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Abstract
Elucidating the precise molecular events altered by disease-causing genetic variants repre-

sents a major challenge in translational bioinformatics. To this end, many studies have

investigated the structural and functional impact of amino acid substitutions. Most of these

studies were however limited in scope to either individual molecular functions or were con-

cerned with functional effects (e.g. deleterious vs. neutral) without specifically considering

possible molecular alterations. The recent growth of structural, molecular and genetic data

presents an opportunity for more comprehensive studies to consider the structural environ-

ment of a residue of interest, to hypothesize specific molecular effects of sequence variants

and to statistically associate these effects with genetic disease. In this study, we analyzed

data sets of disease-causing and putatively neutral human variants mapped to protein 3D

structures as part of a systematic study of the loss and gain of various types of functional

attribute potentially underlying pathogenic molecular alterations. We first propose a formal

model to assess probabilistically function-impacting variants. We then develop an array of

structure-based functional residue predictors, evaluate their performance, and use them to

quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal

binding, macromolecular binding, ligand binding, allosteric regulation and post-translational

modifications. We show that our methodology generates actionable biological hypotheses

for up to 41% of disease-causing genetic variants mapped to protein structures suggesting

that it can be reliably used to guide experimental validation. Our results suggest that a sig-

nificant fraction of disease-causing human variants mapping to protein structures are func-

tion-altering both in the presence and absence of stability disruption.
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Author Summary

Identifying the molecular changes caused by mutations is a major challenge in under-
standing and treating human genetic disease. To address this problem, we have developed
a wide range of profiling tools designed to predict specific types of functional site from
protein 3D structures. We then apply these tools to data sets of inherited disease-associ-
ated and putatively neutral amino acid substitutions and estimate the relative contribution
of the loss and gain of functional residues in disease. Our results suggest that alterations of
molecular function are involved in a significant number of cases of human genetic disease
and are over-represented as compared to putatively neutral variants. Additionally, we use
experimental data to show that it is possible to computationally identify the loss of specific
functional events in disease pathogenesis. Finally, our methodology can be used to reliably
identify the potential molecular consequences of disease-causing genetic variants and
hence prioritize experimental validation.

Introduction
Spurred by the advances in DNA sequencing, the accumulation of human genetic variation
(and with it amino acid substitution data) has over the past two decades been unprecedented.
Multiple databases and resources now enumerate and annotate amino acid substitutions, their
functional impact, and association with inherited disease [1–3]. However, to further our under-
standing of human genetic variation and its impact on disease, it is necessary to elucidate the
associated molecular alterations [4–6]. Thus, the step of identifying the underlying molecular
mechanisms constitutes a serious impediment to understanding and treating human disease.

A straightforward approach to integrating genetic and molecular data is to search databases
for structural and functional annotations at the variation site or in the neighborhood of inter-
est, and then provide both the possible and the likely effects of mutations on these annotations
[7–12]. Although this approach is useful, its major limitation is its dependence on previously
observed and curated functional information as well as our inability, except in limited cases [9,
10], to cover mutations that create functional residues. Furthermore, the deterministic nature
of data integration does not easily lend itself to a principled strategy of prioritizing many of the
possible molecular mechanisms based on their likelihood to impact clinical phenotype, espe-
cially when a variant resides in the neighborhood of the functional site.

A more comprehensive approach to analyzing the effects of amino acid substitutions
involves the use of statistical inference methods that predict functional impact. Although there
are many studies that have adopted this strategy using the data from protein sequence or struc-
ture [13], most methods make inferences without specifying which functional property has
been impacted. Such an approach, however, is feasible if the methodology can be developed to
predict a specific function, say a phosphorylation site or a catalytic residue, which is then
applied to sequence variants [14–16]. Furthermore, these specific functional predictions can be
integrated with general variant effect predictors to provide probabilistic estimates of molecular
mechanisms of disease [17].

While many successful machine learning models can be made based on sequence informa-
tion alone, structural information can provide additional benefits [18, 19]. This suggests that
further improvements could be made if specific predictors of protein function could be inte-
grated into this pipeline [20]. Wang andMoult published a seminal work on the impact of
germline variants on protein function [7]. They searched the Protein Data Bank (PDB) and
used homology modeling to obtain 3D structures of wild-type proteins as a means to

Loss and Gain of Functional Residues in Inherited Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005091 August 26, 2016 2 / 23

through a License Agreement with Cardiff University.
We gratefully acknowledge the support from the
National Institutes of Health through the awards
R01LM009722 and R01MH105524. The funders had
no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



characterize the structural and functional effects of both disease and neutral variants. They
reported that the majority of disease-causing substitutions affect protein stability, whereas a rel-
atively small proportion directly disrupt molecular function. By contrast, Sahni et al. observed a
rather larger fraction of function-impacting variants in their experimental studies into the
impact of variants on protein-protein and protein-DNA interactions [21]. Their work therefore
challenges the traditional view of the dominance of structure-impacting changes. Finally, Stew-
ard et al. examined the structural, functional and physicochemical features of wild-type protein
structures where disease-causing variants occur [22]. Unfortunately, the scope of these and sev-
eral other studies was limited to characterizing the functional effects of amino acid substitutions
across a handful of protein functions [23, 24]. There is therefore a need for large-scale studies
that use statistical inference methods based on protein structure to explore the relative contribu-
tions made by disruption of functional sites in disease pathogenesis.

In this work, we carry out a systematic study of the alterations of specific functional sites as
the underlying molecular mechanisms of disease over a data set comprising germline disease-
causing amino acid substitutions mapped to protein 3D structures. In particular, we develop
multiple structure-based functional residue predictors and assess the impact of disease-associ-
ated substitutions on catalytic residues, metal-binding sites, macromolecular binding sites,
ligand-binding sites, allosteric sites and post-translational modification (PTM) sites. We then
quantify the extent to which disruption or introduction of particular types of functional site
accounts for the deleterious impact of amino acid substitutions. Our results provide evidence
to support the view that the increased and decreased propensity of particular functional activi-
ties are common in human inherited disease.

Materials and Methods

Probabilistic model for alteration of residue function
For a given protein structure and a missense variant, we are interested in estimating whether a
particular residue functionality, say f, has been impacted. To achieve this, we broadly distinguish
between two scenarios resulting in alteration of function: (i) the mutation disrupts protein sta-
bility and subsequently impacts residue function and (ii) the mutation does not impact stability
and structure yet still leads to an altered function as a consequence of modified functional pro-
pensity. The latter scenario might occur, for example, for tyrosine-to-phenylalanine substitu-
tions that result in minimal structural changes, yet the mutation itself may have significant
impact on protein phosphorylation and downstream events. This is because phenylalanine can-
not be phosphorylated to subsequently create an SH2 binding site [25]. We informally refer to
the events of increased or decreased functional propensity as gain and loss of functional activity.

