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Several proteomic studies in the last decade revealed that many proteins are
either completely disordered or possess long structurally flexible regions.
Many such regions were shown to be of functional importance, often
allowing a protein to interact with a large number of diverse partners.
Parallel to these findings, during the last five years structural bioinformatics
has produced an explosion of results regarding protein–protein interactions
and their importance for cell signaling. We studied the occurrence of
relatively short (10–70 residues), loosely structured protein regions within
longer, largely disordered sequences that were characterized as bound to
larger proteins.We call these regionsmolecular recognition features (MoRFs,
also known as molecular recognition elements, MoREs). Interestingly, upon
binding to their partner(s), MoRFs undergo disorder-to-order transitions.
Thus, in our interpretation,MoRFs represent a class of disordered region that
exhibits molecular recognition and binding functions. This work extends
previous research showing the importance of flexibility and disorder for
molecular recognition.We describe the development of a database of MoRFs
derived from the RCSB Protein Data Bank and present preliminary results of
bioinformatics analyses of these sequences. Based on the structure adopted
upon binding, at least three basic types of MoRFs are found: α-MoRFs, β-
MoRFs, and ι-MoRFs, which form α-helices, β-strands, and irregular
secondary structure when bound, respectively. Our data suggest that
functionally significant residual structure can exist in MoRF regions prior
to the actual binding event. The contribution of intrinsic protein disorder to
the nature and function ofMoRFs has also been addressed. The results of this
study will advance the understanding of protein–protein interactions and
help towards the future development of useful protein–protein binding site
predictors.
© 2006 Elsevier Ltd. All rights reserved.
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Introduction

Traditional understanding of protein structure and
function relationships relies on protein function
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being critically dependent on a well-defined three-
dimensional protein structure. However, recent
studies have revealed that the true functional state
for many proteins and protein domains is intrinsi-
cally unstructured.1–20 Intrinsically unstructured
proteins, also known as intrinsically disordered
proteins, lack a single, stable conformation in
solution, where conformations fluctuate over time
and over the population. Many proteins have been
found to be entirely disordered while others contain
both structured regions and disordered regions. The
evidence that these intrinsically disordered proteins
exist in vitro and in vivo is compelling and justifies
considering them as a separate class within the
protein universe.5,11–13,21 A number of papers and
reviews have reported and discussed advances in the
ed.
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rapidly progressing study of intrinsically disordered
proteins, with major efforts being directed towards
gathering evidence for their unfolded nature and
discussing the functional implications of their malle-
able structural states.1–20

Disordered proteins are common in various
proteomes and their abundance increases with
increasing organism complexity.3,14,15,22–24 This in-
creased prediction of disorder in eukaryotes com-
pared with the prokaryotes or the archaea has been
hypothesized to be a consequence of the increased
need for cell signaling and regulation.15,22,24,25 The
functional importance of protein disorder is further
emphasized by its role in various signal transduction
processes, cell-cycle regulation, gene expression and
molecular recognition.2,4,5,18–20 The widespread
prevalence and importance of these intrinsically
disordered proteins has called for re-assessing the
understanding of the classical protein structure–
function paradigm.1

Among other functions, intrinsic disorder has been
suggested to play an important role in molecular
recognition.4,10,19,20,26,27 Molecular recognition is
defined as a process by which biological entities
specifically interact with each other or with small
molecules to form complexes. Complex formation is
often a prerequisite for biological function, but also
serves as a mechanism of functional modulation and
signal transduction. Common features of intrinsic
disorder-mediated molecular recognition are thought
to be: (a) a combination of high specificity and low
affinity; (b) binding diversity in which one region
specifically recognizes different partners by structural
accommodation; (c) binding commonality in which
multiple, distinct sequences recognize a common
binding site, where these sequences may assume
different folds. These same features are thought to be
crucial for interaction-mediated signaling and regula-
tion,which suggests that intrinsic disordermay play a
central role in signal transduction.1,4,10,19,20,26
Many examples of molecular recognition between

partners that are wholly disordered prior to binding
have been described.9,19,20,27 These interactions have
been shown to result in the formation of structured
protein complexes and are said to undergo a
disorder-to-order transition on binding. This mode
of molecular recognition is clearly incompatible with
the current view of structure–function relationships.
Molecular complementarily, which is rooted in the
century-old ‘‘lock-and-key'’ concept of Fischer,28 is
inappropriate for an interaction inwhich one partner
has no predefined structure. Themore recent concept
of induced fit,29 which takes into account that even
structured proteins are flexible to some extent, does
not describe the scale of conformational rearrange-
ments observed for intrinsically disordered proteins.
Clearly, the role of intrinsically disordered protein in
molecular recognition requires a new model to des-
cribe the determinants and driving forces of this
phenomenon.
Toward developing a model for intrinsic disorder-

mediated interactions, the idea of molecular recog-
nition features or elements (MoRFs) has previously
been proposed.26 The MoRF model describes regions
of intrinsic disorder that undergo a disorder-to-order
transition upon partner recognition, where the
residues responsible for these interactions are typi-
cally linear in the protein sequence. These regions
have been estimated to be common in proteomes,
particularly eukaryotes, and may be enriched in
proteins with regulatory and signal transduction
functions.26 This previous work focused on a small
set of MoRFs, those that form α-helices when bound
to partners (α-MoRFs).26 However, the class of all
MoRFs is thought to be much broader and include
MoRFs that form β-strands (β-MoRFs), irregular
structures (ι-MoRFs), and a combination of second-
ary structural forms (complex-MoRFs).
In this work, a representative set of all MoRF types

was assembled and analyzed to reveal their common
properties. There is currently a lack of information
on the various features and characteristics of MoRFs
and little is known about the mechanisms under-
lying the structural changes in MoRFs during their
binding phase. The aim of our work was to begin to
fill this knowledge gap. To this end, a dataset of
MoRFs was collected from the RCSB PDB and
evidence of their intrinsic disorder was collected
through sequence and structure-based methods.
These examples have also been characterized in
terms of physiochemical properties, such as compo-
sition and charge.Another goalwas to discover signs
of inherent secondary structure preferences, if any, in
MoRFs prior to binding, which could potentially
influence their final structure in the ordered com-
plex. Secondary structure propensity in MoRF
sequences were assessed by a secondary structure
predictor, PHD,30,31 and compared to experimen-
tally determined structures. The results of these
analyses should help to further our understanding of
the physicochemical and structural determinants of
intrinsically disordered regions that serve as mole-
cular recognition elements.

Results

MoRF and control dataset

An initial set of MoRFs was collected from the
PDB by selecting protein chains of less than 70
residues bound to other protein chains greater than
100 residues. The choice for selecting protein chains
with lengths less than 70 residues stemmed from the
idea that such proteins would be less likely to form a
stable structure prior to interaction with other
proteins. In other words, such protein chains
would less likely be able to develop significant
buried surface area before participating in the
molecular recognition event.
Using these criteria, a starting dataset consisting

of 2512 protein chains was assembled, where these
chains were reduced to give the final non-redun-
dant MoRF dataset. Table 1 summarizes the major
steps in the development of the MoRF dataset. The
PDB files corresponding to the initial 2512 proteins



Table 1. Number of MoRFs after each data processing
step

Number of MoRFs Residues

Initial MoRFs obtained
using the PDB SEQRES
dataset (July 2004)

2512 95,456

Filtering ambiguous data (X,Z),
removal of sequences with
less than 10 residues

1261 43,836

Sequence redundancy removal 372 10,434

Figure 1. Frequency distribution of number of homo-
logous MoRF sequences for 372 non-redundant MoRF
dataset. The x-axis gives the cluster size and the y-axis
shows the number of cluster with the given size.

