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ABSTRACT 

Determining the repertoire of a microbe’s molecu-
lar functions is a central question in microbial biol-
ogy. Modern tec hniques ac hieve this goal by com-
paring microbial genetic material against reference
databases of functionally annotated genes / proteins
or known taxonomic markers such as 16S rRNA.
Here, we describe a novel approach to exploring
bacterial functional repertoires without reference
databases. Our Fusion scheme establishes func-
tional relationships between bacteria and assigns
organisms to Fusion-taxa that differ from otherwise
defined taxonomic clades. Three key findings of our
work stand out. First, bacterial functional compar-
isons outperform marker genes in assigning tax-
onomic clades. Fusion profiles are also better for
this task than other functional annotation schemes.
Second, Fusion-taxa are r ob ust to addition of novel
organisms and are, arguably, able to capture the
environment-driven bacterial diver sity. Finall y, our
alignment-free nucleic acid-based Siamese Neural
Network model, created using Fusion functions, en-
ables finding shared functionality of very distant,
possibl y structurall y different, microbial homologs.
Our work can thus help annotate functional reper-
toires of bacterial organisms and further guide our
understanding of microbial communities. 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Exploring the molecular functional capabilities of microbes
is key to understanding their lifestyles and contributions
to the biogeosphere cycles that run our world ( 1–6 ). Mi-
crobial communities are often analyzed by taxonomically
categorizing their members, defining their functional capa-
bilities, and using this knowledge as a proxy for the com-
munity’s overall functional abilities ( 7–10 ). DN A–DN A hy-
bridization (DDH) has long been accepted as the experi-
mental gold standard for taxonomic classification of newly
sequenced organisms and reclassification of existing ones
( 11 , 12 ); although note that experimental error in establish-
ing DDH could negati v ely impact species delineation ( 13 ).
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or an easier comparison, DDH could be approximated 

sing 16S rRNA similarity and bacterial morphology and 

hysiology ( 14–16 ). Howe v er, mor e r ecent approaches ana- 
yze genome sequence properties, such as average nucleotide 
dentity (ANI) and multilocus sequence similarity ( 17–21 ). 
hese sequence-based methods are thus the de facto gold 

tandard of organism classification, promising taxonomic 
recision and simpler and cheaper experimental use. 
Nota bly, the a bove methods adopt a primarily phylo- 

enetic view of bacterial relationships, assessing microor- 
anisms’ likely evolutionary lineage based on genetic sim- 
larity. Horizontal gene transfer (HGT), i.e. the exchange 
f genetic material across taxonomic lineages, complicates 
his approach to bacterial classification ( 22–24 ). HGT is 
he primary way for evolutionarily distant organisms to ac- 
uire similar functional capabilities encoded by similar se- 
uences ( 25–27 ). Conv ersely, e volutionarily close sequence- 
imilar organisms can functionally di v erge under environ- 
ental pr essur e. Gi v en a shift towar ds analyzing the func-

ional capabilities of microbes ( 8 , 28–30 ), i.e. ‘W ha t are they
oing?’ instead of ‘Who are they?’, one might ask the ques- 
ion ‘Are these bacteria functionally related?’ as opposed to 

Are they evolutionary cousins?’ The former question can 

e answered well, if incompletely, by phenetic approaches 
ased on, for example, dif ferentia tion of cell wall compo- 
ition, guanine-cytosine content, and the presence of lipids 
mongst others ( 31 , 32 ). We propose that genome-inferred 

acterial functional annotations may further improve the 
esolution of these methods. 

We previously developed Fusion, a method for evaluat- 
ng microbial similarities based on shared functionality en- 
oded in their genomes ( 28 , 33 ). This approach re v ealed re-
ationships between organism groups that are o verlook ed 

hen using taxonomic or DNA similarity alone. Here, in 

ddition to updating our classification scheme for a faster 
nd mor e pr ecise way of dealing with a flood of microbial 
enomes, we made three key observations: (i) We validated 

ur functional classification of proteins by evaluating the 
bility of Fusion functions to recall existing bacterial tax- 
nomy. The expansion of the bacterial dataset in compari- 
on to earlier work, from 1.3K to 8.9K organisms –– a 7-fold 

rowth, did not equivalently increase the proposed num- 
er of Fusion functions (30% increase, 335k versus 434k 

unctions). We thus suggest that a large fraction of exist- 
ng bacterial functions has already been captured. (ii) Eval- 
ating the capability of Fusion functions to recapitulate 
acterial tax onom y we noted that bacterial functional re- 

ationships are often different from genome or evolution- 
ry associa tions. W hile we have touched on this in pre- 
ious work ( 28 , 33 ), here we demonstrate the stability of 
 function dri v en classification scheme and suggest it as 
 means for annotating functional abilities of newly se- 
uenced organisms. (iii) In an effort to impr ove pr otein 

unctional annotations, we trained a Siamese Neural Net- 
ork (SNN) ( 34 ) to label two gene sequences as encoding 

roteins of the same Fusion function. Our model captures 
unctional similarity signals unavailable to the alignment- 
ased or structural-comparison schemes, highlighting pre- 
iously unexplor ed r elationships in the sequence-structur e- 
unction (dis)continuum. We note that a recent study by 

eman et al ( 35 ) has made similar observations across the 
hree types of protein similarities. We further note that our 
pproach could potentially be optimized to label functional 
rofiles of microbial metagenomes directly from sequenc- 

ng reads, i.e. without the need of assembly or metagenomic 
inning ( 36–39 ). 

ATERIALS AND METHODS 

icr obial pr oteomes 

e retrie v ed a set of micr obial pr o- 
eomes from GenBank ( 40 , 41 ) (NCBI public 
tp –– ftp.ncbi.nlm.nih.gov / genomes / genbank / bacteria; 
8 February 2018) and extracted the corresponding coding 

equences from the complete bacterial genome assemblies. 
s per NCBI, complete assemblies are complete gapless 

enomic assemblies for all chromosomes, i.e. in bacteria, 
he circular genome and any plasmids that are present. Our 
esulting dataset thus contained the proteomes of 8906 dis- 
inct bacterial genome assemblies with a total of 31 566 498 

roteins ( full protein set ). We further redundancy reduced 

his set at 100% sequence identity over the complete 
ength of the two proteins using CD-HIT ( 42 , 43 ). Our 
equence-unique protein set contained 15 629 432 sequences. 
equences shorter than 23 amino acids (1345 sequences) 
er e r emoved from the set as this length is insufficient 

o determine functional similarity between proteins ( 44 ). 
ll further processing was done on the resulting set of 

5 628 087 sequences. Of these, 12.78M were truly unique , 
.e. proteins for which no 100%-identical sequence exists in 

he original full protein set; the remaining 2.85M sequences 
 epr esented the nearly 16M proteins that were redundant 
cross organisms in our set. 

omputing protein functional similarities 

unctional similarities between our sequence-unique pro- 
eins were assessed using HFSP ( 44 ). HFSP values reflect 
ow likely two proteins perform the same function. Protein 

airs scoring HFSP ≥ 0 are assumed to be of the same func- 
ion, with higher values indicating higher certainty of same 
unction assignment (maximum HFSP = 72). Specifically, 
e generated a set of all-to-all alignments with MMSeqs2 

 45 ) (evalue ≤ 1e-3, inclusion evalue ≤ 1e-10, iterations = 3). 
ote that due to the specifics of MMSeqs2, the two align- 
ents for a e v ery pair of proteins P i and P j , i.e. P i -to-P j 

nd P j -to-P i , are not guaranteed to be identical and thus 
ay have different HFSP scores. We chose to conservati v ely 

 epr esent each protein pair by only one, minimum, HFSP 

alue. For e v ery protein pair, we retained in our set only the
lignments where this HFSP value was ≥0; at this thresh- 
ld HFSP corr ectly pr edicts functional identity of proteins 
ith 45% precision and 76% recall ( 44 ). Any protein with- 
ut predicted functional similarity to any other protein in 

he sequence-unique protein set was designated as having 

 unique function, i.e. true singletons (766 050 proteins). 
f these, 57 646 sequences r epr esented 127 543 proteins in 

he full protein set, while 708 404 were truly unique. The re- 
aining 14 862 037 proteins were connected by ∼22.2 bil- 
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Generating Fusion functions 

