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Abstract

Graph kernels for learning and inference on sparse graphs have been widely studied.
However, the problem of designing robust kernel functions that can effectively compare
graph neighborhoods in the presence of noisy and complex data remains less explored. Here
we propose a novel graph-based kernel method referred to as an edit distance graphlet
kernel. The method was designed to add flexibility in capturing similarities between local
graph neighborhoods as a means of probabilistically annotating vertices in sparse and labeled
graphs. We report experiments on nine real-life data sets from molecular biology and social
sciences and provide evidence that the new kernels perform favorably compared to established
approaches. However, when both performance accuracy and run time are considered, we
suggest that edit distance kernels are best suited for inference on graphs derived from protein
structures. Finally, we demonstrate that the new approach facilitates simple and principled
ways of integrating domain knowledge into classification and point out that our methodology
extends beyond classification; e.g. to applications such as kernel-based clustering of graphs
or approximate motif finding. Availability: www.sourceforge.net/projects/graphletkernels/
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1 Introduction

Over the past decade, the importance of graphs (networks) in modeling domain-

specific phenomena and their influence in numerous scientific disciplines has grown

considerably. A wide variety of such graphs, including link graphs in computer

security, gene regulatory networks in computational biology, or social networks

in behavioral and social sciences, have been studied with the goal of identifying

interesting patterns and performing probabilistic inference. In a supervised learning

scenario, typical problems involve assigning class labels to entire graphs, i.e. graph

classification (Tsuda & Saigo, 2010); assigning class labels to vertices and/or edges

in a single graph, i.e. vertex and/or edge classification (Koller & Friedman, 2009);

or predicting the existence of edges in graphs, i.e. link prediction (Liben-Nowell

& Kleinberg, 2007). Similarly, frequent subgraph mining (Jiang et al., 2013), motif

finding (Milo et al., 2002), and community detection (Fortunato, 2010) are common

unsupervised approaches. Although the methodology in most of these subfields has

matured, further advances in network science and graph algorithms are still necessary

to address practical challenges presented by large, noisy, complex, or time-varying

data, as well as to design scalable algorithms that exploit domain knowledge in a

principled and well-understood manner.
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Here we focus on the problem of vertex classification in a supervised learning

framework. Given a sparse and generally disconnected graph, where only a small

fraction of vertices have class label assignments, the task is to predict class

assignments for each unlabeled vertex. For instance, an important problem in

computer security is the detection of phishing web sites from graphs where vertices

represent web sites and edges correspond to links between these web sites. Similar

situations arise in gene regulatory networks or protein-protein interaction networks

in computational biology where protein function prediction (Sharan et al., 2007) or

disease gene prioritization (Moreau & Tranchevent, 2012) have emerged as important

tasks. Finally, questions related to marketing (Leskovec et al., 2007), political

affiliation (Conover et al., 2011), or influence (Wasserman & Faust, 1994; Aral &

Walker, 2012) in social networks have gained significant attention in computational

social sciences. An intuitive approach in all these problems is to devise methods that

tend to assign the same class labels to vertices with similar neighborhoods. Therefore,

effective techniques are needed for capturing local interconnectivity patterns between

the vertex of interest and its neighbors as well as for incorporating domain knowledge

and auxiliary data into classification.

There are three principal ways to address vertex classification. A straightforward

approach is to provide a vector space representation of vertices in the graph and

then apply machine learning algorithms to learn the target function (Xu & Li,

2006). Various local or global statistics such as vertex degree, clustering coefficient,

or betweenness centrality can be computed to map each vertex into a vector of fixed

length. Another approach involves the use of kernel functions on graphs combined

with machine learning methods that operate with pairs of objects from the input

space (Ralaivola et al., 2005; Vishwanathan et al., 2010). Kernel approaches are

advantageous if domain knowledge provides clues on how to measure similarity

between objects, rather than about which object properties may be useful for

classification. Finally, vertex classification can be addressed by using probabilistic

graphical models, e.g. Markov Random Fields (Koller & Friedman, 2009), or related

label-propagation (Zhu & Ghahramani, 2002) and flow-based algorithms (Nabieva

et al., 2005). Such approaches, at least in their standard formulation, largely rely

on the assumption that neighboring vertices should generally be assigned the same

class labels. For this reason, probabilistic graphical models are generally preferred

for learning smooth functions and may not be effective in situations where vertices

with similar neighborhoods that are far away in a graph or in a different connected

component need to be assigned the same class label.

In this article, we are primarily interested in kernel-based classification. Graph

kernels were introduced by Kondor and Lafferty (2002) in the form of diffusion

kernels. Several other methods have been subsequently proposed, including random

walk kernels (Gärtner et al., 2003; Kashima et al., 2003), cycle pattern kernels

(Horváth et al., 2004), shortest path kernels (Borgwardt & Kriegel, 2005), weighted

decomposition kernels (Menchetti et al., 2005), subtree pattern kernels (Ramon &

Gärtner, 2003; Hido & Kashima, 2009; Shervashidze et al., 2011), commute time

kernels (Fouss et al., 2007), and graphlet kernels (Shervashidze et al., 2009; Vacic

et al., 2010). While these methods exploit a variety of ways to compare graphs, most

of them are tailored towards the problem of graph classification. Moreover, these

methods are not explicitly designed to account for noise in graph data as well as to
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naturally operate on graphs associated with particular labeling (coloring) functions,

e.g. those that map vertices to finite alphabets.

Here we describe the development of edit distance graphlet kernels. Inspired by

string kernel approaches (Leslie et al., 2002; Leslie & Kuang, 2004; Kuang et al.,

2005), we extend the concept of labeled graphlet kernels to directed graphs and

introduce flexibility in the graphlet matching algorithm. We use complex data from

molecular biology and social sciences to provide evidence that the new kernels

compare favorably to the previously published methods on both undirected and

directed graphs. Our main contribution and emphasis in this work is on conceptual

generalization of graphlet kernels for vertex classification, characterization of the

feature space, and identification of learning problems in which one can expect an

increase in performance accuracy, even if traded for decreased scalability. The edit

distance kernels were implemented in C/C++. The source code and documentation

are available free of charge under the MIT Open Source license agreement.

The remainder of this paper is organized as follows. In Section 2, we review

the basic concepts related to graphs and then describe our methodology aimed

at providing robustness and flexibility of graph kernels through calculating edit

distances on graphs. In Section 3, we describe the construction of several new data

sets, show how domain knowledge can be incorporated into the graph analysis,

and provide comprehensive performance evaluation. In Section 4, we summarize the

work and discuss other areas where our methodology may be applicable.

2 Methods

In the following subsections, we briefly review the definitions of graphs, graphlets,

and edit distance between graphs. We then describe the development of a novel class

of graphlet kernels and analyze their properties.