We formalize this approach as follows. Let x be a collection of features that encodes a partic-
ular mutation in a protein structure and let P(loss of f|x) be the probability of the loss of residue
function f consequent to mutation. Then, we can write

Pðloss of f jxÞ ¼ Pðloss of f jS; xÞPðSjxÞ þ Pðloss of f j�S; xÞPð�SjxÞ;

where the event S indicates that protein stability is significantly changed and �S indicates that
the stability is not significantly changed; i.e., PðSjxÞ ¼ 1� Pð�SjxÞ. This expression gives a
probabilistic formulation that can be used to estimate loss of a specific function f, with an
assumption of a dichotomized impact on protein stability. We use this simple approach in part
because of the issues involved in obtaining large amounts of high-quality data to assess the
impact of sequence variants on stability. We note, however, that the expression can be general-
ized to multiple groups of stability disruption and in the limit the sum would turn into an inte-
gral. Now we briefly discuss estimating P(S|x), P(loss of f|S, x), and Pðloss of f j�S; xÞ.

Loss and Gain of Functional Residues in Inherited Disease
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The posterior probability of stability disruption P(S|x) can be determined by developing a
computational model given a representative data set of variants that significantly impact stabil-
ity of the protein (both stabilizing and destabilizing mutations) and a representative set of vari-
ants that do not. The negative data set can also be substituted by a large representative set of
variants for which the impact on stability is unknown [26, 27]. This formulation falls into the
category of positive-unlabeled learning [28], a version of semi-supervised learning in which the
set of negative examples is unavailable or ignored; e.g., because available negative examples are
biased.

Next, we discuss estimating Pðloss of f j�S; xÞ; i.e., the probability of the loss of function given
that there is no significant stability disruption. Let x0 be a collection of features that encodes the
structural environment of a residue and let f be the specific residue function of interest; e.g.,
whether the residue is phosphorylated, DNA-binding, etc. Let Pðf jx0wtÞ denote the probability
that the residue at this site is functional in the wild-type protein and Pðf jx0mtÞ the probability
that the mutated residue, at the same locus in the protein, is functional. We then define the
probability of the loss of residue function f as

Pðloss of f j�S; xÞ ¼ Pðf jx0wtÞ � ð1� Pðf jx0mtÞÞ;

where 1� Pðf jx0mtÞ gives the probability that the residue in the mutant protein is not func-

tional. To estimate Pðloss of f j�S; xÞ, we can employ the same functional residue predictor to
compute prediction scores on the wild-type and mutant proteins. That is, because there are no
structural changes, the same structure-based classifier can be used to compute both Pðf jx0wtÞ
and Pðf jx0mtÞ, with the only difference being the replaced amino acid in the feature set x0mt . As
before, the probabilistic model P(f|x0) can be developed using data sets of positive and negative
examples or, in the absence of representative negative examples, using positive and unlabeled
data. We will discuss the details of approximating the posterior probability of protein function
in the next section. Finally, we can consider that large changes in protein stability and structure
always abolish the function of a residue; i.e., Pðf jx0mtÞ � 0. This implies that

Pðloss of f jS; xÞ � Pðf jx0wtÞ;

that is, the probability of the loss of function at a particular residue is roughly equal to the prob-
ability that the residue was functional in the first place.

In addition to the loss of protein function, we can also consider the event of the gain of resi-
due function, where

Pðgain of f j�S; xÞ ¼ ð1� Pðf jxwtÞÞ � Pðf jxmtÞ:

This formulation accounts for the changes in residue microenvironments that increase its
functional propensity. While most amino acid substitutions found in nature are neutral or dis-
ruptive, there are many examples in which they lead to the gain-of-function events. For exam-
ple, generation of a sequence motif NX[S/T] has been observed to result in gain of N-linked
glycosylation events and disease [9]. Similarly, changes in catalytic residues have been
observed to increase the efficiency of catalysis, also with phenotypic implications [29]. Fur-
thermore, assuming that significant stability changes rarely lead to gain of function we can
simply take

Pðgain of f jS; xÞ � 0:

In this paper, we are interested in specific types of residue function f for which sufficiently
large data sets could be extracted from biological databases. We organize these residues into
catalytic residues, metal-binding residues, macromolecule-binding residues, ligand-binding
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residues, post-translationally modified sites, and allosteric residues. For the purposes of our
study, we consider certain types of residues to be functional although they may also be impor-
tant for protein stability. For example, a disruption of certain metal-binding sites, say a Zn2+-
binding residue, will be considered here as disruption of functional residues that conse-
quently impacts protein stability. We do, however, note that this distinction is somewhat
philosophical.

Training stability predictors and functional residue predictors
All classification models in this work were trained using the positive-unlabeled framework in
which we are given a set of positive examples and a set of unlabeled examples. In the case of sta-
bility predictors, P(S|x), the positive examples represent mutations that have been experimen-
tally shown to significantly impact protein stability; based on the previous studies we selected
these mutations to be either stabilizing or destabilizing with |ΔΔG|> 0.5 kcal/mol [30],
although some other studies use higher values [31, 32]. The set of unlabeled examples, on the
other hand, was selected using a database of human variants, dbSNP, mapped to available pro-
tein structures in PDB. In the case of functional residue predictors P(f|x0), the positive examples
were selected by integrating structural and molecular data that provide experimentally
observed functional residues, whereas the unlabeled examples were selected from a set of
monomeric proteins in PDB. We will describe all data sets precisely at the end of the Methods
section.

We next discuss how to train a classification model from positive and unlabeled data. Let
DL ¼ fðxi; yiÞgmi¼1 be a labeled data set, where xi 2 X is an input example and yi 2 {−1, +1} is
its class label. LetDU ¼ fxigni¼1 be a set of unlabeled examples. In the problem of learning
whether a mutation impacts stability, x encodes a set of features corresponding to the muta-
tion and y = +1 indicates large stability disruption. Similarly, in the case of functional site
predictors, x encodes a particular residue microenvironment in a protein and y = +1 indi-
cates that the residue is functional. In the positive-unlabeled formulation, all examples inDL

have positive class labels, whereas DU is a mixture of positive and negative examples. The
probability of positive examples P(y = +1) in the unlabeled set is referred to as the class
prior. The task of the predictor is to learn the probability P(y = +1|x) when provided data
sets DL and DU .

Unfortunately, learning P(y = +1|x) is not straightforward because the negative examples
are not available. To address this problem we rely on the body of work in semi-supervised
learning that decomposes the problem into the training of a non-traditional classifier [26]; i.e.,
a model that distinguishes between labeled and unlabeled data, and estimating the class prior
P(y = +1). We denote the posterior probability from a non-traditional classifier as P(l = +1|x),
where l = +1 refers to the event of data point being labeled. We approximate these probabilities
using kernel-based learning with support vector machine (SVM) classifiers as underlying opti-
mization engines. Additionally, we estimate P(y = +1) using the AlphaMax algorithm [27], and
point out other available options for an interested reader [26, 33].