We built a functional similarity network using the 22.2B
similarities (edges) of the 14.86M proteins (vertices) as fol-
lows: For any protein pair P i P j , an edge was included if
( 1 ) HFSP (P i P j ) was ≥30 or if ( 2 ) HFSP (P i P j ) ≥ 0.7*max
(HFSP (P i P k ), HFSP (P j P l )), where proteins P k and P l are
any other proteins in our set; note that P k and P l can but
do not have to be the same protein. The first cutoff at
HFSP ≥ 30, ensured that our protein pairs were often cor-
rectly assigned same function (precision = 95%). Our sec-
ond criterion aimed to assuage the much lower recall (10%)
and capture more distant relationships while introducing
as little noise as possible, i.e. only reporting functionally
similar pairs at specifically-targeted, stricter HFSP cutoffs.
The resulting network contained 14 130 628 vertices con-
nected by 780 255 934 edges (HFSP values used as weights);
731 409 proteins were disconnected from the network, i.e.
putative functionally unique singletons. The network was
composed of multiple connected components, where the
largest contained 481 801 proteins (distribution of compo-
nent sizes in Figure S1). 

We used HipMCL ( 46 ) (High-performance Markov Clus-
tering), an optimized version of Markov Clustering ( 47 , 48 ),
to further individually cluster the components of this net-
work into functional groups. Note that as HipMCL re-
quires a directed graph as input, we converted each edge in
our data into a pair of directed edges of the same weight.
The key parameters chosen for each HipMCL run were
S = 4000, R = 5000 and inflation (I) = 1.1. This clustering
resulted in 1 432 643 protein clusters as well as 1235 clusters
containing only one protein, i.e. additional putative single-
tons for a total of 732 644. 

Gi v en the high functional similarity threshold used
above, these clusters were exceedingly specific. We aimed to
genera te somewha t broader functional definitions to avoid
artificially inflating functional di v ersity. We thus e xtracted
r epr esentati v e proteins of each cluster that were further re-
clustered using lower functional similarity thresholds. Rep-
resentati v e sequences of each of the 1 432 643 MCL clus-
ters were extracted using CD-HIT at 40% sequence identity
(with default parameters and selecting the longest protein
per CD-HIT cluster). Note that only 7% of the MCL clus-
ters had multiple r epr esentati v e sequences; thus, a total of
1 632 986 cluster r epr esentati v es were collected. To this set
of r epr esentati v es, we added the putati v e singletons for a to-
tal of 2 365 630 proteins. These were used to generate a new
functional similarity network by including all edges with
HFSP (P i P j ) ≥0. Note that 226 346 ( ∼10%) of these were
not similar to any other r epr esentati v e proteins; of these,
∼40k were originally designa ted puta ti v e singletons. The re-
sulting functional similarity network comprised 2 139 284
vertices and ∼303M edges. The network was r e-cluster ed
with HipMCL (S = 1500, R = 2000, I = 1.4; smaller infla-
tion values did not generate results due to MPI segmenta-
tion faults that could not be resolved) generating 433 891
Fusion functions. 

Enzymatic function annotation 

We evaluated shared enzymatic functionality of proteins
using Enzyme Commission (EC) annotations ( 49 ). The
EC Number is a numerical classification scheme for en-
zymes, based on the chemical reactions they catalyze. Ev-
ery EC consists of four numbers (separated by a pe-
riod), indicating the corresponding class and sub-classes
of the enzyme. Enzymes annotated with the same EC
number at all four le v els ar e consider ed functionally
identical, although EC identity at three highest le v els
may be considered sufficient for informing functional
similarity. 

Information about protein enzymatic activity was ex-
tracted fr om Swiss-Pr ot ( 50 , 51 ) (June 2021) as follows:
for each protein there had to be (i) experimental evidence
for protein existence at protein le v el, (ii) e xperiment-based
functional annotation and (iii) only one EC number, fully
resolved to all four levels. The resulting dataset was redun-
dancy reduced at 100% sequence identity across the en-
tire protein length. Swiss-Prot entries sharing the same se-
quence, but assigned different EC annotations, were ex-
cluded from consideration. The final data set contained
18 656 unique proteins and 4269 unique EC annotations.
The overlap between the EC data and the Fusion protein
set ( Fusion enzyme set ) comprised 4206 unique proteins in
1872 unique EC annotations. 

Pfam data 

Protein mappings to Pfam ( 52 ) domains (Pfam-A version
34) were generated using pfamscan v1.4 ( 53 ) with default
values; in hmmscan ( 54 ) (hmmer v3.3), HMM evalue (-
E = 10) and domain evalue (–domE = 10) were used. If the
sequence hit multiple Pfam domains belonging to the same
clan / famil y, onl y the clan was reported. For 12 720 756
sequence-unique proteins (85% of our 14.86M) the set of
non-overlapping Pfam domains and their order in sequence
were e xtracted, e.g. gi v en domains X and Y, the domain ar-
rangements ‘XYY’, ‘XY’ and ‘YX’ are regarded as three in-
dividual occurr ences; the r emaining 15% of the proteins did
not match any Pfam-A domain. We thus identified 92 321
unique Pfam domain arrangements. These corresponded
to 58 021 domain sets, where the domain arrangements
‘XYY’, ‘XY’ and ‘YX’ resolve to only one domain set rep-
resentation (X,Y). 

Overlap between Fusion clusters and GTDB 

In order to compare Fusion functions to the set of
120 marker pr oteins / pr otein families that GTDB uses
(TIGRFAM & Pfam families) to establish taxonomic
relationships between organisms (bac120), Fusion pro-
teins were associated with TIGRFAM (release 15.0 –
September 2014) & Pfam (PFAM-A version 34) do-
mains using hmmscan (hmmer v3.3) at default thresholds
(hits with HMM evalue, -E = 1 and domain evalue, –
domE = 10). Only one best TIGRFAM / Pfam hit (i.e.
smallest e-value) was extracted per protein. Fusion func-
tions were assigned the set of TIGRFAMs / Pfams accord-
ing to their proteins matches. Finall y, the overla p be-
tween domain associations of Fusion functions and the
TIGRFAMs / Pfams used by GTDB as marker genes was
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eneOntology annotations 

O ( 55 , 56 ) ‘molecular function’ annotations were extracted 

rom the GO 2021-09-01 release. For each protein, its set 
f GO annotations included all protein self-annotations, 
s well as annotations of its parent nodes, i.e. other nodes 
onnected via an ‘is a’ edge up to the root of the molec-
lar function subgraph. This resulted in 25 825 sets of 
O terms for 7 313 428 (49% of 14.9M) sequences-unique 

roteins. 

omparing Fusion functions to existing functional annota- 
ions 

e compared Fusion functions to EC and Pfam annota- 
ions by calculating the homogeneity (h, Supplementary 

qn. S1), completeness (c, Supplementary Eqn. S2) and 

-Measure (v, Supplementary Eqn. S3) ( 57 ) values using 

cikit / python ( 58 ). When comparing Fusion functions to, 
or example , EC numbers , homogeneity describes how of- 
en a Fusion function is associated with multiple EC num- 
ers. That is, a high homogeneity (close to 1) signifies a 

lustering where most Fusion functions have an associa- 
ion to only one EC number. Completeness describes how 

ften a specific EC number can be found in different Fu- 
ion functions. A high completeness (close to 1) indicates 
hat for most ECs, a specific EC number is associated with 

nly one or a small number of functions. V-Measure repre- 
ents the harmonic mean between homogeneity and com- 
leteness. A V-measure of 1 is indicati v e of an optimal clus- 
ering, where each function is only associated with one EC 

umber, and an EC number is only associated with this one 
unction. 