2.1 Graphs and graphlets

A graph G is a pair (V , E), where V is a set of vertices and E ⊆ V × V is a set

of edges. In a vertex-labeled graph, we consider a labeling function f : V → Σ,

where Σ is a finite alphabet. In an edge-labeled graph, we can consider a similar

mapping g : E → Ξ, but due to the nature of our data (Section 3) we largely ignore

edge labeling (note that vertex and edge labeling are also referred to as coloring).

A graph is said to be simple if its vertices have no self-loops, and undirected if E

is symmetric. A rooted graph G is a graph together with one vertex distinguished

from the others. We denote such graphs as G = (V , v, E), where v ∈ V is the

root.

We define a graphlet to be a small, simple, connected, rooted graph (Figure 1).

A graphlet with n vertices is referred to as an n-graphlet. In this framework, it is

sufficient to work with graphlets up to isomorphism (root- and/or label-preserving

in the case graphs are rooted and/or labeled). We shall always enumerate graphlets

up to isomorphism and use ni to denote the i-th graphlet of order n. For example,

when |Σ| = 1, there are six rooted graphs with n = 3 vertices, but only three up

to isomorphism (Figures 1–2). We refer to the non-isomorphic unlabeled graphlets

as base graphlets. When |Σ| > 1, automorphic structures with respect to the same
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Fig. 1. (A) All undirected graphlets with 2 to 5 vertices and (B) all directed graphlets with
2 and 3 vertices. The root node of each graphlet is circled. All graphlets are presented in
a compressed notation; e.g., the two non-isomorphic graphlets 41 and 42 are shown in one
drawing, etc. The bidirectional edges in part B are shown without arrows.

Fig. 2. Labeled graphlets for Σ = {A, B}, permutation group A, and graphlet count for each
base 3-graphlet. Isomorphic labeled graphlets are indicated with ∼=. Note that base graphlet
31 (A) is asymmetric whereas base graphlets 32 (B) and 33 (C) have equivalent symmetries
which result in identical permutation groups and graphlet counts.

base graphlet may exist; thus, the number of labeled graphlets per base structure

is generally less than |Σ|n. As an example, consider 3-graphlets; here, there are |Σ|3
graphlets corresponding to the asymmetric base graphlet 31 but only 1

2 (|Σ|3 + |Σ|2)
corresponding to the base graphlets 32 and 33 (Figure 2). This is a result of

symmetries in the base graphlets that give rise to automorphisms among labeled

structures.

There is a long history of using small graphs to probe large graphs (Lovász, 1967;

Bondy & Hemminger, 1977; Borgs et al., 2006). In computational sciences, graphlets

have been recently used to capture global or local graph topology (Przulj et al., 2004;

Przulj, 2007; Shervashidze et al., 2009; Vacic et al., 2010). In this work we exploit
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rooted graphs and note that they are different from the notion of k-subgraphs used

in the network science literature (Frank, 1988). Graphlets are connected and rooted,

whereas k-subgraphs need not be either. Technically, our definition of graphlets also

differs from the one by Przulj and colleagues (2004; 2007), which relies on the notion

of an orbit. Finally, the concept of a graphlet shall be distinguished from a network

motif. Typically, a motif is a subgraph whose frequent occurrence is statistically

significant according to an assumed background model (Milo et al., 2002).

Graph edit distance is a generalization of the concept of edit distance for strings.

Given two vertex- and/or edge-labeled graphs G and H , the edit distance between

these graphs corresponds to the minimum number of edit operations necessary to

transform G into H . The allowed edit operations typically comprise insertion or

deletion of vertices and edges, or in the case of labeled graphs, substitutions of

vertex and edge labels. Any sequence of edit operations that transforms G into

H is referred to as an edit path. Thus, the graph edit distance between G and H

corresponds to the length of the shortest edit path between them. In a more general

case where each edit operation is assigned a weight (cost), the graph edit distance

corresponds to the edit path of minimum weight (cost).

2.2 Problem formulation

We consider a binary vertex classification problem. Given a simple vertex-labeled

graph G = (V , E, f,Σ), another labeling function t : V → {+1,−1} is introduced and

referred to as a target function, where t(v) = +1 indicates that vertex v ∈ V belongs

to the positive class and t(v) = −1 indicates that vertex v belongs to the negative

class. In a real-life scenario, only a small fraction of vertices in V are expected to be

annotated by t. Thus, the goal is to learn t from the graph and infer class posterior

probabilities for every vertex not annotated by t.

We briefly digress to emphasize the difference between graph classification and

vertex classification. In graph classification, one is given a set of graphs G = {Gi}ni=1

with some training data {(Gi, ti)}mi=1, where m ! n, and the objective is to learn

the target function t : G → {+1,−1}. Graph classification can be seen in chemical

informatics where one may desire to classify small compounds as toxic vs. non-toxic

or in computational biology where the task may be to classify protein structures into

different functional categories. Vertex classification can be similarly formulated as

a learning problem of some target function t : H → {+1,−1}, where H = {Hi}ni=1

is a set of rooted graphs and each Hi = (V , vi, E) corresponds to the same graph

G = (V , E) rooted at a different vertex vi ∈ V . Therefore, vertex classification can

be considered to be a special case of graph classification on rooted graphs.

Given an input space X, a kernel function is any symmetric positive semi-

definite mapping k : X × X → ! (Shawe-Taylor & Cristianini, 2004). Positive

semi-definiteness guarantees the existence of a possibly infinite-dimensional Hilbert

space such that the kernel function can be computed as the inner product of the

images of input objects. It also guarantees a globally optimal solution (unique if

positive definite) by a support vector machine solver (Haussler, 1999). A graph

kernel is a user-specified kernel function that measures the similarity between two

graphs. Therefore, designing a good kernel function between vertex neighborhoods

is key to accurate inference.
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Fig. 3. An example of calculating kernel values. Panel (A) shows a vertex-labeled graph
with V = {v1, v2, v3, v4, v5} and Σ = {A, B}. Panel (B) depicts count vectors for all labeled
3-graphlets rooted at vertices v1 and v5. Panels (C)-(D) depict count vectors and kernel values
for edit distance kernels in which the allowed edit operations are one label substitution and
one edge insertion/deletion, respectively. In panels (B)-(D), all labeled graphlets are associated
with corresponding unlabeled graphlets 31, 32 and 33. The count vector corresponding to the
kernel that incorporates both one label substitution and one edge indel can be computed as
φl

(n,1)(v) + φe
(n,1)(v) − φn(v).