Figure 2. Length distribution of the MoRFs dataset.
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were downloaded to obtain sequences, secondary
structure, and information on Ramachandran's φ
and ψ angles. The PDB SEQRES dataset contains all
the protein sequences available in the PDB along
with the residues observed in protein crystals or in
solution. These sequences also included residues not
present in the crystal model (e.g. disordered, lacking
electron density, cloning artifacts, and His–tags).
The first step was to remove all chains with

ambiguous sequence information (e.g. sequences
containing X designations instead of standard
amino acid designations). Protein chains ≤10 resi-
dues were also removed to facilitate mapping MoRF
chains to their parent sequences. That is, many
MoRF chains in the PDB are fragments of longer
proteins and such short peptides may not be long
enough to be specific to the parent protein sequence.
At the end of this step, 1261 chains (approximately
44,000 residues with an average chain length of 34.9
residues) remained.
The next step was to remove sequence redun-

dancy, which was done through application of
length-dependent thresholds of sequence identity.
This was necessary in order to overcome length
variations and the overall short lengths of the
MoRFs. It has been shown that pair-wise sequence
identity alone is a poor definition of the twilight
zone of sequence identity, which is the point where
the ability to infer structural similarity from se-
quence becomes ambigous.32 The use of length-
dependent cut-offs to ascertain degrees of similarity
within the MoRF dataset helps to correlate sequence
alignments to actual structural similarity more
strongly. Rost's formula32 was used to dynamically
calculate the sequence identity threshold based on
each chain's length.
Clusters were constructed using these dynamic

thresholds and representatives of each cluster were
selected as described in Materials and Methods,
which resulted in a dataset of 372 MoRFs. These
MoRFs, together with their major characteristics
and binding partners, are listed in Table S1 (see
Supplementary Data). The selected structures con-
sisted of 336 X-ray structures, 23 NMR structures,
and five cryo-electron microscopy structures. The
average resolution of the X-ray structures was
2.41(±0.60) Å. Figure 1 shows the distribution of
cluster members within the MoRF dataset. The
minimum number of members per cluster was at
least one and themaximumnumber ofmembers was
177 (Thrombin, Alpha-Thrombin). Analysis of the
lengths for all MoRFs showed that approximately
two-thirds of the selected chains had lengths
between 10 and 20 residues (Figure 2). Each selected
MoRF was mapped to its parent sequence as
described in Materials and Methods, where all but
53 were fragments of longer sequences.
For comparison, three datasets of ordered pro-

teins, as described in Materials and Methods, were
used, namely: ordered monomers (OM), ordered
complexes (OC), and PDB select 25 (PDB_25). The
OM set contained unique monomeric proteins from
PDB X-ray structures with an average resolution of
2.04(±0.50)Å. The OC set represents chains from
PDB X-ray structures that are ordered prior to
complex formation, with an average resolution of
1.86(±0.43)Å. The PDB_25 set is a non-redundant
dataset that is representative of all chains in the
PDB, where no chain in this set has a resolution
poorer than 3.5 Å.

Secondary structure analysis

The secondary structure assignments for each of
the 372 MoRFs were determined by the DSSP
program, which was designed to standardize



Figure 3. Examples of disorder predictions of MoRF-
containing proteins and complexes between MoRFs and
their binding partners. PONDR VL-XT predictions are
shown for p53 (upper plot), WASP (center plot), and Grim
(lower plot). The complexes shown are: (a) the α-MoRF of
p53 bound to MDM2 (PDB code 1YCR); the ι/α -MoRF of
p53 (b) bound to cyclin A2 (PDB code 1H26) and (c) bound
to S100ββ (PDB code 1DT7); (d) the complex-MoRF of
WASP bound to Cdc42 (PDB code 1CEE); (e) a complex
between two MoRFs of WASP (PDB code 1EJ5); (f) the
α-MoRF of WASP bound to actin (PDB code 1JD5); (g) the
β-MoRF of Grim bound to DIAP1 (PDB code 2A3Z). The
correspondence between sequence regions in the VL-XT
plots and sequences represented in the structures is
illustrated by the horizontal red and green boxes. Orange
boxes represent regions with known or homology inferred
structure (see the text for details).
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protein secondary structure assignments.30 DSSP
accepts a single PDB file as input and assigns
secondary structure types (viz. α-helices, β-strands
and irregular) to each residue of the sequence. This
analysis revealed that there are at least three basic
types of MoRFs: those that form α-helical structures
(α-MoRFs), β-strands (β-MoRFs), and irregular
structures (ι-MoRFs) upon binding. Furthermore,
several complex-MoRFs, i.e. containing different
combinations of α-helical, β-structural and irregular
elements, were also identified. Figure 3 represents
several illustrative examples of MoRFs. This Figure
is discussed in more detail below.
Secondary structure analysis revealed that 27% of

the residues in the MoRF dataset had α-helical
conformation, 12% were β-strands residues and
approximately 48% were residues of irregular
structure. The remaining 13% were residues with
missing coordinates in the corresponding PDB files
suggesting their highly flexible (disordered) nature.
We compared these results with those from the OM
dataset (Figure 4). The two distributions are
significantly different by a χ2 test (p=4×10−80),
but the relative χ2 value (0.003) indicates that the
difference, though significant, is relatively small.
The content of irregular structure is the largest
difference between theMoRF and OMdatasets, with
MoRFs having 6%more than OMs. Relative to OMs,
MoRFs also have an increased content of residues
with missing density and a corresponding
decreased content of α-helix and β-strand residues.
Over both sets, irregular structure is the most
abundant secondary structure type and β-strand is
the least.
The relative roles of local and non-local interac-

tions in determining the secondary structures of
MoRFs and OMs were studied. The role of non-local
interaction, both inter-chain interactions and intra-
chain interactions between residues distant in
sequence, in the determination of local structure is
somewhat controversial. Some authors have found
local interactions to be dominant over non-local
interactions in determining local structure,33 while
others have shown non-local interactions to have a
direct effect on accuracy of predictions of local
structure.34 Here, we take the view that different
proteins, and likely different regions in the same
protein, vary in the relative contributions of local
and non-local interaction to local structure, but we
make no attempt to contribute to the debate over the
magnitude of these contributions. The relative role
of non-local interactions was investigated by com-
paring the secondary structure prediction accura-
cies, using the PHD algorithm,30,31 for the MoRF
and OM datasets. In the single sequence mode, the
PHD secondary structure prediction algorithm uses
a series of neural networks applied over the local
sequence only. Since predictions do not consider the
entire sequence, predicted secondary structure
should reflect the secondary structural preferences
of the local sequence, excluding influences from
non-local interactions and bound partners. PHD is
more commonly applied to sequence profiles gen-
erated from multiple alignments for better accuracy;
however. the use of profiles is generally believed to
provide a local encoding of information about long
range interactions, which is not desired for the
present analysis. In single sequence mode, differ-
ences between observed secondary structure and
predicted secondary structure may reflect the extent
to which interactions between residues distant in