axonom y inf ormation 

ur taxonomic analyses were conducted on the basis of 
wo tax onom y schemes: the NCBI tax onom y ( 59 ) and the
TDB ( 60 ) (genome tax onom y database). NCBI tax on- 

my rank information for each assembly was retrieved dur- 
ng protein dataset extraction (February 2018) and is avail- 
ble for all 8906 organisms in our set. GTDB taxonomy in- 
ormation was extracted from GTDB release rs202 (April 
021). Genbank assembly ids were mapped to bacterial as- 
emb lies availab le in GTDB. GTDB tax onom y information 

s available for 99% (8817) of the organisms. 

alancing the assembly set 

ccording to GTDB, the 8906 assemblies / organisms in our 
et belong to 3005 species. Of these species, 2252 (75%) have 
nly one associated organism, whereas others have hun- 
reds; e.g. E. coli and B. pertussis have 472 and 360 assem- 
 lies, respecti v ely. We generated a balanced organism set to 

educe this une v enness. First, we reduced our full set of 8906 

ssemblies to retain the 3012 genomes that were represen- 
ati v e of strains included in the GTDB bac120 phylogenetic 
ree. Note that of these, 2206 genomes were in both GTDB 

nd our data, while 806 genomes were not present in our 
et and wer e r epr esented by other assemblies of these same 
trains. Using dendropy ( 61 ), we then extracted from the 
ull GTDB bac120 tree (47 895 organisms) a subtree con- 
aining only these 3012 r epr esentati v es while retaining the 
riginal branch lengths. We used Treemmer ( 62 ) to deter- 
ine which leaves to retain in our set such that the RTL 

relati v e tree length) of the pruned tree was ≥ 0.90. RTL is 
sed as an indicator of retained genetic di v ersity after prun- 

ng, reflected as the sum of all branch lengths in the pruned 

r ee in r elation to the full tree. We thus selected 1502 assem-
lies (further r efer enced to as the balanced organism set ) –– a 

inimum set of organisms that retains at least 90% genetic 
i v ersity present in our complete set of 8906 assemblies. 

omputing organism functional similarity 

ach organism in our set can be r epr esented by a func-
ional profile, i.e. a set of corresponding Fusion functions, 
fam domains, or GO annotations. Functional similarity 

etween the functional profiles of two organisms, F i and F j , 
as calculated, as previously described ( 28 , 33 ), by dividing 

he number of their shared functions by the size of the larger 
f the two profiles (Eq. 1 ). 

F uncS i m 

(
F i , F j 

) = 

∣
∣F i ∩ F j 

∣
∣

max 

(| F i | , 
∣∣F j 

∣∣) (1) 

usion functional profiles for similarity calculations were 
enera ted a t Fusion Le v el 1 with and, separately, with-
ut the inclusion of singletons. Pfam functional profiles 
ere generated using Pfam domain arrangements and, sep- 
rately, domain sets, as described above. GO functional 
rofiles were generated using the GO terms extracted per 
roteins as described above. Note that Pfam and GO an- 
otations are not available for all proteins, but each pro- 
ein has an associated Fusion function. Thus, each method- 
ased functional profiles (i.e. GO versus Pfam versus Fu- 
ion) of a single organism could be based on different sets of 
roteins. 
We computed the pr ecision / r ecall (Eq. 2 ) values for cor-

ectly identifying two organisms as being of the same tax- 
nomic rank based on their shared functional similarity. 
his was done at each taxonomic rank (phylum, class, or- 
er, family, genus, species) for both taxonomic definitions 
NCBI and GTDB) and using a series of similarity thresh- 
lds ranging from 0 to 1 in increments of 0.01. 

P re c i s i on = 

T P 

T P + F P 

; Re c all = 

T P 

T P + F N 

(2) 

ere any pair of two organisms of the same taxonomic clas- 
ification above the chosen thr eshold ar e true positives (TP), 
hereas pairs below the threshold are false negati v es (FN). 
ny pair of two organisms of different taxonomic classifica- 

ions above the similarity thr eshold ar e false positives (FP), 
hile pairs below are true negati v es (TN). 

rouping organisms by functional similarity 

n organism similarity network was generated using Fu- 
ion functional profiles. Here, assemblies (vertices) were 
onnected by Fusion functional similarity edges; the re- 
ulting network is complete (all-to-all edges are present) as 
ny two organisms share some similarity. We used Louvain 
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clustering ( 63 ) to identify organism groups; implemented
in ‘p ython-louvain’ ( https://github.com/taynaud/p ython- 
louvain ), an extension to ‘networkx’ ( https://networkx.org ).
Organism groups at varying le v els of granularity were gen-
erated by varying the resolution threshold parameter of
Louvain clustering (resolution 0 to 1.5 in increments of
0.01), where larger resolution values lead to fewer but larger
clusters. The V-measures (Eq. 3 ) of the resulting partitions
(‘predicted labels’) versus GTDB taxa (’reference labels’)
were calculated. 

16S rRNA extraction and similarity calculations 

16S rRNA sequences were extracted from the NCBI Gen-
Bank database for 8479 of the 8906 organisms (427 or-
ganisms were missing annotated 16S rRNAs). From RDP
(Ribosomal Database Project, v11.5) ( 64 ), we further ex-
tracted all 16S rRNA sequences and their corresponding
multiple sequence alignment (MSA). The 16S rRNAs of
the 8479 organisms that were not contained in the RDP
MSA were added using Infernal 1.1.4 ( 65 ) and the RDP
bacterial covariance model. Using the resulting MSA, we
extracted gapless pairwise sequence identities for all 16S
rRNA pairs (i.e. 683 261 061 pairs between 36 967 16S
rRNA sequences). 

We calculated the optimal F-measure (Eq. 3 ) for both
identifying organisms of the same species / genus using mea-
sures of 16S rRNA identity and Fusion organism simi-
larity (Eq. 1 ). Here, true positi v es (TP) are organisms of
same taxon, attaining an identity or similarity measure at
or above the chosen threshold, false negatives (FN) are or-
ganisms of same taxon but scoring below the threshold, and
false positi v es (FP) are organisms of different taxa and scor-
ing at or above the threshold. 

F 1 − measure = 

2 × T P 

2 × T P + F P + F N 

(3)

MASH organism similarity calculations 

For each organism in our dataset we extracted pre-
computed k -mer hash sketches using the MASH ( 66 )-
provided RefSeq genome sketch database containing
126 381 NCBI prokaryotic genomes. Jaccard Distances be-
tween organism sketches were calculated according to On-
dov et al. Similar to the 16S analysis, we calculated the op-
timal F -measur e (Eq. 3 ), Pr ecision and Recall (Eq. 2 ) for
identifying two organisms of same species or genus. 

Machine learning-based predictor of shared protein function-
ality 

We trained a Siamese Neural Network (SNN) ( 34 ) predictor
to assess whether any two DNA sequences encoded proteins
of the same Fusion function. SNNs are a class of neural net-
work ar chitectur es that contain tw o identical subnetw orks,
i.e. the networ ks hav e the same configuration with the same
parameters and weights. This type of network is often used
to find the similarity of the inputs – in our case, two se-
quences encoding proteins of the same function. Because
SNNs identify similarity le v els, rather than predicting spe-
cific classes of each input, they r equir e significantly less data
for training and are less sensiti v e to class imbalance. The
latter was particularly a benefit here because the number of
sequence pairs of different functions necessarily drastically
exceeds the number of pairs of the same function. Addition-
ally, as SNNs output a similarity metric rather than a prob-
ability score, they are likely specifically informati v e of the
various le v els of functional similarity, e.g. for a gi v en pair of
enzymes, whether two genes act upon the same bond versus
whether they use the same electron donor. 