2.3 Graphlet kernels for vertex classification

Consider a graph G = (V , E, f,Σ), where |Σ| " 1. We define the n-graphlet count

vector for any vertex v ∈ V as

φn(v) = (ϕn1 (v),ϕn2 (v), . . . ,ϕnκ(n,Σ) (v)),

where ϕni (v) is the count of the i-th labeled n-graphlet and κ(n,Σ) is the total number

of labeled n-graphlets. A kernel function between the n-graphlets for vertices u and

v can be defined as

kn(u, v) = 〈φn(u),φn(v)〉 ,

where 〈x, y〉 represents the inner product of vectors x and y. As an example,

consider vertices v1 and v5 in the graph depicted in Figure 3(a) where Σ = {A, B}.
The resulting 3-graphlet count vectors φ3(v1) and φ3(v5) are shown in Figure 3(a).

In this case, we count |Σ|3 = 8 graphlets corresponding to the base graphlet 31 and
1
2 (|Σ|3 + |Σ|2) = 6 graphlets corresponding to each of the 32 and 33 base graphlets

(see also Figure 2). Figure 3(b) also shows the calculation for k3(v1, v5).
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The graphlet kernel function can now be defined as

k(u, v) =
N∑

n=1

kn(u, v),

where N is a small integer (Vacic et al., 2010). Note that given the count vectors, there

are alternative ways to define both kn and k. For example, the Jaccard similarity

coefficient (Ralaivola et al., 2005) can be used to define kn, while a product of

kernels (Haussler, 1999) or a hyperkernel (Borgwardt et al., 2005) can be used to

combine different kernel functions. The particular representation in this work was

chosen for its simplicity and the fact that more sophisticated multiple kernel learning

schemes usually result in only small improvements over linear combinations (Gönen

& Alpaydin, 2011). We also consider a normalized kernel calculated as

k′(u, v) =
k(u, v)√

k(u, u) k(v, v)
,

which corresponds to the cosine similarity function between feature representations

of u and v. It is not difficult to show that both k(u, v) and k′(u, v) are kernel functions

(Haussler, 1999).

2.4 The edit distance graphlet kernels

In this section we introduce kernel functions which incorporate inexact matches

between graphlets. As before, we formalize the notion of an edit distance kernel

by considering a set of n-graphlets. Let us define a vector of counts for an m-edit

distance representation of vertex v as

φ(n,m)(v) = (ψ(n1 ,m)(v),ψ(n2 ,m)(v), . . . ,ψ(nκ(n,Σ) ,m)(v)),

where

ψ(ni,m)(v) =
∑

nj∈E(ni,m)

w(ni, nj) · ϕnj (v).

As defined previously, ϕnj (v) is the count of the j-th labeled n-graphlet rooted at

v and E(ni, m) is a set of n-graphlets such that for each nj ∈ E(ni, m) there exists

an edit path of length at most m that transforms ni into nj . When m = 0, E(ni, m)

contains only element ni and φ(n,m) = φn. Weights w(ni, nj) " 0 can be used to adjust

the influence of pseudo counts and control computational complexity; in this work,

we set w(ni, nj) = 1 if nj ∈ E(ni, m) and w(ni, nj) = 0 otherwise.

The length-m edit distance n-graphlet kernel k(n,m)(u, v) between vertices u and v

can be computed as an inner product between the respective count vectors φ(n,m)(u)

and φ(n,m)(v). Hence, the length-m edit distance graphlet kernel function can be

expressed as

km(u, v) =
N∑

n=1

k(n,m)(u, v).

Because of the nature of our data, we only allow substitutions of vertex labels

and insertions or deletions (indels for short) of edges as edit operations. Hence,

we can define two subclasses of edit distance kernels referred to as (vertex) label-

substitution kl(n,m) and edge-indel kernels ke(n,m). As an example, in Figure 3(c) we
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show the calculation of the label-substitution 3-graphlet kernel (m = 1) between

vertices v1 and v5. We obtain that kl(3,1)(v1, v5) = 14, whereas the similarity between

v1 and v5 when m = 0 is k3(v1, v5) = 2 (Figure 3(b)). To provide more detail, let us

consider vertex v1 and base graphlet 33. By allowing for a substitution of one vertex

label, the graphlet with labels AAB will lead to incremented counts for graphlets

AAA, ABB and BAB. Each of these graphlets requires a single edit operation to

form a root-preserving label-isomorphic graphlet to the original structure. In Figure

3(d), we show the computation of the edge-indel 3-graphlet kernel (m = 1) between

vertices v1 and v5 for the graph from Figure 3(a). In contrast to label substitutions,

edge indels lead to different base graphlets; thus, it may be beneficial to pre-compute

the mapping between such base graphlets in order to speed up the generation of

count vectors. Note that we ignore operations where removal of an edge produces a

disconnected graph. For instance, base graphlet 31 can be mapped to 33 by adding

one edge (Figure 2); however, removal of any edge results in a disconnected graph

that is excluded from counting.

It is important to emphasize that edit distance graphlet kernels can be further

generalized to address more complex situations. Those involve weighted graphs

and/or graphs where one can define similarity functions on the elements of alphabets

used for vertex or edge labels. Weighted graphs are typically defined by providing

a mapping function E → !+, whereas similarity between the elements of a vertex-

labeling alphabet can be introduced as Σ × Σ → [0,∞). These mappings can be

combined to obtain weighted edit paths and used to generalize the definition of edit

distance kernels as

φ(n,τ)(v) = (ψ(n1 ,τ)(v),ψ(n2 ,τ)(v), . . . ,ψ(nκ(n,Σ) ,τ)(v)),

where

ψ(n,τ)(v) =
∑

nj∈E(ni,τ)

w(ni, nj) · ϕnj (v).

Here, E(ni, τ) is the set of all n-graphlets such that for each nj ∈ E(ni, τ) there exists

an edit path of total weight at most τ that transforms ni into nj and w(ni, nj) " 0 is

the minimum weight (cost) among all edit paths between ni and nj (potentially also

adjusted for pseudo counts).

2.5 Growth pattern of vertex-labeled graphlets

To understand the importance and properties of the proposed kernel-based classifi-

cation, it is necessary to investigate the dimensionality of count vectors φ(n,m)(v). In

particular, we are interested in the order of growth of κ(n,Σ) with n and Σ.

Suppose that G and H are base graphlets of order n. We say that G and H belong

to the same symmetry group if and only if the total number of (non-isomorphic)

vertex-labeled graphlets corresponding to the base cases G and H are equal for any

Σ. The total counts of labeled graphlets over all alphabet sizes induce a partition

of base graphlets into symmetry groups (equivalence classes). We denote the set of

all symmetry groups over the graphlets of order n as S(n) = {S1(n), S2(n), . . .}. For

example, the set of 3-graphlets can be partitioned into two symmetry groups: S1(3) =

{31} and S2(3) = {32, 33}. Table 1 lists symmetry groups induced by partitioning base

graphlets up to the order of 5 along with the cardinality of each set.
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Table 1. Symmetry groups and their cardinality produced by partitioning the set of undirected
and directed base graphlets for n ∈ {1, 2, 3, 4, 5}. The last column lists the number of labeled
graphlets over an alphabet Σ.