Figure 4. Secondary structure distribution of residues
in the MoRF dataset and in the OM dataset.
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sequence, in the case of monomers, or binding
partners, in the case of MoRFs, influences the final
protein conformation.
The overall prediction performance is consistent

with the reported accuracy of PHD, with a single
sequence prediction accuracy of 61% and a reduced
accuracy of prediction for β-strands relative to α-
helices and irregular structure (Table 2). Between
MoRFs and OMs, the accuracy of secondary
structure predictions for MoRFs is better than that
for OMs by 5%. Furthermore, prediction accuracy is
better for MoRFs for all defined secondary structure
types, where much of this difference is due to the
prediction accuracy for α-helices (9% better) rather
than for β-strand (4% better) or irregular structure
(3% better). These data suggest that the local
secondary structural propensity of MoRFs is some-
what better preserved in their bound state, particu-
larly for helical regions, than the local secondary
structural propensity of OMs.
The secondary structure predictions for regions of

missing density are also revealing; the missing
density in MoRFs is predominantly predicted to be
in an irregular conformation with much less of the
missing density in OMs predicted to be irregular
(31% difference). Missing density cannot be unequi-
vocally related to intrinsic disorder, since missing
density may correspond to mobile, structured
Table 2. PhD secondary structure prediction accuracies for M

α-Helix

DSSP (residues) 2469

MoRFs and monomers PHD (%) H: 74
B: 9
I: 17

DSSP (residues) 35,938
Monomers PHD (%) H: 65

B: 9
I: 32

Numbers indicated in bold represent the prevailing type of secondary
domains. However, the lower content of predicted
regular secondary structure in MoRFs, relative to
OMs, may be an indication that the missing density
in MoRFs is more likely to be disordered than the
missing density in OMs. This provides further
support to the idea that MoRFs occur in a disordered
context, since the majority of missing density in
these chains occurs in the N and C-terminal tails of
the crystallized fragments.
Structural types were further analyzed in terms of

contiguous structural regions. The MoRF set was
broken into 1880 regions of sequence contiguous
elements of secondary structure or missing density.
Examination of the different structural types (Table
3) revealed that 269 regions were α-helical while 381
were β-strands. The larger number of β-strand
regions than α-helix regions can be reconciled with
the larger number of α-helix residues than β-strand
residues (Figure 4) by observing that α-helical
regions are on average longer than β-strand regions,
with average lengths of 10±8 and 3±2 residues,
respectively. More than half of the total regions (991)
were found to have an irregular conformation. The
remaining 239 regions were disordered. The average
lengths of irregular regions (5±5 residues) and
missing density regions (5±6 residues) are of
intermediate length compared to α-helices and β-
strands.

Amino acid composition, charge and aromaticity

It has been reported that local amino acid
composition, flexibility, hydropathy, charge, coordi-
nation number and several other physiochemical
properties of intrinsically disordered protein regions
are significantly different from the same character-
istics derived from ordered protein regions.5,35–37

These properties have been examined for MoRFs,
relative to ordered proteins, to investigate order/
disorder propensity of MoRF regions. For this
analysis, PDB_25 was used, since this set has been
well characterized in terms of composition relative
to intrinsically disordered proteins.5,35–37
The amino acid composition of intrinsically dis-

ordered proteins is characterized by depletion in
order-promoting residues, such as C, V, L, I, M, Y, F,
and W, and enrichment in disorder-promoting
residues, such as Q, S, P, E, K, G, and A, relative to
ordered proteins.25,38 According to the MoRF
oRFs

β-Strand Irregular Missing density

1118 4359 1147

H: 11 H: 21 H: 18
B: 55 B: 15 B: 10
I: 34 I: 64 I: 72

19,363 47,029 10,189
H: 16 H: 20 H: 31
B: 51 B: 18 B: 27
I: 32 I: 61 I: 41

structure.



Figure 5. (a) Relative amino acid composition of
MoRFs with respect to PDB_25. The fractional difference
of the amino acid compositions of MoRFs and ordered
monomers is calculated as (MoRFs–PDB_25)/PDB_25. (b)
Relative amino acid composition of different structural
types (α-helical, β-structural, and irregular) of MoRFs
with respect to the same structural types in PDB_ 25. The
inset represents the same graph with a reduced relative
frequency range. The amino acid residues on the x-axis are
arranged from the most rigid to the most flexible
according to Vihinen et al.101 Error bars represent one
standard error, calculated from 200 bootstrap iterations.

Table 3. Region wise distribution in different structural
types of MoRFs

Region
length
(in residues)

No. of
missing
density
regions

No. of
α-helical
regions

No. of
β-strand
regions

No. of
irregular
regions

1–9 205 167 376 847
10–19 26 76 5 128
20–29 5 17 0 10
30–69 3 9 0 6
Total 239 269 381 991
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hypothesis, MoRFs are disordered in the absence of
binding partners, and consequently their amino acid
compositional biases may be more similar to
intrinsically disordered proteins than to ordered
proteins. Alternatively, the binding propensities of
these regions may give the compositions of these
proteins a bias somewhere in between those of
ordered and disordered proteins. To test the
compositional bias of MoRFs, the fractional differ-
ence between MoRF compositions and PDB_25
compositions was calculated. The fractional differ-
ence was calculated as (CMoRF–Corder)/Corder, where
CMoRF is the averaged amino acid composition of a
MoRF dataset, and Corder is the averaged amino acid
composition in PDB_25. The results are shown in
Figure 5, where amino acids are arranged from the
most rigid on the left to the most flexible on the right
according to Vihinen.39

The comparison between amino acid composi-
tions for MoRFs and PDB_25 (Figure 5(a)) shows
that MoRFs are enriched in many of the disorder-
promoting amino acids, arginine, glycine, serine,
and proline, and depleted in many of the order
promoting amino acids, tryptophan, isoleucine,
tyrosine, valine, and leucine. These biases suggest
that MoRFs are similar in composition to general
intrinsically disordered proteins. However, several
biases are inconsistent with this simple explanation.
MoRFs are depleted or show similar composition to
PDB_25 in charged residues other than arginine,
which are generally disorder promoting. It is
possible that the lower charge density of arginine
relative to lysine makes arginine more amenable to a
dual role in both ordered and disordered contexts.
The general effect of this bias on the total charge of
proteins is investigated in the next section.
Another bias inconsistency between MoRFs and