Under mild assumptions [27], the output of a non-traditional classifier P(l = +1|x) can be
converted into the output of a traditional classifier P(y = +1|x) using

Pðy ¼ þ1jxÞ ¼ Pðy ¼ þ1Þ � n
m

� Pðl ¼ þ1jxÞ
1� Pðl ¼ þ1jxÞ ;

wherem and n are the sizes of labeled and unlabeled data sets, respectively. This predictor can
now be applied to any data setD to compute the frequency of the phenomenon using the
empirical mean formula 1

jDj
P

x2DPðy ¼ þ1jxÞ.
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The probability of alteration for multiple types of function
We previously considered the loss and gain of the specific function f at a particular residue of
interest. We now extend this definition to multiple types of functional residues as follows. Con-
sider an event of loss of any function f from a set F . We can use previous reasoning to re-write
the earlier expression as

Pðloss of F jxÞ ¼ Pðloss of F jS; xÞPðSjxÞ þ Pðloss of F j�S; xÞPð�SjxÞ:
To compute this probability, we need to compute probabilities Pðloss of F jS; xÞ and
Pðloss of F j�S; xÞ. Because the functional data is too sparse to learn the joint (posterior) models
of residue function, we consider two models to approximate this probability using the marginal
(posterior) models that the residue is functional. In the first model that we refer to as the inde-
pendence model, we consider each type of functional residue to be independent of others and
write

Pðloss of F j�S; xÞ ¼ 1�
Y

f2F
ð1� Pðloss of f j�S; xÞÞ:

The expression above is the probability that at least one of the functions from F has been lost.
Because the functions are not in reality independent, this model may lead to overestimation.
The second, more conservative model, approximates the probability of loss as

Pðloss of F j�S; xÞ ¼ max
f2F

Pðlossof f j�S; xÞf g:

We refer to this model as the max model. Equivalent expressions can be written for
Pðloss of F jS; xÞ as well as for the gain-of-function events. We note that F may contain partic-
ular groups of functions, say all types of metal binding, or can be used for all functions consid-
ered in this work.

Graphlet kernels
In this section we briefly summarize the graphlet kernel prediction framework and show how
these kernels were used to train both stability predictors and functional site predictors.

Graphs. A graph G is a pair (V, E), where V is a set of vertices (nodes) and E� V × V is a
set of edges. In a vertex-labeled (colored) graph, a labeling function g is defined as g: V! S,
where S is a finite alphabet, commonly referred to as vertex alphabet. A graph without self-
loops, i.e. where (v, v) =2 E, 8v 2 V, is said to be simple. An undirected graph is a graph where
the order of the vertices in each pair (u, v) 2 E can be ignored; otherwise, the graph is said to be
a directed graph. A rooted graph G is a graph together with a distinguished vertex termed the
root.

Graphlets. A graphlet is a small, simple, connected, rooted graph. We refer to a graphlet
with n vertices as an n-graphlet. For more information on graphlets, we direct the reader to
[34–38].

Edit distance graphlet kernels. Consider a vertex-labeled graph G = (V, E, g, S), where |S|
� 1. Lugo-Martinez and Radivojac [38] defined them-edit distance representation of vertex v as

�ðn;mÞðvÞ ¼ ðcðn1 ;mÞðvÞ;cðn2 ;mÞðvÞ; . . . ;cðnkðn;SÞ ;mÞðvÞÞ;

where

cðni ;mÞðvÞ ¼
X

nj2Eðni ;mÞ
wðni; njÞ � φnj

ðvÞ:

Loss and Gain of Functional Residues in Inherited Disease
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In the previous expression φnj
ðvÞ is the count of the j-th labeled n-graphlet rooted at v, κ(n, S) is

the total number of vertex-labeled n-graphlets and E(ni,m) is a set of n-graphlets such that for
each nj 2 E(ni,m) there exists an edit distance path of length at mostm that transforms ni into
nj. That is, the number of edit operations necessary to transform ni into nj is at mostm, where
edit operations are defined as insertion or deletion of vertices and edges, or in the case of labeled
graphs, substitutions of vertex and edge labels. Finally, weights w(ni, nj)� 0 are used to adjust
the influence of pseudo counts and control computational complexity; in this study, we set w-
(ni, nj) = 1 if nj 2 E(ni,m) and w(ni, nj) = 0 otherwise.

The length-m edit distance n-graphlet kernel k(n,m)(u, v) between vertices u and v can be
computed as an inner product between the respective count vectors ϕ(n,m)(u) and ϕ(n,m)(v).
Hence, the length-m edit distance graphlet kernel function can be expressed as

kmðu; vÞ ¼
XN

n¼1

kðn;mÞðu; vÞ;

where N is a small integer; typically defined up to N = 5 for undirected graphs. Additionally,
one can define two subclasses of edit distance kernels referred to as (vertex) label-substitution
kl (only allows substitutions of vertex labels) and edge-indel kernels ke (only allows insertion or
deletion of edges). It is worth noting that ifm = 0, then km, klm and kem are all equivalent to the
standard graphlet kernel on labeled graphs [37]. In this work, we only considered the normal-
ized kernel calculated as

kðu; vÞ ¼ k�ðu; vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�ðu; uÞ k�ðv; vÞp ;

where k�(u, v) can be km(u, v), klmðu; vÞ, or kemðu; vÞ. The normalized kernel has been previously
shown to have favorable performance with respect to non-normalized kernels [37, 38].

Practical aspects of training. We used the graphlet kernel framework and SVM classifiers
to construct all functional site predictors. First, we modeled protein structures as protein con-
tact graphs, where each amino acid residue was represented as a vertex and two spatially close
residues (i.e. 4.5Å or less between any two atoms) were linked by an undirected edge. Fig 1
illustrates a contact graph for a protein kinase rooted at a tyrosine residue at position 148.
Next, we computed a set of normalized graphlet kernel matricesK using klmðxi; xjÞ; kemðxi; xjÞ
and km(xi, xj) for all pairs (xi, xj). For each k 2 K, we used SVMlight [39] and the default value
for the capacity parameter to train a predictor. We incorporated evolutionary information by
extending the vertex alphabet S from the 20 standard amino acids to 40 based on the median
residue conservation observed over the entire data set [38]. For example, the amino acid ala-
nine was split into highly conserved alanines (represented as A) and other alanines (repre-
sented as a). Once each predictor was trained, we used Platt’s correction to adjust the outputs
of the predictor to the 0-1 range [40].

In the case of stability predictors, we augmented the graphlet kernel representation using 33
features previously shown to be informative [41, 42]. In particular, we used 20 features for the
20 different amino acids to encode the mutation information (i.e. −1 for wild-type residue; +1
for mutated residue; 0 otherwise), and 13 features to encode the difference between physico-
chemical properties between wild-type and mutant amino acid residues [43–50].

Evaluation of in silico predictions
The performance of each predictor was first evaluated through a per-chain 10-fold cross-vali-
dation. In each iteration of cross-validation, 10% of protein chains were selected for the test set,
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whereas the remaining 90% were used for training. This enforces that all data points from the
same protein sequence belong to either training or test set and, thus, reduces the chance of
overestimating the accuracy of the models. We estimated the area under the ROC curve
(AUC), which plots the true positive rate as a function of the false positive rate and the Mat-
thews correlation coefficient (MCC).