Undirected Directed

Si(n) |Si(n)| |Si(n)| mi(n,Σ)

S1(1) 1 1 |Σ|
S1(2) 1 3 |Σ|2
S1(3) 1 24 |Σ|3
S2(3) 2 6 1

2 (|Σ|3 + |Σ|2)
S1(4) 3 586 |Σ|4
S2(4) 6 102 1

2 (|Σ|4 + |Σ|3)
S3(4) 2 6 1

6
(|Σ|4 + 3 · |Σ|3 + 2|Σ|2)

S4(4) − 3 1
3
(|Σ|4 + 2 · |Σ|2)

S1(5) 13 40, 833 |Σ|5
S2(5) 6 102 1

4
(|Σ|5 + 2 · |Σ|4 + |Σ|3)

S3(5) 24 3, 624 1
2
(|Σ|5 + |Σ|4)

S4(5) 2 6 1
24 (|Σ|5 + 6 · |Σ|4 + 11 · |Σ|3 + 6 · |Σ|2)

S5(5) 6 102 1
6
(|Σ|5 + 3 · |Σ|4 + 2 · |Σ|3)

S6(5) 5 174 1
2
(|Σ|5 + |Σ|3)

S7(5) 2 6 1
8 (|Σ|5 + 2 · |Σ|4 + 3 · |Σ|3 + 2 · |Σ|2)

S8(5) − 6 1
4
(|Σ|5 + |Σ|3 + 2 · |Σ|2)

S9(5) − 54 1
3
(|Σ|5 + 2 · |Σ|3)

Generalizing this approach to graphlets labeled by any alphabet Σ, it holds that

κ(n,Σ) =

|S (n)|∑

i=1

mi(n,Σ) · |Si(n)|,

where mi(n,Σ) is the number of (non-isomorphic) labeled graphlets corresponding to

any base graphlet from the symmetry group Si(n) and | · | is a set cardinality operator.

This decomposition also suggests that the total dimensionality of the count vectors

can be calculated by first finding the symmetry groups corresponding to the base

graphlets and then counting the number of labeled graphlets for any one member

of the group.

In the cases of both undirected and directed graphlets, mi(n,Σ) can be computed

by applying Pólya’s enumeration theorem (Pólya, 1937). In particular, Harary

and Palmer (1973) showed the derivation of the complete generating function

for each symmetry group Si(n). The key insight in their work was that the set of

automorphisms A of a specific graph G = (V , E) defines a permutation group. Each

permutation α ∈ A can be written uniquely as the product of disjoint cycles such

that for each integer k ∈ {1, . . . , n}, we define jk(α) as the number of cycles of length

k in the disjoint cycle expansion of α. The cycle index of A, denoted as Z(A), is a

polynomial in s1, s2, . . . , sn given by

Z(A; s1, s2, . . . , sn) = |A|−1
∑

α∈A

n∏

k=1

sjk(α)k .

By applying Pólya’s enumeration theorem in the context of enumerating labeled

graphlets corresponding to any base graphlet in Si(n), we obtain that mi(n,Σ) is
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Table 2. The number of undirected and directed graphlets κ(n,Σ) as a function of n and Σ.

Undirected Directed

n |Σ| = 1 |Σ| = 20 |Σ| = 1 |Σ| = 20

1 1 20 1 20
2 1 400 3 1, 200
3 3 16, 400 30 217, 200
4 11 1, 045, 600 697 102, 673, 600
5 58 100, 168, 400 44, 907 137, 252, 234, 400

determined by substituting |Σ| for each variable sk in Z(A). Hence,

mi(n,Σ) = Z(A; |Σ|, |Σ|, . . . , |Σ|),

where A is the automorphism group of a base graphlet from Si(n). We illustrate

this for the symmetry group S2(3) and Σ = {A, B}, as shown in Figure 2. The

automorphism group A = {(v1)(v2)(v3), (v1)(v2v3)}; thus, Z(A; s1, s2, s3) = 1
2 (s

3
1 + s1 ·

s2). It follows that, m2(3,Σ) = Z(A; 2, 2, 2) = 1
2 (2

3 + 2 · 2) = 6.

It is not clear to us how to calculate or approximate the order of growth of the

number of symmetry groups |S(n)| beyond the obvious observation that it is at least

linear with the number of vertices (Table 1). Regardless of that fact, the number of

labeled graphlets increases superlinearly with both n and |Σ|. Since we are not aware

of any tight theoretical bounds on the order of growth of κ(n,Σ), we demonstrate

the extent of sparse representation of count vectors by computing κ(n,Σ) for some

typical parameter values for both undirected and directed graphs (Table 2).

2.6 Algorithms and data structures

Here we show that the computation of edit distance kernels is practical for sparse

graphs. Let Nn−1(v) = (V (v), E(v)) be the neighborhood graph of vertex v such that

all nodes in Nn−1(v) are at distance at most n − 1 from v (directionality of edges is

ignored in directed graphs when establishing Nn−1(v)). We assume that Nn−1(v) is

significantly smaller than the original graph G; otherwise, the analysis must involve

G in place of Nn−1(v).

The count vector φn(v) can be generated by first discovering Nn−1(v) from G and

v and then counting graphlets rooted at v. All nodes and edges in Nn−1(v) can be

found in a breadth-first fashion starting from v. The worst-case time complexity of

this operation is O(|E(v)|). Additionally, there are O(dn) operations that verify the

existence of edges between pairs of non-root vertices of each graphlet rooted at v,

where d is the maximum vertex degree (in- and out-degree for directed graphs) in

Nn−1(v). For these reasons, the computational complexity of the counting algorithm

is of the order of O(|E(v)| + dn) for each training and test data point.

To compute φ(n,m)(v) we start with φn(v). Generating pseudo counts for a single edit

operation requires O(n|Σ| + n2) steps for each nonzero entry in φn(v). These include

O(n|Σ|) steps to generate all label substitutions and O(n2) to perform edge insertions

and deletions. Therefore, for each vertex v an order of O(min {|V (v)|n, κ(n,Σ)} (n|Σ|+
n2)m) operations are necessary, where the |V (v)|n term enumerates possible n-

graphlets in Nn−1(v). This bound, however, is not tight because the mapping between
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base graphlets in cases of edge insertions and deletions can be precomputed to

avoid creation of disconnected graphs. In summary, owing to the exponential time

complexity, edit distance kernels are applicable only to sparse graphs when relatively

small values of n and m are used.