intrinsically disordered proteins is the enrichment of
MoRFs in cysteine and phenylalanine, which are
generally order promoting. The effect of the pheny-
lalanine composition on MoRF sequences is
explored below. The bias of MoRFs toward cysteine
is largely due to disulfide bonds. Of the 372 MoRFs,
36 contain at least one intra-chain disulfide bond, 18
contribute to at least one inter-chain disulfide bond,
and four have at least one of each intra and inter-
chain disulfide bonds. The cysteine residues
involved in these bonds account for 73% of the
cysteine residues in the MoRF dataset, which
suggests that reduced cysteine is not a prevalent
feature of MoRF regions. The presence of intra-chain
disulfide bonds in MoRF sequences has clear
implications for the hypotheses that these sequences
are disordered in the absence of binding partners,
since disulfides are well-known to stabilize protein
structure.40 As many as 11% of MoRFs in this
dataset may be stabilized by disulfide bonds in the
absence of their binding partners. This violates the
MoRF hypothesis, and so we classify these chains as
pseudo-MoRFs.
Compositional biases were also examined in terms

of the compositions of different secondary structure
elements (Figure 5(b)), where the fractional differ-
ence between MoRFs residues in helices, strands,
and irregular conformations and PDB_25 residues in
the same conformations were calculated. Generally,
the compositions show the same biases as the bulk
residues, or insignificant differences, due in part to
the smaller sizes of the sets. Notable compositional
biases of MoRFs include: the large bias of strand,
and to a lesser extent, irregular, residues toward
cysteine; the bias of strands and irregular residues
toward tyrosine; the bias of strands and irregular
residues toward lysine; and the bias of helical
residues against proline. The latter bias is



Figure 7. Ramachandran plot for MoRFs. Psi and phi-
angles that correspond to the PPII residues in a PPII
conformation are indicated (black box).
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particularly interesting, since MoRFs in general are
enriched in proline and proline is generally regarded
as a helix-breaking residue. This suggests that the
helices in MoRFs are more sensitive to the con-
formational restrictions of proline than are helices in
proteins in general.
A comparison of the total charge (K+R+D+E),

net charge (K+R–D–E), proline, and aromatic
content (F+W+Y) of MoRF proteins and PDB_25
proteins is shown in Figure 6. Despite being
depleted in lysine, aspartic acid, and glutamic
acid, MoRFs demonstrate a higher net charge than
the PDB_25 proteins. The enrichment in arginine
in MoRFs is apparent from the positive net charge
of MoRFs, compared to the negative net charge in
PDB_25. This is similar to a previous description
of intrinsically disordered proteins.2 MoRFs also
show lower proportions of aromatic amino acid
residues in comparison with PDB_25 proteins,
despite being enriched in phenylalanine. However,
the vast majority of MoRF regions contained at
least one aromatic residue, often phenylalanine.
This is consistent with the molecular recognition
function of MoRFs, since the side-chains of aro-
matic amino acids tend to make strong and
specific interactions.41

Finally, the proline content observed in MoRFs
exceeds that found in PDB_25 proteins by nearly
50%. This high concentration of proline was the
motivation for examining the prevalence of polypro-
line II helices (PPII helices) in MoRFs.

PPII helices

The poly-(L-proline) II helix, (PPII) is a left-handed
helix with an axial translation of 3.20 Å, a rise of
three residues per turn, and ideal backbone angles of
(φ, ψ)= (−75°, +145°). The range of backbone φ- and
ψ-angles is illustrated in Figure 7, where the φ and
Figure 6. Total and net charge (calculated as charge
per 100 residues) and the proportion of proline and
aromatic amino acid residues in MoRFs and PDB_25.
Error bars representing one standard error, calculated
from 200 bootstrap iterations, are plotted but are narrower
than the width of the bar boarders.
ψ-angles of the MoRF dataset are also plotted. The
PPII helix is often observed in the context of proline-
rich sequences,42 but sequences that are not enriched
in proline can adopt this structure.43,44 PPII he-
lices have even been hypothesized to be a major,
though transient, conformation of protein dena-
tured states.45–50 For example, ROA spectra of α-
synuclein, caseins and tau-protein suggest that these
proteins may contain some PPII conformation.50

The enrichment of MoRFs in proline and the
possible enrichment of PPII helix in intrinsically
disordered proteins in general motivated the inves-
tigation of the prevalence of PPII helix in the bound
structures of MoRFs. That is, the possible conforma-
tional preference of these proteins for the PPII helix
may be reflected in a higher content of PPII helices in
bound structures. Using the algorithm from Sreer-
ama et al.51 and Stapley & Creamer52 to calculate the
presence of PPII helices, 53 PPII regions with lengths
between 4 and 12 residues were identified in the
MoRF dataset. These regions included 2.6% of the
residues in the MoRF dataset. For comparison, a
previous study identified PPII helices of at least four
residues in length accounted for 2% of all residues in
known protein structures.53 For a comparable set of
101 PDB_25 proteins that were randomly selected
until ∼9000 residues were in the set, only 17 unique
PPII were found with no region greater than four
residues in length. These data suggest that MoRFs
are slightly enriched in PPII helices as compared to
bulk protein structures.

Order/disorder predictions

Computational structure and sequence-based
evaluations of ordered and disorder were per-
formed to provide support for the idea that MoRFs
are disordered in isolation and undergo a disorder-
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to-order transition upon binding. Structure-based
evaluations of disorder were performed using the
criteria of Gunasekaran et al.,54 who showed that the
complexes of intrinsically disordered proteins have
much larger interface and surface areas than those of
ordered proteins. Sequence-based evaluations used
prediction of disorder from sequence using both
PONDR® VL-XT36,38,55 and VL3.35 The behavior of
PONDR VL-XT on MoRF containing proteins has
been characterized on a small set of validated
MoRFs,26 whereas behavior of VL3 has not been
characterized in this respect.
Gunasekaran et al.54 have demonstrated that

intrinsic disorder in the unbound state is reflected
in structures of the bound state through relatively
large surface and interface areas. A structural
analysis of the bound structures of MoRFs in this
dataset was carried out, using the previously
characterized54 OC dataset as a negative control
(Figure 8). Almost all MoRFs in the dataset were
above the order-disorder boundary suggested by
Gunasekaran et al., which indicates that these
regions are likely to be disordered in isolation,
while all structured proteins were below this
boundary, which indicates these proteins are prob-
ably ordered in isolation. Only two of the β-MoRFs
and one of the ι-MoRFs falls below the suggested
boundary. This analysis should be viewed with
some caution, since the dataset used to derive the
boundary was relatively small. Indeed, only a very
slight shift in the boundary would put all of the
MoRFs above it. Thus, the boundary provides a
strong indication that the MoRFs in this dataset are
indeed disordered in the absence of their binding
partners and undergo a disorder-to-order transition
upon complex formation. It should also be noted
that disulfide bonds are not considered in this
analysis, and so the indication that oxidized pseudo-
MoRFs are disordered in the absence of their
binding partners is likely to be in error. However,
this analysis suggests that pseudo-MoRFs would
probably be disordered in the absence of their
binding partners and in the reduced state.
Figure 8. Surface and interface area normalized by the
number of residues in each chain for the MoRF and the OC
datasets.

