values for the backbone atoms of each

residue type as estimated from 92 proteins.44

Predictions of intrinsic disorder

Disorder predictions for proteins corresponding to each of the

above listed organisms were made using PONDRs VLXT53,54

and VSL2B.50 Cumulative distribution function curves or

CDF curves52 were generated for each dataset using

PONDRs VLXT scores for each of the 19 organisms. CDF

analysis discriminates between order and disorder by means of

a boundary value. This value can be interpreted as a measure

of proportion of residues with low and high disorder predic-

tions. Additionally, charge-hydropathy distributions

(CH-plots) were also analyzed for these organisms using

methods as described in Uversky et al.22

a-MoRF predictions

The predictor of a-helix forming Molecular Recognition Fea-

tures, a-MoRF, is based on observations that predictions of

order in otherwise highly disordered proteins corresponds to

protein regions that mediate interaction with other proteins or

DNA. This predictor focuses on short binding regions within

long regions of disorder that are likely to form helical structure

upon binding.55 It uses a stacked architecture, where

PONDRs VLXT is used to identify short predictions of order

within long predictions of disorder and then a second level

predictor determines whether the order prediction is likely to

be a binding site based on attributes of both the predicted

ordered region and the predicted surrounding disordered

region. An a-MoRF prediction indicates the presence of a

relatively short (20 residues), loosely structured helical region

within a largely disordered sequence.55 Such regions gain

functionality upon a disorder-to-order transition induced by

binding to partner.56,57

Functional annotations

Additionally, we also made use of a protein–protein interac-

tion map from P. falciparum published recently.62 This map

contains 19 979 interactions involving 2321 proteins. This map

was generated by using logistic regression methods to interpret

protein–protein interactions involved in conserved protein

interactions, their underlying domain interactions and supple-

mental experimental data.62 Our goal for working with this

map was to compare the connectivity of P. falciparum proteins

(i.e. how many interactions a given protein participates in) and

their extent of intrinsic disorder.

Finally, functional and structural annotations were ob-

tained using PROSITE83 and Conserved Domain Database.84
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