The implementation we propose for computing edit distance kernels is an extension

of the available solutions for string kernels (Rieck & Laskov, 2008). Because the

order of nodes in each graphlet can be pre-specified it is easy to see that each

asymmetric graphlet type can be treated exactly as if it were a string. Only minor

modifications are necessary for each symmetry group, as the symmetric (groups of)

vertices can also be sorted lexicographically (Vacic et al., 2010). The implementation

in this work is based on a hash structure, where computing the kernel function is

performed in time linear in the number of non-zero elements.

3 Results

In this section we first summarize classification problems and data sets. We then

describe simple ways of incorporating domain knowledge into classification and

study the impact of inexact graphlet matches. Finally, we compare the proposed

kernels to previously published approaches.

3.1 Classification problems and data sets

We evaluate the performance on nine data sets constructed from three groups of

vertex-classification problems. All data sets are available on our web site.

Protein structure data: We consider the problem of predicting different types of

functional residues in protein structures. In order to obtain vertex-labeled graphs,

protein structures assembled by Xin and Radivojac (2011) were modeled as protein

contact graphs, where each amino acid residue was represented as a vertex and

two spatially close residues (6Å or less between two Cα atoms) were linked by an

undirected edge. We created four data sets addressing different biological problems,

i.e. prediction of (1) catalytic residues (Cat), (2) phosphorylation sites (Phos), (3)

zinc-binding residues (Zn), and (4) DNA-binding residues (DNA). In each case, the

training data consisted of one large vertex-labeled disconnected graph in which each

connected component corresponded to one protein chain.

Protein-protein interaction data: Given a human protein-protein interaction (PPI)

network and the molecular function of each protein (gene), the classification task is

to predict gene-disease associations. In the PPI network, proteins are represented as

vertices and proteins that physically interact are linked by undirected edges. Starting

from a large data set from (Radivojac et al., 2008), we constructed three binary

classification problems: prediction of (1) cancer vs. other disease genes (Can), (2)

metabolic disorder vs. other disease genes (Met), and (3) metabolic disorder vs.

cancer genes (Met/Can). In the Met/Can data set, all genes associated with both

cancer and metabolic disorders were removed.

Blog and tweet data: Given a set of political blogs (or tweets), we consider the

classification problem of labeling each blog (or user) as liberal or conservative. For

each blog, a directed link graph was constructed from the list of links to other

political blogs. Each vertex (i.e. political blog URL) was then labeled based on its
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Table 3. Data set summary. For each graph G = (V , E) we show the number of vertices and
edges in the entire graph as well as the number of positive (n+) and negative (n−) data points.

Cat Phos Zn DNA Can Met Met/Can Blogs Tweets

|V | 104,751 138,174 87,540 22,531 9,590 9,590 9,590 1,490 18,470
|E| 2.6 · 106 2.0 · 106 2.4 · 106 4.3 · 106 41,456 41,456 41,456 33,436 61,157
|Σ| 40 40 40 40 16 16 16 7 16
n+ 988 1,157 1,420 2,921 435 314 284 586 4,000
n− 988 1,157 1,420 2,921 1,082 1,203 405 636 4,000

weblog link directory. We use a single day snapshot of over 1, 000 political blogs

captured before the 2004 presidential election in the U.S. over seven (|Σ| = 7) online

weblog directories (Adamic & Glance, 2005). This data set was selected because

vertex labels are noisy; that is, many of the listing directories were self-reported or

automatically categorized. Similarly, for each Twitter user, a directed link graph was

constructed by connecting user A to user B if B retweeted any message originally

tweeted by A. We use a sample of the retweet network obtained from political

communication between users of Twitter in the six weeks prior to the 2010 U.S.

congressional midterm elections (Conover et al., 2011).

The basic parameters from all data sets are summarized in Table 3. The graph

density, calculated as |E|/
(|V |

2

)
, was examined for each of the data sets. Low density

graphs were observed for Phos (2.1 · 10−4) and Tweets (3.6 · 10−4) data, whereas

graphs with a relatively high density were found in DNA (1.6 · 10−2) and Blogs

(3.0 · 10−2) data.

3.2 Integrating domain knowledge

In order to provide fair comparisons between all protein structure-based methods and

also demonstrate the integration of domain knowledge, we incorporated evolutionary

information into functional residue prediction by extending the amino acid alphabet

from 20 to 40 symbols. We first formed a multiple sequence alignment starting from

each protein sequence using non-redundant GenBank as a reference database, then

calculated the conservation index for each position using AL2CO (Pei & Grishin,

2001), and finally grouped conservation scores into high and low categories. A new

label was constructed by combining the old label (one of the 20 amino acids) and

the binary conservation score. For instance, the amino acid alanine was split into

highly conserved alanines and other alanines.

To incorporate domain knowledge into the PPI network data, we first predicted

Gene Ontology (GO) terms for each protein using the FANN-GO algorithm (Clark

& Radivojac, 2011) and then applied hierarchical clustering on the predicted term

scores to group proteins into |Σ| = 16 broad functional categories. Given two

proteins (i.e. vertices in the graph) u and v, FANN-GO was used to provide vectors

of functional annotations f and g such that each component was a prediction score

for a single GO term from the Molecular Function and Biological Process ontologies

(f and g were 2,132-dimensional vectors of numbers between 0 and 1). Because the

components in these vectors are non-negative, the distance between u and v was
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calculated as

d(u, v) = 1 − fTg

‖f‖ ‖g‖ ,

where ‖f‖ is the Euclidean norm of f. Subsequently, we applied hierarchical clustering

with Ward’s linkage criterion to produce |Σ| = 16 functional classes of proteins.

In the case of social network data, we exploited auxiliary data in the Twitter

problem as follows: we (1) collected each user’s tweets; (2) stemmed, filtered out

short and common stop words from all tweets; (3) generated a bag-of-words tweet

representation for each user; and finally (4) applied hierarchical clustering on the

bag-of-words data to group users into |Σ| = 16 groups (the distance between vertices

in the graph was computed in the same way as in the PPI network). Edit distance

kernels become critical in cases of large alphabets because exact matches between

labeled graphlets become less likely.

3.3 Evaluation methodology

For each data set, we evaluated edit distance kernels by comparing them to the

standard graphlet kernel (Vacic et al., 2010) and two in-house implementations of

random walk kernels. The random walk kernels were implemented as follows: given

a graph G and two vertices u and v, simultaneous random walks wu and wv were

generated from u and v using random restarts. In the conventional random walk

implementation, a walk was scored as 1 if the entire sequences of labels between wu

and wv matched; otherwise, a walk was scored as 0. After 100,000 steps, the scores

over all walks were summed to produce a kernel value between u and v. In order to

construct a random walk similar to the graphlet edit distance approach, a cumulative

random walk kernel was also implemented. Here, any match between the labels of

vertices ui and vi in the i-th step of each walk was scored as 1, while a mismatch was

scored as 0. Thus, a walk of length ' could contribute between 0 and ' to the total

count. In each of the random walks, the probability of restart was selected from a

set {0.1, 0.2, . . . , 0.5} and the result with the highest accuracy was reported.