Figure 9. Disorder distribution in (a) MoRFs and (b)
MoRF containing proteins and (c) OM proteins estimated
by PONDR® VL-XT and VL3 predictors.
Sequence based predictions of order/disorder,
made with both the PONDR® VL-XT36,38,55 and
VL335 predictors, seem to contradict the structure-
based results. Specifically, predictions of disorder in
MoRF regions (Figure 9(a)) suggest that, while many
MoRFs are highly disordered, many MoRFs may be
ordered. This is in part due to the large content of
cysteine in these sequences, which is strongly
correlated with prediction of order.38 Also, it has
been previously observed that disorder-to-order



Figure 10. Fraction of residues predicted to be
disordered for regions surrounding MoRFs and regions
taken from ordered monomers using PONDR (a) VL-XT
and (b) VL3.
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binding regions within larger disordered regions are
often predicted to be ordered,26,56 and these predic-
tions likely reflect these previous observations.
Examination of predicted disorder with respect to

secondary structure (Table 4) of MoRFs reveals some
bias toward prediction of disorder in irregular
residues and against prediction of disorder in β-
strand residues, with α-residues showing an inter-
mediate bias. Residues with missing density are the
most likely to be predicted to be disordered, which
is expected since these regions are very often
disordered in solution. In comparison to OM
dataset, a higher proportion of helix and irregular
residues in MoRFs are predicted to be disordered. A
lower proportion of MoRF strand residues are
predicted to be disordered compared to OM
proteins, although strand residues are the least
likely to be predicted to be disordered in both
datasets. The higher proportion of residues with
missing density predicted to be disordered in
MoRFs relative to OMs (20% higher) agrees with
the secondary structure prediction accuracy analy-
sis, which provides additional support to the idea
that regions of missing density in MoRFs are likely
to be disordered and consequently that MoRFs
occur in a disordered context.
The previously observed bias of disorder-to-order

transition regions to be predicted to be ordered26,56

gives a false indication of intrinsic order in many
MoRF sequences. This bias is evident by the extreme
behavior of disordered predictions for MoRFs
(Figure 9(a)), where most MoRFs are predicted to
be either highly disorder or highly ordered. There-
fore, disorder predictions were also examined for the
entire sequences of proteins containing MoRFs and
the sequence regions to the N and C sides of MoRFs
in these sequences, in order to provide support for
the idea that these regions occur in longer region of
disorder. Disorder predictions for the full-length
proteins that contain MoRFs (Figure 9(b)), relative
to OM proteins (Figure 9(c)), suggest that many
MoRF containing proteins are highly disordered. For
the calculation of disorder in regions surrounding
MoRFs, the fraction of residues predicted to be
disordered was calculated over two windows of
residues in the parent sequence of the MoRF, one on
Table 4. PONDRVL-XT predictions of order/disorder for
different classes of MoRFs

Dataset
Residue
type

Predicted
disordered (%)

Predicted
ordered (%)

MoRFs α–residues 9 18
β–residues 2 10
ι–residues 18 30
Missing
density

7 7

Monomers α–residues 8 25
β–residues 4 14
ι–residues 7 32
Missing
density

3 7
the C side and one on the N side of the MoRF. For
ordered proteins, random sequence windows of
equal size were taken from the OM set. Similar to the
entire sequence of proteins containing MoRFs, the
sequence regions immediately surrounding MoRFs
show a high content of predicted disordered
residues, relative to OM proteins (Figure 10). This
suggests that theseMoRFs frequently occur in longer
regions of predicted disorder.

Functional analysis of MoRFs

The functions of MoRF containing proteins were
investigated by examining the keywords associated
with those MoRFs with sequences in Swiss-Prot. Of
MoRFs in the current set, 227 MoRFs were found in
201 Swiss-Prot sequences, due to non-overlapping
MoRFs from the same parent sequence, and a
summary of the keywords associated with these
MoRFs is shown in Table 5. The most frequent
keyword found for MoRF sequences, 3D structure,
indicates only that these sequences have structures
in PDB, which contains no information for the
present analysis and is excluded from Table 5. The
high number of hits for such keywords as “signal”
and “alternative splicing” corresponding to the
MoRF dataset suggests that sequences containing
MoRFs are likely to be involved in signaling
processes or being alternatively spliced. The last



Table 5. Top 8 Swiss Prot functional classes returned for
MoRFs

SW keyword Frequency

Signal 57
Glycoprotein 41
Transmembrane 37
Alternative splicing 35
Hydrolase 25
DNA binding 24
Transcription regulation 23
Serine protease inhibitor 21
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observation is of crucial importance, as our recent
study revealed the existence of strong correlation
between intrinsic disorder and alternative spli-
cing.57 It has been emphasized that associating
alternative splicing with protein disorder enables
temporal and tissue-specific modulation of protein
function needed for cell differentiation and for the
evolution of multi-cellular organisms. These data
suggest that MoRFs are associated with alternative
spliced regions, which in turn suggests a functional
role for alternatively spliced intrinsically disordered
regions. That is, MoRFs provide a mechanism by
which the functional profile of a protein may be
modulated by alternative splicing without the
restriction of structural constraints that would be
present for structured proteins.
Phosphorylation modulates the activity of numer-

ous proteins involved in signal transduction and
may generally function through alteration of bind-
ing affinities.58 Since the primary role of MoRFs is
hypothesized to be molecular recognition, we esti-
mated the extent of phosphorylation in MoRFs
using the DISorder-enhanced PHOSphorylation
predictor (DisPhos).59 Briefly, DisPhos leverages
both sequence profiles and disordered predictions
for improved prediction of phosphorylation sites in
protein sequences. The application of DisPhos to the
MoRF-containing proteins revealed that in the 305
MoRFs with lengths ≥12 residues, 159 had potential
phosphorylation sites. Of the 1082 phosphoryla-
tion sites predicted by DisPhos for these MoRFs,
45%, 36%, and 19% were serine, threonine, and
tyrosine phosphorylation sites, respectively. A par-
allel PROSITE60 search also showed that a third of
MoRFs potentially contain phosphorylation sites.
The DisPhos and PROSITE results suggest that
phosphorylationmay be a very commonmechanism
for the regulation of the binding affinities of
MoRFs.

Examination of MoRF examples

The structures of a few examples of MoRFs are
illustrated in the context of their PONDR VL-XT
predictions in Figure 3. This provides an example of
each of α, β, ι, and complex-MoRFs (e.g. Figure 3(a),
(g), (c), and (d), respectively), and also provides
examples of structural polymorphism in a MoRF
bound to two different partners (Figure 3(b) and (c),
(d) and (e)).
Tumor suppressor p53 plays a vital role in the
regulation of cellular division in response to DNA
damage and mutations of this gene are estimated to
be present in ∼50% of human cancer cases.61 The
four domains crucial to p53 function are shown in
context of the PONDR VL-XT prediction for p53
(Figure 3, upper plot): an N-terminal MoRF, the
DNA binding domain (Figure 3, box 1), the
tetramerization domain (Figure 3, box 2), and a C-
terminal MoRF (Figure 3, both overlapping red
boxes). Both the N and C-terminal MoRFs have been
verified to be disordered in the absence of binding
partners.62,63 The N-terminal MoRF is an example of
an α-MoRF and corresponds to the transactivation
domain of p53 bound to MDM2 (Figure 3(a)),64