It is impractical to validate, in vitro or in vivo, the functional effects of each amino acid sub-
stitution in our data sets. Therefore, we used independent mutagenesis experimental data to
additionally evaluate the performance of our functional site predictors and also evaluate pre-
dictions of the loss of functional residues. More specifically, we downloaded all human muta-
genesis experimental data from UniProt as of September 2014. This data set comprised 14,933
substitutions from 3,044 distinct proteins. We removed all entries associated with more than
one substitution. The resulting 11,425 sites were mapped to high-quality PDB structures using
the same steps described in the next section. The final data set comprised 3,356 amino acid sub-
stitutions from 2,809 different sites in 880 proteins.

For each site in this data set, we extracted functional annotations related to metal binding,
PTMs, active sites, macromolecular binding, ligand binding and allosteric activity. Then, for
each functional site predictor, we built an independent test set such that (i) each site belonged
to a chain that was less than 40% identical to any chain in the training data, (ii) there were at
least five positive sites in each test set. The resulting set was used to assess the performance of
the functional predictors independently of the cross-validation.

Similarly, we created a test data set to evaluate loss-of-function predictions as follows: we
searched the description of the mutagenesis experiment such that there was an experimentally

Fig 1. Left: Structure of human aurora kinase A, chain A fragment (PDB entry 2j4z) with highlighted phosphorylation site Tyr148 (denoted as
Y148).Right: Corresponding level-3 protein contact graph centered at Tyr148 (denoted with double circles). Nodes represent amino acid residues and
edges correspond to spatially neighboring residues (i.e. 6Å or less betweenCα atoms).

doi:10.1371/journal.pcbi.1005091.g001
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observed disruption of a functional site. The resulting non-redundant and filtered data sets
were then used to estimate the AUC and MCC of all loss-of-function predictors. We attempted
to carry out the same steps for gain-of-function events but there were insufficient data.

Disease-associated mutation data
Missense variants causing inherited disease were obtained from the Human Gene Mutation
Database (HGMD) as of June 2013. A set of unlabeled inherited variants was downloaded from
dbSNP v.137. All amino acid substitutions were then mapped to protein structures in PDB as
follows: (i) a database of amino acid sequences from X-ray crystallographic protein structures
with more than 50 amino acids and resolution less than 2.5Å was created, and (ii) for each vari-
ant, a 51 residue long sequence centered around the wild-type amino acid at the variant posi-
tion was aligned using BLAST [51] against the atom sequences in PDB. All alignments without
an exact match; i.e., with gaps or sequence identity lower than 100%, were excluded from this
study and in the case of multiple exact matches, the structure with the best resolution was
selected. This resulted in 10,629 (out of 52,406) disease-causing amino acid substitutions and
8,417 (out of 282,625) unlabeled amino acid substitutions being successfully mapped to high-
quality PDB structures. Table 1 summarizes both data sets. There exists an overlap between the
HGMD (disease) and dbSNP (unlabeled) variants; the subset of dbSNP variants after the
removal of HGMD variants will be referred to as putatively neutral variants (Table 1).

Functional site data sets
Metal ions annotated in X-ray structures from PDB as of May 2012 were selected using the
HETATM field [52]. A metal-binding residue was defined as the residue that has at least one
heavy atom (N, O or S) within 3Å of the metal ion. In order to build an unbiased classifier, we
removed chains with: (i) more than 40% sequence identity with any other chain in the data set,
(ii) crystallographic resolution greater than or equal to 2.5Å, and (iii) R-values greater than or
equal to 30%. We only considered data sets with more than 100 metal-binding residues and we
refer to these residues as positives. N-linked glycosylation sites were parsed from PDB and fil-
tered in the same way as the metal-binding sites. In the case of phosphorylation sites, we used
the data set assembled previously [20]. Catalytic residues were collected from the Catalytic Site
Atlas v2.2.10 [53] and only literature-supported sites were kept as positive examples. As with
the previous data sets, we filtered out chains with more than 40% sequence identity. DNA-
binding sites were collected from Yan et al. [54], RNA-binding sites were downloaded from
ccPDB [55] and protein-protein interaction (PPI) sites were obtained from Chung et al. [56].
Each data set was further filtered to remove redundancy. Protein-protein interaction hot spot
residues were obtained from Lise et al. [57]. This data set was created from ASEdb [58] and
only sites that mapped to PDB were used. Chains with more than 35% sequence identity were
filtered out in the original work. In our analysis, we used ΔΔG greater than 1kcal/mol as the

Table 1. Summary of amino acid substitution (AAS) data sets.

Data set name nAAS ns nPDB nc

Inherited disease 52406 10629 1177 1387

Unlabeled variants 282625 8417 3121 3585

Putatively neutral 282625 8049 3047 3500

For each data set, we show the total number of amino acid substitutions (nAAS), the number of substitutions

mapped to PDB (ns), the number of PDB entries (nPDB) and the number of protein chains (nc).

doi:10.1371/journal.pcbi.1005091.t001
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cutoff for hot spots. Ligand binding data sets were collected from ccPDB as of November 2014
and allosteric site data were downloaded from ASD v2.0 [59]. For each data set, we removed
chains with resolution greater than or equal to 2.5Å. Protein stability data was collected from
Capriotti et al. [41]. We used the S1615 data set which consists of 1615 single site mutations
extracted from 42 different proteins in the ProTherm database [60]. The attributes for each
data point included solvent accessibility, pH value, temperature and energy change ΔΔG. As
previously noted, positive data points comprised mutations with |ΔΔG|>0.5. We further fil-
tered out 112 redundant data points.

Table 2 summarizes the protein stability and functional site data sets used in this study. In
all situations, the unlabeled data set was constructed using a random sample of 10,000 residues
selected from the 40% non-redundant set of monomers in PDB. This set was modified in the

Table 2. Performance assessment of structural and functional residue predictors using cross-validation on positive-unlabeled data sets.