In case of the protein structure data, all graph kernels were compared against three

domain-specific methods: FEATURE (Halperin et al., 2008), the method developed

by Gutteridge et al. (2003), and the structure kernel (Xin et al., 2010). We used

the default parameters as provided in the original publications. These methods are

representative of many computational approaches for the problem of predicting

functional residues in protein structures.

The performance of each method was evaluated through a 10-fold cross-validation.

An exception was made for the protein structure data, where per-chain cross-

validation was applied to emulate a realistic scenario in which a completely new

protein chain (i.e. connected graph) is presented to a classifier to predict on.

In each iteration of cross-validation, 10% of protein chains were selected for

the test set, whereas the remaining 90% were used for training. Support vector

machines (SVMs) and K-nearest neighbor (KNN) classifiers were used to construct

all predictors and perform comparative evaluation. For support vector machines, we

used SVMlight with the default value for the capacity parameter (Joachims, 2002).

For the KNN classifiers, the best value for K was determined by varying it in the

range {5, 10, . . . , 35}.
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We estimated the area under the ROC curve (AUC), which plots the true positive

rate (sensitivity, sn) as a function of false positive rate (1 - specificity, 1−sp). The area

under the ROC curve corresponds to the probability that a classifier will correctly

discriminate between one randomly selected positive data point and one randomly

selected negative data point (Hanley & McNeil, 1982). Statistical significance of the

performance differences between a pair of algorithms was formulated as one-sided

hypothesis testing and the P-values were estimated using bootstrapping.

3.4 Performance effect of inexact matches

The performance effect of inexact matches on classification in undirected graphs

is shown in Table 4. As expected, we observe that flexibility in graphlet matching

plays a significant role in improving performance. In isolation, the label and/or edge

mismatch kernels improved accuracy on all data sets; in some cases by 15 percentage

points (n = 5; Cat, Zn; Table 4). Generally, improvements were achieved for larger

graphlet sizes. This is expected because inexact matches in small graphlets contribute

a large relative change. Tables 5–7 show the performance when all graphlet sizes

were combined (Section 3.5). The performance effects of inexact matches in directed

graphs are shown in Table 8. Here, the best performance on Blogs and Tweets

data was again achieved by edit distance kernels, but with smaller improvements

compared to those observed on biological data. These improvements, however,

were similar to the ones observed when Blogs and Tweets data were converted to

undirected graphs.

3.5 Overall classification performance

The performance of edit distance kernels was evaluated against the standard graphlet

kernel and two random walk kernels on each data set. Tables 5 and 6 summarize

the AUC estimates for each method and data set, while Figure 4(a)–(c) shows ROC

curves for one representative data set from each group of problems. We also compare

the performance of edit distance kernels against three representative computational

biology tools for the protein structure data (Table 7). Results for Blogs and Tweets

data using directed graphs are reported in Table 8.

Although performance accuracies varied among data sets and methods, edit

distance kernels outperformed both graphlet kernels and random walk kernels.

Edit distance kernels achieved the highest AUCs on all nine data sets with SVM

classifiers (Table 5) and eight data sets with KNN classifiers (Table 6). Relative

to the standard graphlet kernels, an increase in performance was observed in

all nine cases with both SVMs and KNNs. To determine if the performance of

edit distance kernels was statistically significant compared to standard graphlet

kernels on each data set, we performed one-sided hypothesis testing with the

following null and alternative hypotheses: H0 : two kernel methods have the

same performance, and H1 : edit distance kernel outperforms the graphlet kernel.

Bootstrapping was used to obtain the empirical P-values and the Bonferroni

correction was used to determine significance thresholds. In each data set, six

possible edit distance kernels were compared to a single graphlet kernel; thus,

we set α = 0.05
6 = 0.0083. Note that this threshold was somewhat conservative,
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Table 4. Area under the ROC curve estimates for edit distance kernels. The highest performance
for each data set is shown in boldface. Standard graphlet kernel is shown using m = 0. For each
n we allowed m edit operations. The cases where only one type of edit operation was allowed are
denoted using words ‘label’ and ‘edge’, respectively. Kernel functions for n = 5 and m = 2 edit
operations for functional residue prediction were approximated by using the label-substitution
and edge-indel kernel values.

Met/
n m Cat Phos Zn DNA Can Met Can Blogs Tweets

2
0 0.843 0.578 0.780 0.694 0.670 0.669 0.756 0.912 0.914
1 (label) 0.835 0.564 0.757 0.715 0.670 0.667 0.763 0.911 0.921

3

0 0.836 0.652 0.784 0.690 0.680 0.689 0.770 0.963 0.978
1 (label) 0.853 0.617 0.795 0.721 0.686 0.688 0.784 0.949 0.979
1 (edge) 0.842 0.649 0.782 0.701 0.675 0.685 0.771 0.965 0.977
1 (operation) 0.849 0.616 0.792 0.723 0.684 0.683 0.785 0.949 0.979
2 (label) 0.852 0.598 0.775 0.733 0.683 0.681 0.780 0.937 0.978
2 (edge) 0.843 0.647 0.778 0.701 0.672 0.676 0.773 0.962 0.967
2 (operations) 0.845 0.591 0.783 0.737 0.680 0.690 0.782 0.938 0.978

4

0 0.759 0.711 0.759 0.636 0.687 0.678 0.771 0.969 0.984
1 (label) 0.842 0.680 0.782 0.715 0.695 0.682 0.786 0.967 0.986
1 (edge) 0.827 0.703 0.775 0.678 0.681 0.677 0.770 0.972 0.985
1 (operation) 0.838 0.682 0.783 0.725 0.684 0.685 0.789 0.969 0.985
2 (label) 0.857 0.652 0.790 0.695 0.697 0.693 0.795 0.962 0.985
2 (edge) 0.836 0.687 0.777 0.691 0.683 0.673 0.771 0.974 0.984
2 (operations) 0.857 0.655 0.788 0.705 0.695 0.691 0.787 0.963 0.985

5

0 0.674 0.682 0.614 0.502 0.682 0.685 0.775 0.963 0.985
1 (label) 0.832 0.720 0.774 0.536 0.693 0.688 0.789 0.947 0.984
1 (edge) 0.709 0.694 0.692 0.505 0.686 0.689 0.776 0.965 0.985
1 (operation) 0.832 0.711 0.778 0.515 0.689 0.687 0.788 0.962 0.985
2 (label) 0.831 0.703 0.772 0.523 0.697 0.697 0.796 0.837 0.984
2 (edge) 0.755 0.704 0.755 0.514 0.685 0.687 0.775 0.969 0.985
2 (operations) 0.835 0.696 0.776 0.513 0.699 0.692 0.788 0.971 0.985

Table 5. Area under the ROC curve estimates for each method over nine data sets using SVM
classifiers. The highest performance for each data set is shown in boldface. Statistically significant
AUC values (P < 0.0083) between two types of graphlet kernels are marked by an asterisk.