where this interaction inhibits p53′s transactivation
activity and subsequent cell cycle arrest.65 The C-
terminal MoRF is an example of an ι-MoRFs and is
shown interacting with the CDK2/cyclin A complex
(Figure 3(b)).66 This interaction facilitates phosphor-
ylation and thereby activation of p53.67 An over-
lapping region of p53 also interacts with S100ββ, an
interaction that blocks oligomerization68 and
phoshorylation,69 thereby blocking activation, of
p53, but forms an α-helix when bound (Figure
3(c)).62 The C-terminal region of p53 represents a
single MoRF that interacts with multiple partners; it
is an example of the richness of function possible
under the MoRF model.
Wiskott–Aldrich syndrome protein (WASP) plays

an important role in Arp2/3-mediated regulation of
the actin cytoskeleton.70 Four domains important
for WASP function are shown in the context of the
WASP PONDR VL-XT prediction (Figure 3, center
plot), which are, from the N to C termini: the N-
terminal WH1 domain (Figure 3, box 3), a complex-
MoRF that corresponds to the GTPase binding
domain (GBD; Figure 3, both overlapping red
boxes), an α-MoRF corresponding to the WH2
domain, and the C-terminal VCA region (Figure 3,
green box). Note that the GDB MoRF is the only
MoRF in the current dataset; theWH2-actin complex
structure (Figure 3(f))71 was released after construc-
tion of the dataset and the VCA-GDB complex
(Figure 3(e))72 is actually a single chimerical chain,
which was discarded by the MoRF selection criteria.
However, both the VCA and WH2 domain are
consistent with MoRF criteria and are considered
such here.
The VCA domain interacts directly with the

Arp2/3 complex and, together with the actin
binding activity of the WH2 domain (Figure 3(f)),71

stimulates polymer nucleation.70 Interestingly, the
Arp2/3 binding activity of the VCA MoRF is
autoinhibited by the GDB MoRF (Figure 3(e)).72

This auto-inhibitory interaction is interrupted by
binding of the GDB MoRF to activated Cdc42
(Figure 3(d)),73 which releases the VCA MoRF to
interact with Arp2/3.74 The two GDB MoRF
complexes (Figure 3(d) and (e)) show radically
different structures, which is an extreme example
of multiple binding affinities through bound struc-
ture conformational heterogeneity.
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Grim protein bound to the DIAP1 apoptosis
inhibitor is an example of an extended β-MoRF
(Figure 3(g)).75 In Drosophila, DIAP1 inhibits apop-
tosis through interaction with and subsequent
down-regulation of caspase activity.76 Grim pre-
vents the interaction of DIAP1 with caspases by
competitively binding to DIAP1 with a short stretch
of residues at its N terminus.77 This mechanism of
inhibiting DIAP1 activity is not unique to Grim, but
is shared by the Hid and Reaper proteins,77 which
contain sequences homologous to Grim over their
N-terminal 14 residues. That three otherwise non-
homologous proteins share a similar mechanism for
inhibiting DIAP1 demonstrates one very important
aspect of MoRF function; under the MoRF model,
gain of function may be obtained through mutation
or duplication of relatively few residues without the
restriction of maintenance of globular structure.
The examples illustrated here of the bound mor-

phological heterogeneity of MoRFs (Figure 3(b)–(e))
may represent a more general phenomenon of
molecular recognition by MoRFs. In a protein that
is ordered prior to binding its partners, overlapping
interaction sites on its surface are necessarily the
same, which imposes severe constraints on the
interface properties of its partners. For MoRFs,
which are disordered prior to binding by definition,
the residues used for partner recognition may be
very different. This transfers the burden of specificity
determination from the partner to theMoRF, relative
to ordered proteins. The number of partners that can
be encoded by a given sequence is likely limited, but
further research is required to determine this
limitation.
Finally, a clear relationship between PONDR VL-

XT predictions and the sequence location of MoRFs
is apparent from Figure 3; MoRFs are often
predicted to occur in ordered regions flanked by
long predictions of disorder. This general feature has
been noted in the context of other proteins by two
groups, called indications of binding regions56 or
regions of intrinsic structural preference,78 and form
the basis for the α-MoRF predictor.26 Such examples
from the MoRF dataset indicate the possibility of
discovering novel binding regions in other proteins
containing MoRFs. However, this heuristic is clearly
not generally applicable; Figure 9(a) shows that
many MoRF regions are predicted to be highly
disordered. Further work is required to determine if
these two types of MoRFs, predicted ordered and
predicted disordered, have real physical differences,
or if they can be somehow grouped into a single,
novel prediction scheme.

Discussion

Intrinsic disorder and conformational bias

The express purpose of the selection process and
manual inspection of MoRFs was to gather exam-
ples of proteins or protein fragments that appeared
to envelop their respective partners and participate
in molecular recognition mediated by a disorder-to-
order transition. The fact that these MoRFs are
disordered in the unbound state is supported by
several lines of evidence presented here. (1) Com-
positional analysis shows that these MoRFs have
compositions generally more similar to intrinsically
disordered proteins than to ordered proteins. (2)
Structure-based examination of order-disorder indi-
cates that the structures of most of these MoRFs
have surface and interface areas similar to disor-
dered proteins. (3) Sequence-based predictions
indicate that many MoRF sequences are likely to
be disordered in isolation. In consideration of the
previously described bias of PONDR predictors to
indicate order in regions that undergo a disorder-to-
order transition upon binding,26,56 disorder predic-
tions of MoRF regions should be considered overly
conservative. (4) To compensate for this predictor
bias, sequence based predictions were examined for
sequences containing MoRFs and the sequence
regions immediately surrounding MoRF regions.
These predictions indicate that many MoRF regions
are likely to occur in a disordered context. This
evidence suggests that the MoRF examples exam-
ined here conform to the MoRF hypothesis.
The general molecular recognition function of

MoRFs involves binding to specific partners through
a disorder-to-order transition.26 This binding pro-
cess can be considered as a special type of protein
folding. In protein folding, formation of tertiary
structure stabilizes secondary structural elements.
Similarly in disorder-to-order transitions, formation
of intermolecular contacts between the MoRF and its
binding partner stabilizes secondary structure ele-
ments in the MoRF. By this analogy with globular
protein folding, two mechanisms of the formation of
structure in MoRFs can be suggested. The first
mechanism,the inherent-structure mechanism,
involves the predominance of a particular local
secondary structure among the highly fluctuating
conformations sampled by the unbound MoRF.79 In
this case, the structure of the MoRF is not entirely
random and shows some features that will later be
stabilized in the bound conformation. The second
mechanism, the induced-structure mechanism, is
that the MoRF is in a completely disordered state
prior to binding and makes initial intra- and inter-
chain contacts randomly. These contact points serve
as nucleation sites for the subsequent folding and
formation of secondary structure under the influ-
ence of successive contacts with the partner. In such
a mechanism, the inherent conformational prefer-
ences of the intrinsically disordered protein itself
may be overridden by interactions with the part-
ner, resulting in significantly different secondary
structure elements in its uncomplexed and bound
state.
Support for the inherent-structure mechanism is