To train the model, we extracted 70 random Fusion func-
tions, each containing at least ten different proteins from
our sequence-unique set. The set of functions was split
50 / 10 / 10 for training, testing and validation. For training
and validation, we balanced the dataset, i.e. we randomly
selected gene sequence pairs such that 50% of the pairs in-
cluded genes of same Fusion function and 50% were of dif-
ferent function. The final training set contained 20M gene
sequence pairs generated from 29 907 sequences, the vali-
dation set contained 200 000 pairs and 9982 sequences re-
specti v ely. In testing we used balanced as well as imbalanced
data sets. The imbalanced test set was generated to better
r esemble r eal-world data with a split of 90% / 10% where
90% of the sequence pairs are between sequences of differ-
ent function. The test set contained 100 000 sequence pairs
generated from 1000 gene sequences. 

We tokenized protein-encoding genes to codons, i.e. split
into non-overlapping 3-nucleotide chunks of sequence and
projected each token into the LookingGlass ( 67 ) embedding
space (length = 104). The embeddings were then processed
via an LSTM ( 68 ) and further used in SNN training. Note
tha t a t most the first 1500 tokens were embedded per se-
quence. For sequences shorter 1500 codons, the embedding
vector was zero padded, i.e. any position in the vector after
the last token was set to 0. The model was trained and val-
idated in 50 iterations on our balanced training / validation
data set. After 50 iterations performance of the model
reached a precision of 0.72 and recall of 0.72 on the valida-
tion set at the default threshold of 0.5. The final model was
tested on the imbalanced (90 / 10 split different / same func-
tion sequence pairs) attaining a precision of 0.22 and recall
of 0.80 at the default prediction score cut-off of 0.5. 

To further evaluate the model, we extracted a set of Fu-
sion functions associated with only one le v el 4 EC annota-
tion, but where the EC annotation was associated with mul-
tiple Fusion functions. We then predicted SNN scores for
three sets of protein pairs: (i) proteins from the same Fu-
sion function and same EC annotation, (ii) proteins from
different Fusion functions and same EC annotation and
(iii) proteins of different Fusion functions and different EC
annotation. 

Structural alignments of Fusion proteins 

We extracted from the PDB ( 69 , 70 ) (May 2022) the avail-
able structure information for proteins in our set, i.e. 79464
chains / entities mapping to 5153 protein sequences in our
sequence-unique protein set. Where multiple PDB struc-
tures mapped to one protein sequence, we selected the PDB
entry with the best resolution (lowest Å ). For this set, we
used foldseek ( 71 ) (–alignment-type 1, –tmscor e-thr eshold
0.0) to identify structure pair TMscores ( 72 ) from TM-align

https://github.com/taynaud/python-louvain
https://networkx.org
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Figur e 1. Fusion w orkflow. ( A ) Fusion functions are formed by generat- 
ing all-against-all MMSeqs2 protein alignments between all ∼15.6 million 
proteins in our dataset and establishing protein functional similarities from 

these alignments using HFSP. The resulting protein function similarity net- 
work, where proteins are nodes and the similarity is the weight of the edge 
or no edge if no similarity was found, is clustered with HipMCL and func- 
tion clusters are retrie v ed. The pairs of proteins within the same cluster 
were used as input for SNN training. ( B ) Furthermore, vectors of functions 
(rows) r epr esented organisms in our set. Organism Functional Profile Sim- 
ilarities were computed as row-wise vector comparisons. These were used 
to generate an organism similarity network, where nodes are organisms 
and edges are weighed according to functional similarity. Clustering this 
network at different thresholds yielded the Fusion functional tax onom y. 
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 73 ). When a protein sequence pair resolved to multiple 
DB entity (chain) pairs we selected the entity pair with the 
ighest TMscore. Note that Foldseek was unable to gen- 
rate TMscores for 498 PDB structures (mapping to 1005 

rotein sequences) due to computational limitations and we 
xcluded any structural / protein pair that included one of 
hese from further consideration. 

For the resulting 8 600 878 protein pairs we generated 

NN pr ediction scor es. For 8 150 441 of 8 600 878 (95%)
airs no TM-scores could be generated as they did not pass 
he pre-filtering step of Foldseek, i.e. they had no similar 
 olds at all; f or these we assumed a TMscore = 0. Notably,
44 829 (1.7%) of these were still predicted by the SNN to 

ave high functional similarity (SNNscore ≥ 0.98); we as- 
ume this percentage to be the approximate error rate of the 
NN. 
We also created subsets of PDB entity pairs where each 

rotein was annotated with an E.C. number, i.e. proteins 
xtracted for the Fusion enzyme set. 

ESULTS 

usion reflects and augments known functionality 

fter removing identical sequences (Methods, Supple- 
entary Information), we computed (using HFSP ( 44 ), 
omology-deri v ed Functional Similarity of Proteins) func- 

ional pairwise similarities (edges) between proteins (ver- 
ices) and clustered the resulting protein similarity network 

o determine the molecular functions likely carried out by 

roteins in our set (Materials and Methods; Figure 1 ). Note 
hat in our earlier work ( 28 , 33 ) to establish microbial func-
ionality we used different edge-weighing and clustering 

echniques over a significantly smaller number of proteins 
4.2M earlier versus 31.5M in this work) and organisms 
1374 versus 8906). Our earlier approach yielded ∼900K 

ingletons and ∼335K functional groups of more than one 
rotein. Here, we significantly expanded our ability to cap- 
ure protein functionality, obtaining only a few more sin- 
letons ( ∼947K) and 25% more (433 891) clusters of func- 
ionally similar proteins, dubbed Fusion functions , ranging 

n size from two to 118 984 proteins (Supplementary Figure 
1). The limited difference in numbers of identified func- 
ions suggests that we have already explored much of the 
ossible bacterial functional space. 
This collection of Fusion functions, particularly the 

arge number of functions containing few proteins, is con- 
rary to expectations of functional diversity as compared 

o, e.g. 19 179 Pfam-A families / clans (Pfam v34, Mate- 
ials and Methods) ( 52 ) and 11 185 molecular function 

O terms (GeneOntology version 2021-09-01; Materials 
nd Methods) ( 55 , 56 ). This discrepancy between the anno- 
ations is likely due to definition of function. Pfam-A, for 
xample, needs many sequences per family to build multiple 
equence alignments (MSAs) for Hidden Markov Model 
HMM) construction; thus, some of our functions may sim- 
ly have not contained enough sequences to recapitulate a 

fam family. Of the Fusion functions, only 15% (65 663) 
ave at least 20 sequence-unique proteins, i.e. the lower limit 

or e v en the less-pr ecise MSAs ( 74 ). Furthermor e, Pfam do-
ains are not functionally precise as the same domain is 
ften reused in different functions ( 75–78 ) and one protein 

an have more than one domain; thus, one family is likely 

ave more than one function. In fact, of these 66K functions 
 ≥20 proteins per function), 80% (52 678) contain proteins 
ith one or more non-overlapping Pfam domains ( ∼1.6 do- 
ains per protein; 10 114 unique domains total) and ∼11 

usion functions per domain. Of the ∼370K smaller func- 
ions ( < 20 proteins), 128 128 have at least one Pfam-A do- 
ain. We hypothesize that the remaining ∼240K functions 

hat are not identifiable by Pfam may be responsible for 
ighly specific bacterial activity. 
We calculated homogeneity (Supplementary Eqn. S1) 

nd completeness (Supplementary Eqn. S2) for how well 
he Fusion functions (180 806 functions of > 1 sequence) 
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of the 12 611 237 proteins with at least one Pfam do-
main compared to Pfam-A domain assignments (Materi-
als and Methods). We used measures of homogeneity and
completeness; an optimal homogeneity ( = 1) would indicate
that each function only contains proteins with one domain
and an optimal completeness ( = 1) would indicate that all
proteins with a specific Pfam domain only fall into a sin-
gle function. Due to the absence of the one-to-one map-
ping between families and functions (discussed above), nei-
ther optimal completeness nor heterogeneity are possible
for our data. Howe v er, both were high (homogeneity = 0.9,
completeness = 0.79); that is, Fusion captured much of the
Pfam-like functional di v ersity. 