Met/
Method/Dataset Cat Phos Zn DNA Can Met Can Blogs Tweets

Random walk 0.833 0.574 0.766 0.668 0.600 0.535 0.704 0.705 0.949
Cumulative 0.837 0.606 0.758 0.707 0.548 0.582 0.682 0.775 0.854

random walk
Graphlet kernel 0.841 0.693 0.783 0.689 0.668 0.685 0.775 0.968 0.984
Edit distance 0.861* 0.724* 0.795* 0.727* 0.689* 0.699 0.800* 0.973* 0.986*

kernel

because several different edit distance kernels could achieve improved performance

over the graphlet kernels. Interestingly, even without parameter optimization, edit

distance kernels reached competitive performance against domain-specific methods

for predicting functional residues from protein structures. In this group, FEATURE

is the only method that does not incorporate evolutionary conservation. On the
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Table 6. Area under the ROC curve estimates for each method over nine data sets using KNN
classifiers (K = 15). The highest performance for each data set is shown in boldface. Statistically
significant AUC values (P < 0.0083) between two types of graphlet kernels are marked by an
asterisk.

Method/Dataset Cat Phos Zn DNA Can Met Met/Can Blogs Tweets

Random walk 0.816 0.582 0.761 0.681 0.674 0.668 0.742 0.849 0.968
Cumulative 0.821 0.603 0.776 0.679 0.648 0.609 0.710 0.955 0.989

random walk
Graphlet kernel 0.831 0.588 0.769 0.693 0.678 0.673 0.763 0.960 0.976
Edit distance 0.844* 0.612 0.784* 0.699 0.692 0.678 0.775 0.965 0.979*

kernel

Table 7. Area under the ROC curve estimates for each method over protein structure data sets.
The highest performance for each data set is shown in boldface. The performance of the non
graph-based methods were reproduced from (Xin & Radivojac 2011).

Method/Dataset Cat Phos Zn DNA

FEATURE 0.754 0.620 0.767 0.824
Gutteridge et al. 0.814 0.559 0.713 0.713
Structure kernel 0.839 0.711 0.808 0.800
Graphlet kernel 0.841 0.693 0.783 0.689
Edit distance kernel 0.861 0.724 0.795 0.727

other hand, it exploits information available for atoms and chemical groups which

explains its superior accuracy on DNA-binding sites. The performance of edit

distance kernels is consistent with previous biological observations. For example,

catalytic residues and zinc-binding sites are highly conserved and spatially compact;

hence, a decrease in overall performance was observed as n increased, as shown in

Table 4. Furthermore, phosphorylation sites are frequently located in fast-evolving

loop regions. Inexact matches were therefore expected to capture high substitution

rates and conformational flexibility in such graphs.

Figure 5 illustrates the benefits of edit distance kernels over traditional graphlet

kernels. We show local structural neighborhoods of two proteins that share 22%

global sequence identity: chain A of 1bf2 and chain A of 1qho. Both enzymes

contain the same catalytic triad (D, E, D), but their structural neighborhoods are

otherwise different. Using a 1-nearest neighbor classifier with the standard graphlet

kernel to predict on residue D374 of 1bf2 results in misclasification. On the other

hand, an edit distance kernel correctly classifies D374 as a catalytic residue using

position D227 from 1qho as the nearest neighbor. Further examination reveals that

the rooted neighborhood of 1bf2 centered at D374 is more similar to a different

protein (i.e. chain A of 1pj5) because only exact matches are considered. In contrast,

by allowing mismatches in vertex labels, we were able to recover the shared catalytic

triad between 1bf2 and 1qho.

We also used the functional residue data sets to evaluate the influence of

doubling the alphabet size on classification accuracy. However, except for catalytic

residue prediction (Figure 4(d)), the difference in performance was only moderate

(Table 9). In fact, the performance on the Phos data set was slightly better without
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Fig. 4. Comparisons of ROC curves between different kernel methods for four representative
data sets. (A) Phos, (B) Met/Can, (C) Blogs, and (D) Cat. AUC values are shown in
parentheses for each method. In panel D, we show the influence of increased alphabet size
on graphlet kernels and edit distance kernels. (color online)

Fig. 5. Structural neighborhoods of a catalytic triad (D, E, D) corresponding to two different
protein structures with 22% sequence identity. Left: ISOA protein (PDB id: 1bf2). Right:
AMYM protein (PDB id: 1qho). Edit distance kernel based on a substitution of a single
vertex label recovers the catalytic triad (D, E, D) between 1bf2 and 1qho which is buried
with standard graphlet kernel. (color online)
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the expanded alphabet, which reflects an ongoing debate about the evolutionary

conservation of phosphorylation sites (Landry et al., 2009; Gray & Kumar, 2011).

These results combine to suggest that the 6Å Cα-Cα threshold that was used for

constructing protein contact graphs and the choice of the vertex alphabet require

separate optimization (e.g., through a validation set) on each data set.

Edit distance kernels also improved performance on the PPI data sets as well as

Blogs and Tweets data sets, likely by reducing the impact of noisy vertex labels.

Interestingly, our results on Blogs and Tweets data also support findings stating large

differences in connectivity patterns between liberal and conservative blogs (Adamic

& Glance, 2005) and tweets (Conover et al., 2011). Such differences resulted in very

high classification accuracies. The influence of domain knowledge on classification

accuracy was significant on the PPI data sets as the performance of all methods

increased between six and ten percentage points. The influence of the vertex alphabet

on Blogs and Tweets data was even more significant (Table 9).

Finally, the use of edit distance kernels on directed graphs did not yield further

accuracy improvements to their undirected counterparts. However, directed graphs

provided computational speed-up because they were computed for N = 3 as opposed

to N = 5 used for undirected graphs.

4 Conclusion

In this work, we introduce a framework for the construction of flexible graphlet

kernels for comparing vertex neighborhoods in sparse graphs. Flexibility is achieved

by allowing approximate graphlet matching, according to the edit distance among

them. These new kernels performed competitively with state-of-the-art approaches in

the task of predicting functional residues from protein structures, and outperformed

random walk kernels on all data sets. Furthermore, by utilizing vertex-labeling we

showed a simple way to integrate domain knowledge into classification.