provided by comparison of experimental and pre-
dicted secondary structure. This comparison sug-
gests that the conformation of the bound form of
MoRFs ismore dependent on local sequence, relative
to monomers, and not strictly determined by the
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binding partner. In other words, the conformational
space of unbound MoRFs may be limited by their
conformational preferences and may restrict the set
of possible structures in the bound state. This idea
agrees with previously reported observations that
MoRFs display signs of residual structure, for
example p27(Kip1),80 p5380 and GCN4.81 A
restricted choice of available conformational states
would serve to reduce the entropic cost of binding,
thereby increasing affinity, provided that the pre-
dominant conformations resemble the bound con-
formation. The secondary structure accuracy rates of
MoRF structures suggest that this is the case; the
intrinsic structural propensity of the MoRF sequence
is reflected in the bound state.
Support for the induced-structure mechanism is

also provided by the secondary structure predic-
tions; the accuracy of secondary structure predic-
tions for MoRFs is only marginally better than the
accuracy of secondary structure predictions for
monomers. This suggests that not all of MoRF
residues have strong, local structural preferences,
relative to monomers, or at least that these structural
preferences are not always satisfied in the bound
state. The examples of structural polymorphism in
MoRFs from p53 and WASP (Figure 3) demonstrate
that, at least for these examples, that the intrinsically
structural preferences of MoRFs cannot always be
satisfied. That is, the structural preferences of the
MoRF cannot be an overriding factor in determining
bound MoRF conformation if MoRFs can adopt
multiple conformations when bound. Another well
characterized protein that exhibits this flexible
binding mode is the Cdk inhibitor p21Cip1, which
can interact with CycA-Cdk2, CycE-Cdk2, CycD-
Cdk4 complexes80 and apoptosis signal-regulating
kinase 182 under different conditions. In fact, it has
been shown for at least one MoRF, p27(Kip1),80 that
over-stabilization of secondary structural elements
can decrease the rate constant of complex formation,
which can be interpreted as residual structure
interfering with the MoRF reaching the correct
bound conformation.
It seems unlikely that either of the inherent or

induced-structure mechanisms is completely cor-
rect, and it is more likely that both of these mecha-
nisms are at play in MoRF mediated interactions.
MoRFs can be regarded as “mixtures” of segments
with strong or weak secondary structure pre-
ferences, where the strength of these preferences
may serve to modulate affinity for their binding
partner.

PPII helices in MoRFs

The existence of PPII peptides in our MoRF
dataset suggests that the extended and rather stiff
PPII helix conformation in MoRFs might be impor-
tant for protein–protein interactions. The PPII
conformation may be advantageous in protein
interactions for several reasons, for instance the
backbone atoms of peptide can form hydrogen
bonds with the protein receptor at the interface of
the peptide–protein complex.83 An earlier study
revealed that a great number of linear peptides,
whose extended structure was determined by X-ray
or NMR studies, are involved in molecular recogni-
tion processes.84

The PPII left-handed helical structure was almost
unknown until recently, being often confused with
unordered, disordered, irregular, unstructured,
extended, or random coil conformations because it
is neither α-helical nor β-turn nor β-strands; i.e. a
classical structure.83,84 The overall importance of this
conformation has recently become apparent,48,84 as
it has been recognized that PPII may play a central
role in numerous processes including signal trans-
duction, transcription, cell motility, and the immune
response.48 Furthermore, the results of recent studies
on Raman optical activity (ROA) spectra and NMR
analysis provide good evidence that proteins pre-
viously thought to be in a statistical coil state may in
fact be flickering in and out of a metastable PPII
helical conformation.43,85,86 It has been also hypothe-
sized that PPII, being transiently populated by a
polypeptide chain in a major amyloidogenic con-
formation, pre-molten globule state87 may play a
crucial role in the protein fibrillogenesis.88 For
example, it has recently been shown that the
hydrated α-helix in human lysozyme readily under-
goes a conformational change to PPII structure on
heating, i.e. under conditions favoring fibrillation.88

It has been assumed that this conformational change
may be a key step in the conversion of α-helix into β-
strand associated with the formation of amyloid
fibrils in this protein. Furthermore, since the PPII
helix is extended, flexible, lacks intra-chain hydrogen
bonds and is fully hydrated in aqueous solution, it
has the appropriate characteristics to be implicated
as a critical conformational element in conforma-
tional diseases.88

Molecular function and MoRFs

The functional analysis of MoRFs here agrees
with previous functional analyses of intrinsic
disorder in general. Specifically, it was found that
many MoRFs are associated with signaling and
alternative splicing and that phosphorylation may
be a general mechanism for regulating MoRF
binding functions. For intrinsic disorder in general,
previous studies4,5,11,16,17 have found that intrinsic
disorder is strongly associated with signal trans-
duction, cell-cycle regulation and gene expression
and thus may often be implicated in various cancer
types.20 Disorder is also strongly correlated with
the sites of post-translational modification, such
as phosphorylation, acetylation, ubiquitination,
hydroxylation, and proteolysis.5,9–12,16,19 Protein
phosphorylation represents an important regula-
tory mechanism in eukaryotic cells, where at least
one-third of proteins undergo reversible phos-
phorylation.89

Another prominent feature of intrinsic disorder is
that its extreme proteolytic sensitivity, in principle,
allows for effective and temporally responsive
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control via rapid turnover. Disordered proteins,
some of which are known to be short-lived and
subject to rapid turnover, are prevalent among
signaling, regulatory and cancer-associated
proteins.3,15 Furthermore, disorder itself constitutes
an integral part of the proteasomal destruction
signal in two distinct ways. On one hand, non-
ubiquitinated intrinsic disorder may be directly
degraded by the 20 S proteasome, as shown for the
disordered proteins p21Cip190 and tau.91 On the
other hand, this mechanism may also play a more
subtle regulatory role; disordered segments in
multidomain proteins may be processed, thereby
releasing the flanking, constitutively activated glob-
ular domains due to the endoproteolytic activity of
the proteasome.92 Disorder may also constitute part
of the signal to the ubiquitination system itself. For
example the regions of securin and cyclin B
recognized by the ubiquitination machinery have
been shown recently to be natively unfolded.93 We
hypothesize that many of the properties of intrinsic
disorder also apply to MoRFs, given that they are
disordered in the absence of binding partners.
Conversely, MoRFs are primarily responsible for a
subset of the properties of intrinsic disorder in
general.
Functional disorder was noted to be associated

with molecular recognition that involves protein
binding to RNA, DNA, other proteins, and small
molecule ligands.2–4,7–12,15,16,19,24,25 For protein–
protein interactions, MoRFs may provide a general
mechanism by which intrinsic disorder mediates
these interactions. MoRFs, and intrinsic disorder in
general, provide several desirable properties asso-
ciated with protein–protein interactions that med-
iate signaling events. The relatively large exposed
surface area of unbound MoRFs enables them to
contact their partner(s) over a large binding surface
for a protein of the given size. This allows an
interaction potential to be realized by shorter
proteins, thus facilitating more economical encod-
ing, transcription, translation and spatial require-
ments for a given recognition function.94 In addition
to these advantages, the flexibility itself is instru-
mental to the assembly process, as certain complexes
may not be assembled successfully from rigid
components. The open, extended structure of
MoRFs may enable an increased speed of interac-
tion; macromolecular association rates are thought
to be substantially improved by an initial, relatively
non-specific association enabled by flexible (dis-
ordered) recognition segments, mechanistically
describe as the ‘‘fly-casting'’ model.95 Another
unique consequence of the structural flexibility of
MoRFs is their capability to adapt to the structure of
different partners, which allows increased plasticity
in signaling interactions. Such a molecular recogni-
tion mechanism, which is coupled to the folding
process, has been noted to confer exceptional
specificity and versatility.5,16,27,94 All these features
help explain the prevalence of structural disorder in
signaling and regulatory proteins.16,27 The interac-
tion of intrinsically disordered proteins with their
partners highlights the need and importance of
understanding the mechanism of the induced
folding process. Since effective functioning of
intrinsically disordered proteins requires fast for-
mation of the folded state,95 their template-induced
folding represents a special and interesting case of
protein folding.