Category Site type nc n+ AUC sn sp MCC

Protein stability Stability (S) 40 1041 0.735 0.118 0.989 0.223

Metal binding Calcium (Ca) 1092 4860 0.895 0.448 0.986 0.561

Cadmium (Cd) 199 1003 0.905 0.233 0.986 0.350

Cobalt (Co) 156 532 0.934 0.596 0.986 0.623

Copper (Cu) 105 440 0.951 0.780 0.985 0.727

Iron (Fe) 187 785 0.976 0.875 0.986 0.843

Potassium (K) 287 978 0.679 0.129 0.986 0.211

Magnesium (Mg) 1348 3282 0.859 0.435 0.986 0.561

Manganese (Mn) 366 1344 0.945 0.665 0.985 0.727

Sodium (Na) 961 2753 0.671 0.105 0.987 0.211

Nickel (Ni) 254 680 0.932 0.565 0.986 0.621

Zinc (Zn) 1307 5778 0.966 0.623 0.987 0.691

PTMs N-glycosylation (Nglyco) 339 736 0.785 0.120 0.986 0.183

Phosphorylation (Phos) 655 1157 0.810 0.375 0.987 0.504

Catalytic activity Catalytic (Cat) 721 2224 0.934 0.433 0.985 0.561

Macromolecular binding DNA-binding (DNA) 139 3791 0.815 0.193 0.987 0.332

RNA-binding (RNA) 83 3436 0.783 0.187 0.985 0.319

Protein-protein interaction (PPI) 112 4350 0.807 0.091 0.987 0.191

PPI hot spots (Hotspot) 35 165 0.803 0.309 0.986 0.278

Ligand binding ADP 162 2589 0.842 0.335 0.985 0.475

ATP 104 1733 0.813 0.242 0.986 0.382

FAD 80 2248 0.840 0.307 0.985 0.448

FMN 42 788 0.824 0.284 0.985 0.384

GDP 45 593 0.843 0.433 0.985 0.502

GTP 22 366 0.716 0.145 0.986 0.181

HEM 83 2246 0.847 0.220 0.986 0.361

NAD 73 1663 0.831 0.259 0.985 0.393

PLP 34 477 0.916 0.505 0.986 0.543

UDP 27 398 0.684 0.080 0.987 0.103

Allosteric regulation Allosteric (Allo) 108 682 0.636 0.041 0.985 0.050

For each data set, we show the number of protein chains (nc) and the number of positive examples (n+). Additionally, we choose a score threshold

corresponding to a specificity (sp) of 99% and report sensitivity (sn) and MCC at this threshold, as well as AUC. In each classification problem, the number of

unlabeled examples was set to 10,000. S1 Table predictions lists the full name of each ligand code used. For the purposes of this work, structurally important

amino acid residues such as specific metal ion binding residues were considered a part of the portfolio of available residue functions.

doi:10.1371/journal.pcbi.1005091.t002
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case of post-translational modifications to include only modifiable residues; e.g., Asn for N-
linked glycosylation and Ser/Thr/Tyr for phosphorylation. It is important to emphasize that
the set of negative examples was allowed to contain both buried and surface-exposed residues
resulting in somewhat easier downstream classification problems. On the other hand, it
allowed us to apply our methods to all PDB-mappable amino acid substitutions and make
unbiased inferences related to different data sets.

Results
In this section we present the development of a stability model and a series of structure-based
functional site predictors in order to examine the molecular effects of genetic variants. We eval-
uate the predictors through cross-validation and using an independent data set. We then sum-
marize our results in relation to the functional impact of disease-causing substitutions and
compare them to putatively neutral variants.

Assessment of functional site predictors
All classifiers developed in this study were constructed using positive and unlabeled data sum-
marized in Table 2. Their performance was estimated via per-chain 10-fold cross-validation
and is also shown in Table 2. S2 Table further lists the parameters for the best-performing ker-
nel matrix obtained from a grid search overK, |S| = {20, 40},m = {0, 1} and N = {4, 5}. Each
predictor performance was assessed by means of the area under the ROC curve (AUC), sensi-
tivity (sn) at 99% level of specificity (sp), and the Matthews correlation coefficient (MCC). The
majority of predictors (26 out of 30) show good performance (� 70% AUC); however, we
observe that functions related to smaller interfaces such as metal ions and active sites exhibit
higher performance than other functional predictors. This result is not unexpected because
predictors of macromolecular binding would have benefited from incorporating higher-order
structural signatures such as clefts and pockets [20].

We also use an independent data set to evaluate a subset of functional site predictors, as
depicted in S3 Table. Interestingly, most predictors, except for macromolecular binding models
show similar or improved performance (AUC) values compared to those reported from cross-
validation (Table 2). Overall, despite the variability of performance accuracies, limited number
of independent data sets and the relatively small size of the validation data, these results pro-
vide evidence that functional site predictions are of sufficient quality to identify possible molec-
ular alterations resulting from specific missense mutations.

A literature survey suggests that our predictors perform well when compared to established
structure-based methods. Extensive comparisons with other work are difficult and were
beyond the scope of this study as our main goal was to probabilistically assess molecular mech-
anisms of disease. A set of predictors built using the same methodology was best suited to this
task.

Estimating prior and posterior probabilities
To use the formal framework laid out in the Methods section, it is important that all methods
approximate posterior distributions. Using positive and unlabeled data, we have approached this
problem in two steps: (i) by developing classifiers that discriminate between labeled and unla-
beled data, and (ii) by estimating the class priors of the positive class in the unlabeled data [27].

Estimated class priors are a particularly useful by-product of learning posterior distribu-
tions. For the stability predictor, we estimate up to 13% of unlabeled variants to significantly
impact stability using the AlphaMax algorithm [27]. When the stability model was applied to
disease variants only, we estimate 14% of these variants to be impactful using the empirical
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mean formula. It should be noted that when the known disease variants were removed from
the unlabeled data set, only 7% of the remaining variants were estimated to severely impact sta-
bility. In the case of functional predictors, we applied the AlphaMax algorithm using a set of
positive variants and a set of 10,000 variants randomly sampled from a set of non-redundant
monomers in PDB (S4 Table). In the case of catalytic residues, we estimate that up to 3% of
PDB residues to be catalytic; however, about 5% of disease-causing and 2% of putatively neutral
variants were estimated to be catalytic residues, etc. Overall, we generally observe a larger frac-
tion of function-impacting variants in the disease-causing data set as compared with the puta-
tively neutral variants.

Applying loss and gain functional site predictors to human variants
We applied the structure-based predictors on both the wild-type and mutant structural envi-
ronments as a means to identify and categorize the functional effects of amino acid substitu-
tions causing inherited disease. The distribution of scores on the putatively neutral variants
was used as an empirical null distribution. We then used a particular false positive rate (FPR)
value to determine a prediction threshold at which to assess the fraction of disease mutations
with loss or gain scores that are as high as or higher than the threshold.

Table 3 summarizes the relative contributions of disease mutations that either decrease
(loss) or increase (gain) the propensity of functional sites at a conservative threshold of 1%
FPR for six different prediction outputs. Fig 2 visualizes a subset of these results for the case
when stability is not impacted. Together with Table 3, it provides evidence that the loss and
gain of functional sites exist even when protein stability is not disrupted; e.g., in the case of loss
of function see columns Pðlossj�S; xÞ and Pðloss; �SjxÞ that roughly have the same values as P
(loss|x). We mention that when either a loss or a gain of function event is found to be statisti-
cally significant, the mutation of this type of functional residue is considered to be an active
mechanism of genetic disease. For instance, at 1% FPR, we observe that loss of catalytic resi-
dues (Cat; 3.34%; p-value = 1.93 � 10−28) and iron-binding residues, (Fe; 3.17%; p-value = 2.06 �
10−25) are among the most significantly affected molecular mechanisms.