Edit distance kernels can be even further generalized to incorporate similarity

functions on the elements of Σ. This can be illustrated in the context of functional

residue prediction. In the course of evolution, neutral mutations in DNA are

more likely to result in amino acid substitutions between residues with similar

physicochemical properties. For example, a positively charged residue is more

likely to be replaced by a positively charged, rather than a negatively charged

residue. In this work we utilized well-known substitution matrices from computa-

tional biology to construct weighted edit paths via an exponential transformation

exp {S(A,B)/max {S(A,A), S(B,B)} − 1}, where S(A,B) is the entry of the BLO-

SUM62 matrix (Henikoff & Henikoff, 1992) corresponding to amino acids A and

B. While these results provided some improvement for |Σ| = 20 (data not shown),

their performance was generally inferior to |Σ| = 40, a case for which substitution

matrices have not been developed. The construction of appropriate substitution

matrices for large alphabets has not been explored in this study; however, it may

present an attractive and practical approach in the future.

Edit distance graphlet kernels can be seen as a special case of a generalized

similarity function of the type k(u, v) = uTSTSv = uTQv, where u and v are column

vectors of counts and Q is a symmetric positive semi-definite matrix (Q = I provides

the standard kernel function). Each element S(i, j) of S is set to 1 if graphlets ni
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Table 8. Area under the ROC curve estimates for each method on the Blogs and Tweets data
using directed graphs. The highest performance for each data set is shown in boldface. The upper
part of the table shows kernel performance, using SVMs, for graphlet kernels of particular size.
The lower part of the table shows combined kernel performance for SVM and KNN classifiers.
Statistically significant AUC values (P < 0.0083) between two types of combined graphlet
kernels are marked by an asterisk. Both random walk kernels resulted in near-random AUCs,
which likely indicates that 100,000 steps that were applied to provide the kernel values were
insufficient.

Method/Dataset m Blogs Tweets

2-graphlets

0 0.930 0.920
1 (label) 0.925 0.925
1 (edge) 0.925 0.920
1 (operation) 0.900 0.925
2 (edge) 0.912 0.914
2 (operations) 0.901 0.925

3-graphlets

0 0.964 0.979
1 (label) 0.965 0.981
1 (edge) 0.967 0.979
1 (operation) 0.973 0.981
2 (label) 0.961 0.980
2 (edge) 0.969 0.979
2 (operations) 0.969 0.980

SVM

Graphlet kernel 0 0.963 0.981

Label substitution
1 0.965 0.982
2 0.962 0.980

Edge indel
1 0.966 0.980
2 0.970 0.979

Edit distance
1 0.973* 0.982*
2 0.969 0.982

KNN

Graphlet kernel 0 0.947 0.972

Label substitution
1 0.933 0.972
2 0.926 0.967

Edge indel
1 0.955 0.974*
2 0.960* 0.974

Edit distance
1 0.937 0.973
2 0.929 0.969

and nj are within edit distance of m; otherwise, S(i, j) = 0. For non-sparse matrices,

computing such a kernel may not be generally feasible because of the exceedingly

high dimensionality of the count vectors and similarity matrices in many applications

(Table 2). Therefore, edit distance graphlet kernels can be seen as practical solutions

that approximate full matrix representations yet still efficiently operate in spaces

of extremely high dimensionality. It is worth mentioning that a significantly more

efficient solution exists when the similarity between u and v is computed as uTSv;

however, unlike Q, matrix S is not always positive semi-definite (unless the magnitude

of pseudo counts is small) and would require a test for positive semi-definiteness

before implementation.

Although the performance accuracy experiments were generally favorable, an

important drawback of edit distance kernels is their computational complexity.

Specifically, the new kernels, at least in their basic form, are not well suited
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Table 9. The influence of domain knowledge and auxiliary data on the performance of graphlet
and edit distance kernels. The numbers show AUC estimates for over nine data sets using SVM
and KNN classifiers. In the experiments without domain information, the vertex alphabet sizes
were set to |Σ| = 20 for protein structure data and |Σ| = 1 for the remaining data sets. In the
experiments with domain information the alphabet sizes were set to |Σ| = 40 for protein structure
data, |Σ| = 16 for the PPI data sets, |Σ| = 7 for Blogs, and |Σ| = 16 for Tweets. Statistical
significance was calculated between graphlet and edit distance kernels for each learning scenario.

Met/
Method/Dataset Cat Phos Zn DNA Can Met Can Blogs Tweets

SVM, without domain information
Graphlet kernel 0.687 0.730 0.759 0.684 0.630 0.589 0.681 0.758 0.713
Edit distance 0.741* 0.743 0.780* 0.718* 0.632 0.604* 0.704* 0.749 0.717*

kernel
SVM, with domain information

Graphlet kernel 0.841 0.693 0.783 0.689 0.668 0.685 0.775 0.968 0.984
Edit distance 0.861* 0.724* 0.795* 0.727* 0.689* 0.699 0.800* 0.973* 0.986*

kernel
KNN, without domain information

Graphlet kernel 0.655 0.606 0.746 0.676 0.631 0.578 0.688 0.550 0.813
Edit distance 0.668 0.623 0.759* 0.677 0.624 0.590 0.693 0.537 0.815

kernel
KNN, with domain information

Graphlet kernel 0.831 0.588 0.769 0.693 0.678 0.673 0.763 0.960 0.976
Edit distance 0.844* 0.612 0.784* 0.699 0.692 0.678 0.775* 0.965 0.979*

kernel

to comparisons of dense graphs and graphs with very large vertex and/or edge

alphabets. Our data sets contained a solid range of such situations and provided

evidence that, both in terms of accuracy and speed, edit distance kernels seem

particularly well suited to problems involving protein structures. For example, a

structural neighborhood of depth 4 from the root typically contained about 40

nodes and, thus, neither counting of graphlets with up to 5 nodes nor generating

pseudo counts presented a significant computational challenge. On the other end

of the spectrum was the Blogs data set that contained more than 1200 relatively

densely connected nodes in a typical neighborhood. Here, the running time for the

edit distance kernels was significant: execution of a single cross-validation experiment

took approximately two weeks on our desktop computers. Although the density of

the Tweets data set was significantly lower than the one for Blogs, its run time was

even longer, in part due to an order of magnitude larger data set size. As a result,

biological networks, especially protein structures, appear to be better application

domains for edit distance kernels than social networks.

Finally, edit distance kernels are simply similarity functions between vertices in a

graph. Thus, they are applicable beyond vertex classification and supervised learning;

for example in kernel-based graph clustering or approximate motif discovery.

Another potential use of these kernels is the pre-processing of graph data through

graph re-wiring for the subsequent application of probabilistic graphical models, e.g.

Markov Random Fields. As such our approach may increase the applicability of
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probabilistic graphical models to disconnected graphs as well as graphs where the

proximity of vertices poorly correlates with the similarity between their class labels.
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