We further compared the Fusion functions with their re-
specti v e Pfam domain sets, i.e. 57 165 collections of Pfam
domains per protein without accounting for domain order
in sequence. This comparison marginally increased com-
pleteness ( = 0.8) and homogeneity ( = 0.94), the latter sug-
gesting that each Fusion function most often only con-
tained proteins of one domain set. Additionally consider-
ing domain order (91 113 arrangements), we observed sim-
ilar homogeneity ( = 0.93) and completeness ( = 0.81). The
discrepancy between homogeneity and completeness indi-
ca tes tha t while each Fusion function is highly specific to
a gi v en Pfam domain set or arrangements, each domain
set / arrangement might encode multiple functions. 

The above finding is in line with the observation that
Pfam domain arrangements do not always report exper-
imentally defined functionality ( 79 ). Here the precision
of Fusion functions is important. For example, the
Geobacter sulfurreducens acyltr ansfer ases ( R )-citr amalate
synthase (AAR35175, EC 2.3.1.13) and Salmonella
heidelber g 2-isopropylmala te synthase (ACF66296, EC
2.3.3.182 / 2.3.3.21) have the same domain arrangement
(HMGL-like pyruvate carboxylase domain, PF00682, fol-
lowed by a LeuA allosteric dimerization domain, PF08502)
but have a different 4th digit Enzyme Commission clas-
sification (EC) number ( 49 ), indicating their different
substrate specificities. Notably, these proteins fall into two
different Fusion functions. 

To evaluate Fusion functional mappings more broadly,
we collected the available experimentally derived EC anno-
tations for proteins in our set (4206 proteins, 1872 unique
EC numbers) and measured the similarity of these with
the corresponding 1893 Fusion functions. Fusion functions
more closely resembled annotations of enzymatic activity
(homogeneity = 0.95, completeness = 0.94) than those of
Pfam domains. This finding suggests that our Fusion func-
tions capture aspects of molecular function better than
domain-based annotations. 

In evaluating Fusion-based functional annotations, we
were consistently faced with the inherently limited knowl-
edge of microbial functionality. How can one evaluate the
precision of Fusion function definitions at scale if no an-
notations of the component proteins exist? To address this
question, we explored whether bacterial taxonomic classi-
fication, dri v en by genomic signatures as well as morphol-
o gy and physiolo gy, may be sufficientl y informati v e of the
organism functional r epertoir es. We suggest that functional
annota tions tha t reflect existing taxonomies may be deemed

validated. 

 

Organism functional profiles capture taxonomy 

For each organism of the balanced organism set, we ex-
tr acted Fusion, Pfam-A domain arr angement, and GO
term functional profiles. A functional profile is the set of
functions of a single organism, e.g. the set of Pfam-A do-
main arrangements encoded by the proteins of that or-
ganism (Materials and Methods). On average, per organ-
ism Fusion, Pfam-A and GO term profiles were of size
2133, 1479 and 776, respecti v ely (Supplementary Figure
S2). For each organism pair, we computed profile similar-
ity, i.e. the count of functions found in both profiles di-
vided by the larger functional profile (Materials and Meth-
ods; Eq. 1 ). On average, the (larger) Fusion-based func-
tional profiles were less similar than the (smaller) Pfam and
GO-based profiles (Supplementary Figure S3). A pair of or-
ganisms wer e pr edicted to be of the same or different taxon
based on whether their similarity exceeded a set threshold
([0,1] in steps of 0.01). Predictions were compared against
NCBI ( 59 ) and GTDB ( 60 ) taxonomies at six le v els (phy-
lum through genus; Materials and Methods). Note that we
could not assess the species le v el, since no two organisms
of the same species were retained in the balanced organism
set. 

As expected, all functional profiles were better than ran-
dom at annotating microbial tax onom y (Supplementary
Figure S4). Both Fusion and Pfam outperformed GO anno-
tations in this task. Fusion profiles were better than Pfam,
e.g. at 50% recall (Eq. 2 ) of identifying two organisms of
the same GTDB phylum, Fusion and Pfam achie v ed 75%
and 48% precision (Eq. 2 ), respecti v el y. This ad vantage was
also present across deeper taxonomic ranks. We note that
Fusion’s improvement over Pfam did not stem from the dif-
ference in the number of functions per organism (profile
size) as the predicti v e power of the functional profile size
was only marginally better than random (Supplementary
Figure S4). These findings confirm that organism similar-
ity established via comparison of functional profiles car-
ries tax onom y-relevant information. We thus further asked
whether comparing functional capabilities can re v eal or-
ganism relationships that phylogeny-based microbial tax-
onomy, muddled by horizontal gene transfer, is unable to
resolve. 

Functional profiles are more informative of taxon identity
than 16S rRNA 

The genetic marker most frequently used for organism tax-
onomic classification is the 16S rRNA gene ( 15 ) –– a non-
coding gene that, by definition, cannot be captured by Fu-
sion. To evaluate its predictive pow er, w e extracted 16S
rRNA sequences for each genome in our complete set and
calculated sequence identity for all 16S rRNA pairs (Mate-
rials and Methods). 

Sequence similarity between 16S rRNA pairs below 97%
is generally accepted as an indication that the organisms
ar e of differ ent species ( 80 ). Indeed, we found that 98.7%
(663.7M of 683.3M) of the 16S rRNA pairs tha t origina te
from different species (complete NCBI bacterial genomes
collection; Materials and Methods) fall below the 97% se-
quence identity threshold, while only 2% of same species
pairs do (Figure 2 , Supplementary Figure S5). That is,
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Figure 2. 16S rRNA identity and functional similarity capture different taxonomic patterns. Density plots capture the location of pairs of different species 
(left, blue) and same species (right, orange) organisms in the space defined by the 16S rRNA identity (y-axis) and Fusion similarity (x-axis). Horizontal 
solid and vertical dashed lines r epr esent the 16S rRNA and Function similarity thresholds of 97% and 75.5%, respecti v ely. 
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elow this sequence identity threshold nearly all (99.96%) 
equence pairs were of organisms of different species, con- 
rming the 97% threshold as an excellent measure of organ- 

sm taxonomic difference. 
Using the 97% sequence identity threshold as an indica- 

or of taxon identity, howe v er, is impossib le. Many genomes 
ave multiple 16S rRNA genes ( 81 ). In our set, 625 pairs of
6S rRNAs extracted from the same genome were < 97% 

dentical (minimum similarity = 75.8%); in these cases, the 
arker gene similarity could not even identify the same 

enome, let alone same species. Furthermore, while almost 
ll of same-species 16S rRNA pairs were ≥97% identical, 
early half of all pairs above this threshold belonged to dif- 
erent species (recall = 98%, precision = 55%, Supplemen- 
ary Figure S6). 

In contrast, at the optimal Fusion organism functional 
rofile similarity threshold of 75.5% (Eq. 1; threshold es- 
ablished via peak F 1-measure, Eq. 3; Supplementary Fig- 
r e S7), organisms wer e corr ectly identified to be of the
ame species with 80% pr ecision (r ecall = 94%, Supple- 
entary Figure S4). At a matched le v el of recall, function 

omparisons were also more precise than 16S rRNA (75% 

ersus 55% precision, at 98% r ecall). Furthermor e, Fusion 

chie v ed 95% precision for more than a third (35%) of the
rganism pairs, w hereas 16S rRN A measures were this pre- 
ise for less than a fifth (17%). The ability of 16S rRNA to 

dentify organisms of the same genus at the commonly used 

hreshold of 95% also left much to be desired (43% pre- 
ision, 78% recall). Fusion performance was significantly 

etter (90% precision, 70% recall) when using optimal 
unctional similarity threshold (72.3%) established for this 
ask. 