Table 3 also summarizes the statistical enrichment of impact on at least one functional site
from the entire repertoire of functions using the independence and max models (see Methods).
Here we observe a strong enrichment in all categories of loss of function, with or without
impact on stability, for both the independence and max models. Additionally, we also see an
enrichment in the gain-of-function events. These results provide statistical support for many
individual studies that identify loss of function as a signature of human inherited disease.

Overall, our results suggest that with some exceptions, the loss of functional residues is
enriched and common in human inherited disease; similarly, the gain of functional residues is
observed to be an active mechanism in catalytic activity, most types of ligand-binding residues,
and majority of metal-binding residues. In contrast to previous studies, our results suggest that
the loss and gain of PTM sites do not show statistically significant enrichment in disease
(although we observe enrichment for the loss); however, we note that this may be due to a con-
siderable reduction of training data imposed by the availability of protein 3D structures, espe-
cially given a relationship between post-translational modifications and intrinsically
disordered proteins [61–64].

Table 4 shows the proportions of disease and putatively neutral variants across functional
categories for which molecular mechanisms can be computationally hypothesized. In the first
part of the table, we compute the fraction of variants for which exactly one of the member pre-
dictors reports a score as high or higher than the FPR-value determined threshold. These frac-
tions were then computed separately for disease and neutral variants. For convenience, when a
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predictor outputs a value as high or higher than the value determined by a 1% FPR, we refer to
this prediction as actionable hypothesis of loss or gain of function. On the other hand, when
the FPR-based threshold is adjusted using the Bonferroni correction, we refer to these predic-
tions are confident. For example, at a conservative p-value cutoff of p< 8.62 � 10−4, we find

Table 3. Percentage of disease variants with prediction scores at the 1% false positive rate threshold in putatively neutral variants.

Data set Single type loss events (%) Single type gain events (%)

Pðlossj�S; xÞ Pðloss; �SjxÞ P(loss|x) Pðgainj�S; xÞ Pðgain; �SjxÞ P(gain|x)

Ca 2.65* 2.35* 2.69* 3.90* 3.63* 3.63*

Cd 1.42 1.31 1.44 1.20 1.02 1.02

Co 1.97* 1.94* 1.98* 0.80 0.70 0.70

Cu 1.87* 1.82* 1.88* 1.29 1.15 1.15

Fe 3.14* 2.97* 3.17* 1.77* 1.62* 1.62*

K 2.45* 2.08* 2.45* 2.99* 2.60* 2.60*

Mg 3.22* 2.83* 3.14* 3.09* 2.89* 2.89*

Mn 2.42* 2.22* 2.45* 2.65* 2.47* 2.47*

Na 3.10* 2.55* 3.13* 2.50* 3.05* 3.05*

Ni 1.39 1.33 1.40 0.62 0.54 0.54

Zn 2.86* 2.64* 2.89* 1.81* 1.63* 1.63*

Nglyco 3.75 1.25 2.81 0.46 0.23 0.23

Phos 1.69 1.47 1.69 0.58 0.46 0.46

Cat 3.18* 2.90* 3.34* 4.45* 3.94* 3.94*

DNA 1.58* 1.39 1.61* 1.85* 1.75* 1.75*

RNA 0.96 0.89 0.96 1.25 1.05 1.05

PPI 1.53* 1.27 1.65* 1.94* 1.79* 1.79*

Hotspot 1.00 0.90 1.00 1.53* 1.45 1.45

ADP 3.12* 2.92* 3.16* 4.03* 3.68* 3.68*

ATP 2.73* 2.52* 2.76* 2.76* 2.41* 2.41*

FAD 2.77* 2.58* 2.81* 3.21* 2.92* 2.92*

FMN 2.15* 2.01* 2.17* 2.40* 2.18 2.18*

GDP 2.07* 1.99* 2.08* 2.41* 2.18* 2.18*

GTP 1.72* 1.48 1.72* 2.78* 2.15* 2.15*

HEM 2.26* 2.05* 2.35* 2.39* 2.05* 2.05*

NAD 3.00* 2.64* 3.09* 2.53* 2.15* 2.15*

PLP 3.15* 2.98* 3.10* 2.61* 2.37* 2.37*

UDP 2.70* 2.41* 2.71* 3.11* 2.46* 2.46*

Allo 1.47 1.24 1.49 1.96* 1.74* 1.74*

Model Multi-type loss events (%) Multi-type gain events (%)

Pðlossj�S; xÞ Pðloss; �SjxÞ P(loss|x) Pðgainj�S; xÞ Pðgain; �SjxÞ P(gain|x)

Independence 3.71* 3.31* 3.89* 4.13* 3.37* 3.37*

Max 3.50* 1.93* 3.56* 4.35* 2.63* 2.63*

For each of the six prediction outputs and each function f, we show the percentage (%) of disease mutations that have a greater probability of loss and gain

of function than a threshold corresponding to a 1% false positive rate (FPR). S1 and S2 Figs show an instance of the inverse cumulative distribution function

of P(loss|x) and P(gain|x), respectively. These thresholds were estimated from the empirical null distributions of the probability of loss or gain of function on

the set of dbSNP neutral data.

*Indicates significant p-value measured by a one-tailed Fisher’s exact test after Bonferroni correction for multiple comparisons. The p-value was separately

estimated for each type of posterior distribution, jointly for loss and gain events (p < 0:05
58

¼ 8:62 � 10�4). The p-values for the combined models were corrected

separately (p < 0:05
4
¼ 1:25 � 10�2).

doi:10.1371/journal.pcbi.1005091.t003
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that 1.51% of mutations are likely to alter exactly one metal binding site and 1.43% may alter a
single ligand binding site. For all groups of molecular mechanisms, we observe that the proba-
bility of observing a high alteration score is more than three times as likely as in the case of
putatively neutral variants.

Table 4 also shows situations with two or more functional perturbations consequent to the
replacement of a given amino acid residue. The amino acid substitutions disrupting multiple
functions may be important in a therapeutic context because addressing a single deficiency
(e.g. iron binding) may still not result in a fully corrected phenotype because other deficiencies
may still remain (e.g. ligand binding). Here, we have a significantly increased likelihood of
observing multi-functional alterations in the disease set compared to the putatively neutral set;
i.e., the disease set is several times more likely to contain multi-functional alterations than the
putatively neutral set. For instance, 1.23% of disease mutations are likely to affect at least two
metal binding sites versus only 0.27% of neutral variants, whereas 0.68% of disease variants
may affect more than one ligand binding site as opposed to 0.19% of neutral polymorphisms.