Materials and Methods

Assembling the MoRF dataset

Protein segments shorter than 70 residues, which
were observed to be bound to other proteins longer
than 100 residues, were collected from the Protein Data
Bank (PDB)96 using the provided SEQRES data. Then,
all sequences containing non-standard residues (X or Z
annotations) and all protein chains with lengths of ten
residues and shorter were removed and the resulting
dataset was subjected to redundancy analysis. Sequence
redundancy was eliminated by applying a dynamic
sequence identity threshold (described in Results) to
each sequence pair and clustering all sequences using
the “more similar than identical” rule described by
Rost.32 If the sequence identity between any two
MoRFs was higher than a threshold for similarity,
they were considered to be structurally similar and
hence part of the same cluster. If sequence identity was
lower than the threshold then sequence was assigned
to a new cluster. Our interest in this formula was
largely due to the length restrictions of MoRFs (i.e. ≤70
and wherein using the standard 25% identity cut off
would produce many false positives) as this method
allowed us to use a "length dependent" threshold
calculation method. A representative of each cluster
was selected by these criteria. The selected structures
were examined using the Swiss PDB Viewer. All
structures that appeared to be globular were elimi-
nated, where only four such examples were found. The
selection process resulted in 372 chains that make up
the MoRF dataset.
Using other database references (Swiss-Prot,97 PIR,98

and NCBI referenced in the respective PDB files for each of
the MoRF sequences) we were able to extract 301
sequences containing these 372 MoRF chains. All but 53
of the total MoRFs were found to be fragments of larger
sequences. The final task after collecting and processing
these MoRFs was to design a database for storing the
MoRF data. For this, we used MySQL as the backend and
Perl scripts to load information about each MoRF such as
sequence, secondary structure, binding partner, disorder
predictions, etc.

Ordered protein control sets

Three sets of ordered proteins were used as controls in
this work. Two of these sets have been described, PDB
select 25 (PDB_25)99 and the ordered protein complex set
(OC).54 PDB_25 is a representative set of chains from the
PDB where no two chains have greater that 25%
sequence identity. Furthermore, structures were selected
based on quality, where no structure in the set has a
resolution poorer than 3.5 Å or an R-factor greater than
30. The version of PDB_25 used was released in March
2005 and contained 1765 sequences. The OC set is a
collection of protein–protein complexes, including both



1056 Analysis of Molecular Recognition Features
complexes present in solution and artificial complexes
due to crystal packing, where the partners have been
shown to be ordered prior to complex formation. This set
included 26 structures.
The third set, ordered monomers (OM), was derived

from the protein quaternary structure (PQS) server.100

This resource infers the solution oligomeric state of a
protein structure based on the surface area buried
between individual subunits in the asymmetric unit and
symmetry related molecules. Monomeric proteins from X-
ray crystal structures were selected and further filtered for
structures that contain only a single chain in the
asymmetric unit. The SEQRES records were used to
cluster these chains for sequence similarity at threshold of
25% sequence identity and 60% coverage using the
blastclust program provided by NCBI. The resulting set
contained 848 proteins chains.

Compositional profiling

The analysis of amino acid composition in the MoRF
dataset was based on the approach recently developed for
intrinsically disordered proteins.5 Briefly, this consists of
calculating the fractional difference in composition
between the set of proteins being studied and a set of
ordered proteins for each amino acid residue. The
fractional difference is calculated as (CX-Cordered)/Cordered,
where CX is the content of a given amino acid in the set of
proteins being studies, and Cordered is the corresponding
content in a set of ordered proteins. Subsequently, plots of
(CX-Cordered)/Cordered are constructed with the amino
acids arrayed from the most rigid to the most flexible
according to averaged backbone atom B-factor values as
determined by Vihinen et al.101 Standard errors were
calculated from 200 bootstrap iterations.

Disorder prediction

PONDR® (predictor of natural disordered regions) is a
set of neural network predictors of disordered regions
based on local amino acid composition, flexibility, hydro-
pathy, coordination number and other factors. These
predictors classify each residue within a sequence as
either ordered or disordered. PONDR® VL-XT integrates
three feed forward neural networks: the variously
characterized long, version 1 (VL1) predictor from
Romero et al. 2001,38 which predicts non-terminal resi-
dues, and the X-ray characterized N and C-terminal
predictors (XT) from Li et al. 1999,55 which predicts
terminal residues. Output for the VL1 predictor starts and
ends 11 amino acids from the termini. The XT predictors
output provides predictions up to 14 amino acids from
their respective ends. A simple average is taken for the
overlapping predictions; and a sliding window of nine
amino acids is used to smooth the prediction values along
the length of the sequence. Unsmoothed prediction values
from the XT predictors are used for the first and last four
sequence positions.
PONDR® VL3 combines the predictions of 30 neural

networks for the entire protein sequence and was trained
using disordered regions from more than 150 proteins
characterized by the methods mentioned above plus
circular dichroism, limited proteolysis and other physical
approaches.102

PONDR® VL-XT and VL3 predictions were performed
on all of the protein sequences in the database. The
resulting disorder score for each amino acid position was
stored for later use.
Secondary structure analysis

The predisposition of each MoRF sequence to form
secondary structure was assessed by the secondary
structure predictor PHD.30,31 Additionally, information
about the secondary structure of the MoRFs in the bound
state was extracted from the corresponding PDB files
using the DSSP program.30

Identification of polyproline type II helices

Using approaches developed earlier by Sreerama et al.
199451 and Stapley & Creamer52 we identified polyproline
type II (PPII) helices as a stretch containing minimum of
four contiguous residues having φ and ψ angles within the
regions from 125° to 165° and from −95° to −55°,
respectively. The natural restriction of the φ angle of a
proline side-chain in any polypeptide within the range
from −48° to −78° forms the basis of these φ and ψ ranges.

Identification of post-translational modification sites

Post-translational modification sites in the members of
the MoRF dataset were identified by the searching the
PROSITE database.60 In addition, an intrinsic disorder-
based algorithm for the prediction of phosphorylation
sites, DisPhos,59 was applied to 305 MoRFs whose lengths
were ≥12 residues.
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