Functional profiles augmented 16S rRNA in determin- 
ng organism species. For example, for all organism pairs 
haring ≥97% 16S rRN A identity, additionall y requiring a 

usion functional similarity of 75.5% lead to an increased 

recision of 86% versus 55% for 16S rRNA or versus 80% 

or Fusion similarity alone; recall was slightly decreased to 

2% versus 98% for 16S rRNA and 94% for Fusion alone. 
hese findings suggest that functional similarity is some- 
 hat ortho gonal to 16S rRN A similarity in defining taxo- 
omic identity and reaffirm the likely impact of Horizontal 
ene Transfer on taxonomic classification. 
s
We also note that the lack of precision in 16S rRNA- 
ased comparisons has negati v e implications for metage- 
omic anal ysis, w here 16S rRN A abundance is often used 

o assess sample taxonomic composition and functional di- 
ersity. Fusion functional annotations, on the other hand, 
an be optimized to target shorter sequencing reads e.g. via 

aser analysis ( 82 ), and thus infer a microbiome functional, 
f not taxonomic, composition directly from metagenomic 
equencing experiments. 

ew functions are sufficient to accurately identify taxonomy 

usion’s success in taxonomic classification is not un- 
xpected. Using methods that take advantage of whole 
enome sequences, howe v er parsed, is near ly guar anteed 

o be advantageous in comparison to 16S rRNA-based 

ax onom y determination ( 66 , 83 , 84 ). Exact comparison of
enomes, howe v er, is time-consuming. More useful approx- 
mations include methods like MASH ( 66 ) and Dashing 

 85 ), i.e. tools that use r epr esentati v e genome sequence
ketches, and FastANI ( 84 ), which computes average nu- 
leotide identities (ANI) across orthologous genes. We note 
hat these methods are comparable in taxonomic classifi- 
ation accuracy, with ANI shining for species / strain dif- 
erentiation, while sketch-based methods performing bet- 
er at higher taxonomic le v els ( 83 , 84 ). For our full set of
rganisms MASH achie v ed an optimal F 1-score for same 
pecies identifica tion a t 96% k -mer sketch similarity (Sup- 
lementary Figure S8; Materials and Methods). For the 
alanced organism set, MASH performed similarly to Fu- 
ion in terms of Precision / Recall at all taxonomic le v els e x-
ept genus (Supplementary Figure S9). This result is in line 
ith expectations given that whole genome comparisons 

hould also capture functional similarity inferred from se- 
uence comparison. Howe v er, sketch-based and ANI anal- 
ses lack the deeper understanding of the shared (or dif- 
ering) bacterial functionality. They also do not lend them- 
elves easily to the selection of taxonomic markers. 

Earlier studies argue that a small number of care- 
ully chosen marker genes / protein families are sufficient 
o determine taxonomic relationships of bacteria ( 60 , 86 ). 
owe v er, to be comparable across organisms, these genes 

hould be ubiquitously present. We investigated whether a 
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Figure 3. A subset of common fusion functions is sufficient to determine tax- 
onomic relationships. Each panel describes the precision (y-axis) at a gi v en 
recall (x-axis) for correctly identifying two organisms sharing the same tax- 
onomic rank. Only pr ecision / r ecall pairs wher e pr edicted positi v es pairs 
(TP & FP) make up at least 0.1% of all possible pairs are displayed. Sets 
of only the largest 100k (light blue) and 50k (dar k b lue) functions per- 
form almost identically to all Fusion functions (solid red line) in distin- 
guishing organism taxonomy at all taxonomic le v els. For the largest 10k 
(oli v e) and 5k (red) functions, the same holds true for phylum and class, 
whereas order through genus performance is slightly reduced. Notably the 
largest 1000 functions (yellow) perform similar to a complete Pfam domain 
arrangement-based approach (purple). 
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subset of Fusion functions could correctly identify two or-
ganisms of the same taxon. To this end, we progressi v ely
subset the number of Fusion functions used to generate
organism functional similarities (100K, 50K, 25K, 10K,
5K and 1K functions). We used two approaches for func-
tion selection: (i) we chose the functions based on how fre-
quentl y they a ppeared in the balanced organism set and (ii)
randomly sampled from the whole pool of functions. Im-
portantl y, our a pproach was based on the presence or ab-
sence of specific functional abilities encoded by these genes
rather than their sequence similarity. We found that just
1000 common (largest) Fusion functions were sufficient to
classify organism pairs into the same taxon, competing with
a ‘complete Pfam’-based approach (Figure 3 ). The same
was true for taxonomic le v els of or der through genus with
a set of 5000 randomly selected functions (Supplementary
Figure S10). 

We further evaluated the overlap between the selected
Fusion functions and the marker genes used for GTDB
(bac120) classification ( 60 , 86 ) (Materials and Methods).
Each of the largest 1000 functions of our balanced organ-
ism set contained at least one protein associated with one
of the 120 GTDB marker protein families. However, only
slightly more than half (70 of the bac120) of the marker fam-
ilies wer e pr esent in the 1000 sets of 5000 randomly selected
Fusion functions. The remaining functions were most likely
unique to individual organisms. 

Modularity-based taxonomic classification reflects phy-
logeny 

Conventional taxonomic classification schemes rely on
morphological and genetic markers (NCBI) or phylogenetic
analysis of genetic data (GTDB). Genetic similarity, how-
e v er, is not e v enly spread across different sections of the tax-
onom y. Assuring that tax onomic groups at a gi v en le v el are
equally di v erse is thus a well-known consideration when de-
veloping a tax onom y. GTDB, for example, tries to address
this issue by breaking up the NCBI tax onom y’s polyphyletic
taxa and reassigning organisms to taxonomic ranks higher
than species in order to better r epr esent genetic di v ersity at
the individual level ( 86 ). 

We clustered our organism functional similarity net-
work, where organisms are vertices and edges repre-
sent Fusion functional similarity, computed based on
the full set of functions, to extract groups of func-
tionally related organisms –– Fusion-informed taxa (Mate-
rials and Methods). We propose that this community
detection-based tax onom y reflects functional similarity and
metabolic / environmental pr efer ences, and thus captur es
bacterial functional di v ersity better than phylogeny dri v en
taxonomies. This is especially important when investigat-
ing environmentally specialized bacteria, e.g. symbionts or
extr emophiles, which ar e mor e likely to undergo conver-
gent evolution and be functionally similar to other mem-
bers of their environmental niche than to their phylogenetic
relati v es. 

We identified resolution thresholds that influence the size
and granularity of the Fusion-taxa such that the results
best reflected existing taxonomic groupings at different tax-
onomic le v els (Figure 4 ). Note that for our balanced or-
ganism set, this excluded species and genus levels, as this
set lacks pairs of organisms identical at these le v els. We
also note that this approach to threshold optimization was
not meant to evaluate the ability of Fusion-based classifi-
cation to pr ecisely r ecall the existing tax onom y, but rather
to identify plausible thresholds for augmenting the observ-
able signal. To evaluate the similarity between Fusion-taxa
and GTDB phylum / class / order / family levels we used the
V-measure metric, using GTDB-taxon designations for or-
ganisms as r efer ence labels and Fusion-taxa as pr edicted
labels. The V-Measure is the harmonic mean between ho-
mo geneity and completeness; homo geneity is the number
of organisms in a Fusion-taxon that belong to the same
GTDB-taxon and completeness is the number of organ-
isms of a GTDB-taxon that are found within one Fusion -
taxon. A high V-measure indicates that both homogene-
ity and completeness are high. To delineate the Fusion-
taxa from our organism network, we selected the Louvain
( 63 ) clustering resolutions attaining the highest V-measures