If we combine the results for single and multiple mechanisms, we observe that 2.24% of dis-
ease variants are predicted, with high confidence, to impair metal-binding sites (1.51% loss of
single site and 0.72% loss of multiple sites) and 1.67% probably impair ligand binding sites
(1.43% loss of single site and 0.24% loss of more than one site), as depicted in Fig 3. Overall, we
believe we can confidently propose molecular mechanisms of disease for 8.6% of all variants in
the inherited disease data set whereas we only see about 2.4% of such variants in the neutral

Fig 2. Percentage of disease variants with prediction scores at the 1% false positive rate threshold in putatively neutral variants. For
each function f, the bars indicate the percentage (%) of disease mutations that have a greater Pðlossj�S; xÞ and Pðgainj�S; xÞ than a conservative
threshold at 1% false positive rates (FPR). These thresholds are estimated from the null distributions of Pðlossj�S; xÞ and Pðgainj�S; xÞ on the set
of dbSNP neutral data, respectively. *Indicates significant p-value measured as a one-tailed Fisher’s Exact test after Bonferroni correction for
multiple hypothesis testing (p < 8.62 � 10−4). The red line indicates the percentage of neutral variants that have greater Pðlossj�S; xÞ and
Pðgainj�S; xÞ which is exactly 1%.

doi:10.1371/journal.pcbi.1005091.g002
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set. If we use a p-value cutoff of 0.01 without a Bonferroni correction, then we can computa-
tionally hypothesize a molecular mechanism for approximately 40.9% of disease variants.

Validation of loss of function predictions
In this study, we have proposed a novel methodology for identifying specific molecular alter-
ations of disease mutations. Given that it is impractical to experimentally validate the predicted
functional effects of each individual amino acid substitution, we use mutagenesis experimental
data to independently assess the loss of functional site predictions, as shown in S5 Table. To
the best of our knowledge, this is the first time a systematic assessment of computationally pre-
dicted disruptions of specific types of functional residues has been carried out in the published
literature.

Table 4. Relative contribution of loss and gain of functional categories from amino acid substitutions.

Category Loss (%) Gain (%) Loss or Gain (%)

Disease Neutral Disease Neutral Disease Neutral

I. Single mechanism

Confident biological hypotheses (p-value < 8.62 � 10−4)
Metal binding 1.51 0.27 1.46 0.46 2.88 0.70

PTMs 0 0 0.01 0 0.01 0

Catalytic sites 0.73 0.06 0.40 0.07 1.14 0.14

Macromolecule binding 0.59 0.20 0.64 0.20 1.21 0.40

Ligand binding 1.43 0.47 1.86 0.46 3.07 0.87

Allosteric sites 0.09 0.06 0.25 0.06 0.35 0.12

All 3.03 0.84 3.29 0.97 5.80 1.70

Actionable biological hypotheses (p-value < 0.01)

Metal binding 4.90 2.50 5.08 2.99 8.70 5.03

PTMs 0.30 0.17 0.08 0.22 0.39 0.40

Catalytic sites 3.34 1.00 3.94 1.00 7.25 2.00

Macromolecule binding 3.89 2.93 4.03 3.26 7.39 5.75

Ligand binding 9.74 4.65 9.55 4.97 13.72 7.06

Allosteric sites 1.49 1.00 1.74 1.00 3.16 2.00

All 13.28 8.35 12.93 9.21 17.43 13.36

II. Multiple mechanisms

Confident biological hypotheses (p-value < 8.62 � 10−4)
Metal binding 0.72 0.16 0.49 0.10 1.23 0.27

Macromolecule binding 0.05 0.04 0.17 0.04 0.22 0.07

Ligand binding 0.24 0.07 0.33 0.09 0.68 0.19

All 1.43 0.34 1.29 0.31 2.78 0.68

Actionable biological hypotheses (p-value < 0.01)

Metal binding 5.96 2.31 4.75 2.42 10.37 4.62

Macromolecule binding 0.66 0.51 0.99 0.37 1.72 0.89

Ligand binding 5.55 1.90 5.43 1.85 11.04 4.11

All 12.88 5.42 12.22 5.42 23.57 10.60

For each functional site category, we show the relative contributions (%) of disease and neutral substitutions where at least one function f within a category

has a greater P(loss|x)or P(gain|x) than a conservative threshold at 1% FPR. This threshold is estimated from the null distributions of P(loss|x) and P(gain|x)
on the putatively neutral polymorphisms data set, respectively. The table is subdivided into two parts: (i) exactly one function (or mechanism) and (ii) two or

more mechanisms. In both parts, the relative contributions are assessed at two p-value cutoffs of p < 8.62 � 10−4 and p < 0.01. Note that in a small number of

cases, a loss of one function might result in the gain of another; thus, the sets of residues counted in the loss and gain may overlap.

doi:10.1371/journal.pcbi.1005091.t004
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In general, our loss of function predictors performed as expected. However, more interest-
ingly, if one restricts the loss of function predictions to those with significant p-values (i.e.
p< 0.01), then performance (AUC) rises to at least 95% for all predictors. This provides com-
pelling evidence that our methodology can be effectively used to identify molecular mecha-
nisms of disease and hence can be used to prioritize experimental validation. Additionally, Fig
4 depicts two case studies of loss and gain of function predictions which have been experimen-
tally validated. We discuss each case in detail below:

Fig 3. Relative contribution of loss and gain of functional categories on each amino acid substitutions data set. For each
functional site category, we show the relative contributions (%) of disease and neutral variants where at least one function f within a
category has a greater P(loss|x) or P(gain|x) than a conservative threshold at 1% FPR. This threshold is estimated from the null
distribution of P(loss|x) and P(gain|x) on the putatively neutral polymorphisms data set, respectively. *Indicates significant p-value
measured as a Fisher’s Exact test after Bonferroni correction for multiple hypothesis comparisons (p < 8.62�10−4).
doi:10.1371/journal.pcbi.1005091.g003

Fig 4. 3D visualization of protein structures with experimentally supported loss and gain of function predictions. Left: SOD1 protein (chain A of PDB
entry 2xjl) where residues H63, H71, H80 and D83 form a zinc binding pocket. The substitution D83G gives rise to a loss of zinc binding. Right: CA2 protein
(chain A of PDB entry 1fqr) where H94, H96 and H119 are zinc-binding sites. Mutation T198E leads to an increase in zinc affinity.

doi:10.1371/journal.pcbi.1005091.g004
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Loss of zinc binding in superoxide dismutase (SOD1). The functional role of SOD1 is to
destroy radicals that are normally produced in cells and which are toxic to biological systems.
SOD1 forms a zinc-binding pocket consisting of H63, H71, H80 and D83 [65, 66] as shown in
Fig 4 (left). Mutations in SOD1 are known to be causative of amyotrophic lateral sclerosis [66–
68]. However, the molecular mechanisms underlying these mutations often remain unclear.
We predicted a loss of multiple functional activities for mutation D83G and identified zinc
binding as the primary underlying molecular mechanism of disease. In particular, D83G has a

Pðf jx0wtÞ ¼ 0:99 and Pðf jx0mtÞ ¼ 3:3 � 10�3 leading to a P(loss|x)�1, which is above the 1% FPR
threshold of 0.20 with an empirical p-value of 1.2�10−3. A literature search for experimental evi-
dence reveals that mutation D83G causes the destabilization of native structure which leads to
protein aggregation with the formation of amyloid-like fibrils, and, ultimately, a gain of toxicity
[69]. Zinc binding is a known stabilizer of protein structure and, therefore, the loss of the zinc-
binding residue D83 appears to be a plausible destabilizing mechanism that ultimately impacts
the biological function of SOD1. We note that the quadruple (H63, H71, H80, D83) was not
part of the training data for the zinc-binding predictor.