Nucleic Acids Research, 2023, Vol. 51, No. 19 10171 

Figure 4. Community based organism classification using Fusion functional 
organism similarities recapitulates established taxonomy. Choosing differ- 
ent Louvain resolution parameters (x-axis) to establish communities of 
functionally similar organisms we can optimize the rate (y-axis) at which 
any two organisms are assigned to be in the same Fusion-taxon versus ref- 
erence of GTDB-tax onom y assignment. For example, clustering the Fu- 
sion organism similarity network at a Louvain resolution parameter of 
0.36 yields the best approximation of communities of organisms, corre- 
sponding to the family taxonomic le v el. Thresholds for order, class and 
phylum are 0.50, 0.68 and 0.68 respecti v ely. 
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Figure 4 , Materials and Methods). For example, clustering 

he Fusion organism similarity network at a Louvain res- 
lution = 0.68 achie v ed the highest V-measure (among all 
ther resolutions) when comparing the clusters’ members 
o the GTDB phyla members; that is, phylum and Fusion- 
ax on or ganisms coincided most at this resolution. Further- 
ore, distributions of GTDB taxon (phylum through order) 

izes and the Fusion-taxon sizes (at the corresponding res- 
lution) were similar ; Kolmo goro v–Smirno v P -values (val- 
es < 0.05 would indicate that two size distributions are dif- 
erent; Table S1). This observation suggests some similarity 

etween the larger organism groups captured by Fusion and 

TDB despite differences in their approaches to establish- 
ng or ganism relationships. Ho we v er, the GTDB families 
er e differ ent in size from the corresponding Fusion-taxa 

KS P -value = 0.01, Supplementary Table S1), highlighting 

he (e xpected) di v ergence between the functional and phy- 
o genetic a pproaches at finer taxonomic resolutions. 

odularity-based taxonomy is robust to the addition of novel 
rganisms 

s new organisms are added to tax onomies, or ganism as- 
ignments may need to be r estructur ed. Her e, updating the 
umber of organisms per taxon or adding a new taxon con- 
aining only the novel organisms is far easier than reshuf- 
ing organisms from one taxon to others. Fusion-taxa ap- 
ear robust to addition of or ganisms, fav oring the former 
utcomes. To demonstrate this quality, we created 50000 

ew organism similarity networks by adding n ( n ∈ [1..500]) 
rganisms to the balanced organism set clusters, i.e. 100 net- 
orks for each n , where n organisms not contained in the 
alanced set were randomly selected from the complete or- 
anism set; each network was of size of 1503 to 2002 or- 
anisms (balanced organisms set + n ). We r e-cluster ed all 
etworks at resolution = 0.5 (Materials and Methods), the 
esolution we previously determined to correspond best to 

he GTDB or der-le v el classifications. The resulting clusters 
predicted labels) of the balanced set organisms were com- 
ared to the original clusters (reference labels). 
We expected that addition of these new organisms, se- 

ected from the complete set, and thus similar to those al- 
eady in the netw ork, w ould reflect the ‘worst case’ sce- 
ario for network stability. That is, while new organisms 
ould be expected to form their own clusters, microbes 
imilar to those already in the network could stimulate 
luster re-definition. Our function-based clustering did not 
hange significantly upon addition of ne w (e xisting taxon) 
icrobes, demonstrating the stability of the identified taxa 

pr edicted versus r efer ence labels; with one added organ- 
sm, median V -measure = 0.99; with 500 added organisms: 
 -measure = 0.96; Materials and Methods, Supplementary 

igure S11). 
To further evaluate the (likely limited) effects of intro- 

ucing organisms of novel taxa, we extracted ten genomes 
dded to GenBank after the date of our set extraction 

February 2018) and whose GTDB order was not r epr e- 
ented in our collection. We annotated the Fusion func- 
ional profiles of these organisms by running alignments, 
s in Zhu et al. ( 33 ), against our set of proteins, computed
rganism similarities to the 1502 microbes of our balanced 

et, and r e-cluster ed the r esulting network. Eight of these 
0 organisms each formed their own cluster, as expected. 
he two remaining organisms clustered into an already ex- 

sting Fusion-taxon. Interestingly, this taxon contained an 

rganism of the same NCBI order as the two new bacte- 
ia, illustrating the subjectivity of GTDB versus NCBI tax- 
nomies and highlighting the importance of organism as- 
ignment standardization. 

Stability of our modularity-based tax onom y suggests 
hat the functional space alr eady cover ed by the current or- 
anism set is sufficiently large that adding a single novel or- 
anism is unlikely to r equir e (the computationally e xpensi v e 
tep of) reconfiguring the Fusion tax onom y. We expect that 
i v en a large enough number of novel organisms it may be- 
ome sensible to regenerate the complete tax onom y. Ho w- 
 v er, the currently observ ed le v els of sequence and func-
ional redundancy across the microbial space suggest that 
ncreasing the number of organisms should not drastically 

lter the Fusion tax onom y landscape in the near future. 

achine learning-based sequence comparisons and sequence 
lignments capture different functional signals 

urrent function annotation methods are deeply steeped 

n function transfer by homology and often fail to anno- 
ate proteins with no obvious experimentally studied ho- 
ologs (Pr abakar an, R. and Bromberg, Y., Manuscript in 

reparation). We built Fusion to be critically different from 

raditional classifiers and annotate putati v e (e.g. function 

luster 45) instead of explicit (e.g. alcohol dehydrogenase) 
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Figure 5. Combining TM and SNN scores impr ov es annotation of function- 
ally similar proteins. For proteins with available structures, the TM-score 
(blue solid line) was a better estimate of protein functional similarity (same 
EC number) than the SNN-score (orange solid line); e v en at the high re- 
liability threshold of SNN-score ≥ 0.98 (circle), the method attained only 
46% precision and 16% recall as compared 53% precision and 43% recall 
of the TM-score ≥ 0.7 (cross). Howe v er, the combined SNN & TM-score 
metrics (dashed lines) were better than either of the methods alone. That is, 
for a subset of structurally similar proteins (TM ≥ 0.7) the SNN score (or- 
ange dashed line) was a good indicator of functional similarity. Similarly, 
for reliabl y functionall y similar proteins (SNN ≥ 0.98), the TM-score (blue 
dashed line) had a significantly higher precision. Note that our dataset is 
r epr esentati v e of real life and thus, trivially, imbalanced as there are signif- 
icantly fewer same EC (positive) pairs than different EC (negati v e) pairs; 
here, a ratio of ∼1 / 15. 
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functionality. Howe v er, in our annotations we still heavily
relied on significant sequence similarity. Thus, we aimed to
build a function annotation model that was less dependent
on sequence comparisons and somewhat arbitrary cluster-
ing parameters. To this end, we trained a Siamese Neural
Network (SNN) to predict whether two nucleic acid (gene)
sequences encode proteins of the same Fusion function. 

SNNs are specifically optimized to assess similarities of
two objects ( 87 ) – in our case gene / protein functional simi-
larity. Note that we chose genes instead of protein sequences
to adapt to unexplored genome and metagenome analy-
ses more easil y, w here protein sequence prediction is an ex-
tra computational step in generating functional abundance
profiles. In training (balanced set; ∼300k gene pairs, 50%
same versus 50% different function), our model attained
73% over all accur acy at the default cutoff (score > 0.5; area
under the R OC curve, AUC R OC = 0.80). SNN prediction
scor es corr elated with the pr ecision of r ecognizing the pair’s
functional identity; thus, for example, at cutoff = 0.98 the
method attained 96% precision for the 19% of gene pairs
that reached this threshold. Note that at this stringent cut-
off, for an imbalanced test set with 10% same function pairs,
the network still maintained high precision (82%) at a simi-
lar recall (24%). Importantly, increasing the size of the train-
ing data to one million gene pairs, improved the method
performance (AUC ROC = 0.81), suggesting that further
improvements may be possible. 

W hile somewha t correla ted (Spearman rho = 0.3, Sup-
plementary Figure S12), the SNN similarity scores captured
a different signal than the HFSP scores, i.e. values incor-
porating sequence identity and alignment length. To evalu-
ate the captured signal, we compiled a set of Fusion func-
tions where (i) the Fusion function was associated with only
one EC number, (ii) a number of different Fusion functions
were associated with one EC number and (iii) different Fu-
sion functions were associated with different EC numbers.
As it was trained to do, SNN captured the similarity of
genes from the first category (same Fusion function, same
EC; Supplementary Figure S13 right green column, median
SNN-score = 0.83) and the difference of the genes from the
third category (different Fusion function, different EC; me-
dian SNN-score = 0.13; Supplementary Figure S13, left or-
ange column). Howe v er, genes of the second category (dif-
ferent Fusion functions, same EC number) were scored sig-
nificantly higher than expected (median SNN-score = 0.7;
Supplementary Figure S13, left green column; false posi-
ti v es in SNN training.) Thus, our SNN identified same en-
zymatic activity gene pairs that were NO T ca ptured as same
function by the homology-based Fusion. 

Machine learning-based sequence comparisons and structure
alignments capture orthogonal signals 

W ha t functional similarity does an SNN capture? While
not obvious from gene sequence comparisons, we expected
that functionally similar proteins that are not sequence sim-
ilar should share structural similarity ( 88 , 89 ). We com-
piled a set of Fusion proteins that have a structure in
the PDB and then computed structural (TM-scores) and
functional (SNN-scores) similarities for all pairs (Materials
and Methods). Note that we did not use predicted protein
structures ( 90 , 91 ) to avoid compounding machine learning
pr efer ences. 

First, we examined the relationship between the TM-
score and SNN-score for sequence-similar protein pairs
(HFSP ≥ 0; Supplementary Figure S14). We found that 97%
of these pairs (3988 of 4132) were structurally similar (TM-
score ≥ 0.7; Table S2) and 94% (3876) wer e pr edicted by
the SNN to be of the same function (SNN-score ≥ 0.5;
Table S3). These observations highlight HFSP’s precision
and confirm the expecta tion tha t high sequence similarity
in most cases encodes for structural and functional iden-
tity. Note that only a fifth (3988 of 17 872) of all protein
pairs with a TM-score ≥0.7 also had an HFSP ≥ 0, indi-
ca ting tha t function transfer by homolo gy, w hile precise for
the pairs it does identify, fails to find the more remote func-
tional similarity. 

SNN predictions, on the other hand, identified 77%
(13 750 of 17 862) of the high TM-scoring pairs to be of
the same function. Note that a quarter (3583 of 13 750)
of the SNN predictions attained a high score ( ≥0.98; Fig-
ure 5 , Table S4) but only some of these (2119; 59%) were
also sequence similar (HFSP ≥ 0). Most (73%, 21 668 of
29 531) of the reliably structurally dissimilar protein pairs
(TM-scores < 0.2, Materials and Methods) wer e pr edicted
to be functionally different by SNN (score < 0.5); only
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1 pairs ( < 1%) attained a high SNN-score. Of pairs that 
hare some structural similarity, SNN labeled half (TM- 
core: [0.2,0.5) = 45% and [0.5,0.7) = 53%) as having the 
ame Fusion function; for both sets, only 4% reached a high 

NN-score, which stands in contrast to the 26% of the pro- 
ein pairs with TM-score ≥ 0.7. That is, SNN reliably iden- 
ifies presence / absence of functional similarity at the ex- 
remes of structural similarity but is significantly less certain 

or mildly structurally similar proteins. 
We further evaluated the ability of the SNN and 

he TM scores to directly predict function, i.e. the 
dentify / difference of the experimentally annotated 3 

rd EC 

e v el of each protein pair (Materials and Methods). As be- 
or e (Supplementary Figur e S13), we observed that the pro- 
eins of the same EC number were, on average, predicted 

ith a higher SNN-score than different-EC pairs (Supple- 
entary Figure S15). We found that while the SNN preci- 

ion and recall were significantly above random, they were 
ower than simply using the TM-score (Figure 5 ). Howe v er, 
ombining the TM and SNN predictions significantly im- 
roved recognition of proteins of the same function. We 
hus suggest that the SNN reports a signal of functional 
imilarity that is captured neither by sequence nor structure 
imilarity alone. 

To explore this signal further, we investigated out- 
ier protein pairs in our set, i.e. structurally different 
TM-score < 0.2), sequence dissimilar (HFSP < 0) pairs 
f proteins of the same 4 

th digit EC number attaining 

n SNNscore ≥ 0.98, i.e. UniProt ids: P37870 / P37871, 
35011 / O31718, and Q8RQE9 / P37871. Curiously, for 

hese pairs, both TMAlign (proteins in the pair have dif- 
er ent structur es) and the SNN (proteins in the pair have 
he same function) predictions were correct. That is, each 

air was annotated with one EC number, but the sequences 
er e structurally differ ent chains of the same heteromer 

P37870 / P37871 and O35011 / O31718) or of the same pro- 
ein complex (Q8RQE9 / P37871). While these three ex- 
mples are anecdotal evidence they also clearly demon- 
trate the limitations of available chain-based functional 
nnotations. 

ummarizing the findings 

nderstanding bacterial lifestyles r equir es describing their 
unctional capabilities and critically contributes to r esear ch 

n medical, environmental, and industrial fields. The recent 
xplosion in completely sequenced bacterial genomes has, 
im ultaneousl y, created a deluge of functionally unanno- 
ated and misannotated sequences and allowed for the de- 
 elopment of ne w and informati v e sequence-based meth- 
ds. Here, we optimized Fusion, a method for annotating 

he functional r epertoir es of bacteria. Using these reper- 
oires, we propose an implementation of a function-based 

ax onom y that is robust to addition of new organisms. We 
ote that Fusion functions recapitulate bacterial taxonomic 
ssignments better than 16S rRNA comparisons. In the ab- 
ence of validation techniques for functional assignment of 
nannotated proteins, we suggest that taxonomic classifica- 
ion abilities highlight Fusion’s precision in capturing puta- 
i v e protein functionality. In further exploration of the func- 
ional signal, we trained a Siamese Neural Network (SNN) 
o label pairs of genes whose product proteins are func- 
ionally similar according to our functional definitions. No- 
ably, the SNN’s predictions were orthogonal to sequence 
nd structure signals and, thus, may open the door to in- 
estigating remote homology. We propose that this method 

ould further be optimized for extraction of functional an- 
otation directly from metagenomic reads. 
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1. V ̌etrovský,T. and Baldrian,P. (2013) The variability of the 16S rRNA 

gene in bacterial genomes and its consequences for bacterial 
comm unity anal yses. PLoS One , 8 , e57923. 

2. Zhu,C., Miller,M., Marpaka,S., Vaysberg,P., Rühlemann,M.C., 
Wu,G., Heinsen,F.-A., Tempel,M., Zhao,L., Lieb,W. et al. (2017) 
Functional sequencing read annotation for high precision 
microbiome analysis. Nucleic Acids Res. , 46 , e23. 

3. Hern ́andez-Salmer ́on,J.E. and Moreno-Hagelsieb,G. (2022) 
FastANI, Mash and Dashing equally dif ferentia te between Klebsiella 
species. PeerJ , 10 , e13784. 

4. Jain,C., Rodriguez-R,L.M., Phillippy,A.M., Konstantinidis,K.T. and 
Aluru,S. (2018) High throughput ANI analysis of 90K prokaryotic 
genomes re v eals clear species boundaries. Nat. Commun. , 9 , 5114. 

5. Baker,D.N. and Langmead,B. (2019) Dashing: fast and accurate 
genomic distances with HyperLo gLo g. Genome Biol. , 20 , 265. 

6. Parks,D.H., Chuvochina,M., Waite,D.W., Rinke,C., Skarshewski,A., 
Chaumeil,P.-A. and Hugenholtz,P. (2018) A standardized bacterial 
tax onom y based on genome phylogeny substantially revises the tree 
of life. Nat. Biotechnol. , 36 , 996–1004. 

7. Chicco,D. (2021) In: Cartwright,H. (ed.) Artificial Neural Networks . 
Springer US, NY, pp. 73–94. 

8. Krissinel,E. (2007) On the relationship between sequence and 
structure similarities in proteomics. Bioinformatics , 23 , 717–723. 

9. Rost,B. (1999) Twilight zone of protein sequence alignments. Protein 
Eng. Des. Selection , 12 , 85–94. 

0. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M., 
Ronneberger,O., Tunyasuvunakool,K., Bates,R., Ž ́ıdek,A., 
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