This example raises an interesting possibility that the loss of a functionally important resi-
due (zinc-binding residue) results in a loss of stability, and ultimately leads to disease through
the loss of the protein’s function. In other words, protein structure and function appears to be
intimately and bidirectionally interconnected. At this moment, however, this is only a theoreti-
cal possibility because of the lack of data about the structure and stability of the wild-type and
mutant proteins in the absence of zinc ions.

Gain of zinc affinity in carbonic anhydrase 2 (CA2). CA2 is essential for bone resorption
and osteoclast differentiation. CA2 has three zinc-binding residues at H94, H96 and H119 as
shown in Fig 4 (right). There are multiple studies that have characterized the effects of variants
in CA2 via mutagenesis experiments [70–74]. Among these mutations, we predicted a gain of
zinc binding for T198E that was experimentally shown to increase zinc affinity. Specifically,

T198E has a Pðf jx0wtÞ ¼ 3:8 � 10�4 and Pðf jx0mtÞ ¼ 0:99 leading to a P(gain|x)� 1, which is
above the 1% FPR threshold of 0.35 with a p-value of 3.7�10−4. The triple (H94, H96, H119)
was not part of the training data for the zinc-binding residue predictor.

Discussion
This study builds on the extensive prior work in structural bioinformatics to provide statistical
evidence of the important role that alterations of multiple types of functional residue play in
human genetic disease. Most of the existing work has centered around understanding the
impact of sequence variants on protein stability or has only considered single types of function
such as catalytic residues or protein-interaction sites [7, 20, 23, 24, 30, 75–78]. This work
extends these studies by integrating the stability models with a series of functional residue pre-
dictors involving metal binding, macromolecular binding, ligand binding and others. Overall,
we show and validate the feasibility of computationally predicting mutations that impair spe-
cific function using protein 3D structure data.

Despite using sophisticated methodology to model loss and gain of functional residues,
the nature of this research has limitations involving both data sets and methodology. First,
despite major efforts employed by authors and database curators when annotating amino
acid substitutions as being causative of a particular disease, it is possible that some amino
acid substitutions have been misannotated as disease-causing by the original authors report-
ing them. Similarly, mutagenesis experimental data are known to be biased toward certain
amino acid residues. For example, alanine mutations comprised about 50% of the indepen-
dent amino acid substitutions data set (due to the frequent use of alanine-scanning
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mutagenesis). There are also limitations and biases in relation to the protein structures avail-
able in PDB as well as in selecting an appropriate set of unlabeled variants. Second, there
exist both theoretical and practical limitations in the semi-supervised framework used in this
work. The accuracy of our methods is predicated upon the assumption that the computa-
tional models are capable of accurately estimating the posterior probability of the class labels.
This however could not be guaranteed and thus requires caution when interpreting our
results. Furthermore, there are identifiability issues in estimating class priors in the positive-
unlabeled framework; i.e., the estimates for the class priors do not have a unique solution and
only an upper bound can be estimated [27]. On the practical side, we have been careful to
prevent overfitting. We performed only minor parameter selection steps before the final
functional predictors were built. Thus, there is the potential to further improve predictor per-
formance through more extensive work. This includes the use of additional features, optimiz-
ing the distance threshold used to define an edge between two residues when constructing
protein contact graphs, choice of the capacity parameter in SVMlight, among others. Finally,
this work was designed to probabilistically reason about molecular mechanisms of disease
and not necessarily to develop classifiers that outperform specialized models across the
board. If a user needs a tool for a particular prediction task, we recommend that the most
accurate predictor for this task be selected.

Despite these limitations, we believe this work contributes to an improved understanding of
the impact of sequence variants on protein function. We have provided a model that considers
functional alteration both when stability of the protein is disrupted and when it is not disrupted
(e.g. interestingly, sequence changes can exert a functional effect in disordered regions such as
disorder-to-order transition [79]). We believe that our work suggests a new class of approaches
to disease studies that might qualify as mechanism-driven and disease-agnostic, where one
might be compelled to identify a set of molecular alterations underlying a disease phenotype
without necessarily studying a single disease. While each molecular alteration is likely to
require an individualized approach to drug design and therapy, we envisage that the next gen-
eration of researchers might decide to specialize in addressing particular types of functional
deficiencies rather than beginning with a particular disease.

Supporting Information
S1 Fig. Inverse cumulative distribution function (CDF) of P(loss|x). For ATP-binding pre-
dictor, we plot the inverse CDF for P(loss|x) on the disease and putatively neutral data sets,
respectively.
(EPS)

S2 Fig. Inverse cumulative distribution function (CDF) of P(gain|x). For catalytic residue
predictor, we plot the inverse CDF for P(gain|x) on the disease and putatively neutral data sets,
respectively.
(EPS)

S1 Table. Mapping between ligand codes and names.
(PDF)

S2 Table. Selected kernel matrix parameters for each structural and functional site predic-
tor. For each data set, we show the best-performing kernel matrix parameters obtained through
a per-chain 10-fold cross-validation. The normalized edit distance kernel km(u, v) outper-
formed both kl

mðu; vÞ and ke
mðu; vÞ on each data set. Note that the edit distance kernel with

m = 0 is equivalent to a standard graphlet kernel.
(PDF)
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S3 Table. Performance assessment of functional residue predictors using an independent
data set. For each prediction method, we show number of proteins (np), number of positive
examples (n+), number of unlabeled examples (nu), AUC and sensitivity (sn) and MCC at
score threshold corresponding to specificity (sp) of 99%. In the case of N-linked glycosylation
(Nglyco), we only predict if the wild-type residue is an asparagine, whereas for phosphorylation
(Phos), we only make predictions on threonine, tyrosine or serine residues.
(PDF)

S4 Table. Class priors for structural and functional predictors. Fraction of residues in a data
set estimated to be stability-impacting or functional. Estimates on the unlabeled data were
made using the AlphaMax algorithm [27]; minor manual adjustments were made by observing
the log-likelihood plots. �Indicates a confident prior estimate assessed by manually observing
log-likelihood plots. Estimates on the disease and putatively neutral data were made using the
empirical mean formula.
(PDF)

S5 Table. Performance assessment of loss of function predictions using mutagenesis experi-
mental data. Independent validation of predicted loss of functional site events using a set of
mutagenesis experimental data mapped to protein structures in PDB. This mutagenesis data
set contains 3,356 AAS from 880 human proteins. For each functional feature, we show the
number of experimentally determined losses (nl), AUC, sensitivity (sn) and MCC correspond-
ing to a 99% specificity (sp) threshold. Additionally, the last five columns show the number of
statistically significant (p< 0.01) loss-of-function predictions (n�

l ), as well as estimates for
AUC (AUC�), sensitivity (sn�), specificity (sp�) and MCC (MCC�) on this filtered set.
(PDF)
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