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Abstract

Motivation: Biological and cellular systems are often modeled as graphs in which vertices represent objects of inter-
est (genes, proteins and drugs) and edges represent relational ties between these objects (binds-to, interacts-with
and regulates). This approach has been highly successful owing to the theory, methodology and software that
support analysis and learning on graphs. Graphs, however, suffer from information loss when modeling physical
systems due to their inability to accurately represent multiobject relationships. Hypergraphs, a generalization of
graphs, provide a framework to mitigate information loss and unify disparate graph-based methodologies.

Results: We present a hypergraph-based approach for modeling biological systems and formulate vertex classifica-
tion, edge classification and link prediction problems on (hyper)graphs as instances of vertex classification on
(extended, dual) hypergraphs. We then introduce a novel kernel method on vertex- and edge-labeled (colored)
hypergraphs for analysis and learning. The method is based on exact and inexact (via hypergraph edit distances)
enumeration of hypergraphlets; i.e. small hypergraphs rooted at a vertex of interest. We empirically evaluate this
method on fifteen biological networks and show its potential use in a positive-unlabeled setting to estimate the inter-
actome sizes in various species.

Availability and implementation: https://github.com/jlugomar/hypergraphlet-kernels

Contact: predrag@northeastern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Graphs provide a mathematical structure for describing relation-
ships between objects in a system. Due to their intuitive representa-
tion, well-understood theoretical properties, the wealth of
methodology and available code base, graphs have also become a
major framework for modeling biological systems. Protein–protein
interaction networks, protein 3D structure graphs, drug–target
interaction networks, metabolic networks and gene regulatory net-
works are some of the major representations of biological systems.
Unfortunately, molecular and cellular systems are only partially ob-
servable and may contain significant amount of noise due to their in-
herent stochastic nature as well as the limitations of experimental
techniques. This highlights the need for the development and appli-
cation of computational approaches for predictive modeling (e.g.
inferring novel interactions) and identifying interesting patterns in
such data.

Learning on graphs can be generally seen as supervised or un-
supervised. Under a supervised setting, typical tasks involve graph

classification; i.e. the assignment of class labels to entire graphs,
vertex or edge classification; i.e. the assignment of class labels to ver-
tices or edges, or link prediction; i.e. the prediction of the existence
of edges in graphs. Alternatively, frequent subgraph mining, motif
finding and clustering are traditional unsupervised approaches.
Regardless of the category, the development of techniques that cap-
ture network structure, measure graph similarity and incorporate
domain-specific knowledge in a principled manner lie at the core of
all these problems.

The focus of this study is on classification problems across
various biological networks. A straightforward approach to this
problem is the use of topological and other descriptors (e.g. vertex
degree, clustering coefficient and betweenness centrality) that sum-
marize graphs and graph neighborhoods. These descriptors, much
like embedding techniques (Grover and Leskovec, 2016; Goyal and
Ferrara, 2018), readily form vector-space representations, after
which standard machine learning algorithms can be applied to learn
target functions (Xu and Li, 2006). Another strategy involves the
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use of kernel functions on graphs (Vishwanathan et al., 2010).
Kernels are symmetric positive semidefinite mappings of pairs of
objects from an input space X to R, that lead to efficient learning.
Finally, classification on graphs can be seen as inference over
Markov networks (Deng et al., 2003) and can be approached using
related label-propagation (Zhu and Ghahramani, 2002) or flow-
based (Nabieva et al., 2005) methods. These inference strategies are
often well adjusted to learning smooth functions over neighboring
nodes.

Despite the success and wide adoption of these methods in com-
putational biology, it is well-understood that graph representations
suffer from information loss since every edge can only encode pair-
wise relationships (Klamt et al., 2009). A protein complex, for in-
stance, cannot be distinguished from a set of proteins that interact
only pairwise. Such disambiguation, however, is important to
understand the biological activity of these molecules (Gaudelet
et al., 2018). Hypergraphs, a generalization of graphs, naturally cap-
ture these higher-order relationships (Berge, 1973). As we show
later, they also provide a representation that can be used to unify
several conventional classification problems on (hyper)graphs as an
instance of vertex classification on hypergraphs.

In this article, we present and evaluate a kernel-based framework
for the problems of vertex classification, edge classification and link
prediction in graphs and hypergraphs. We first use the concepts of
hypergraph duality to demonstrate that all such classification prob-
lems can be unified through the use of hypergraphs. We then describe
the development of edit-distance hypergraphlet kernels; i.e. similarity
functions between local vertex neighborhoods based on flexibly enu-
merating small labeled hypergraphs rooted at vertices of interest.
These similarity functions were subsequently incorporated into a semi-
supervised methodology for predicting class labels on vertices. Finally,
we use 15 biological networks to provide evidence that the proposed
approaches present an attractive option in this setting.

2 Background

2.1 Graphs and hypergraphs
Graphs. A graph G is a pair (V, E), where V is a set of vertices
(nodes) and E � V �V is a set of edges. In a vertex-labeled graph, a
labeling function f is defined as f : V ! R, where R is a finite alpha-
bet. Similarly, in an edge-labeled graph, another labeling function g
is given as g : E! N, where N is also a finite set. We will focus on
undirected graphs (E is symmetric), without self-loops and weights
associated with edges. Generalization of our approach to directed
and weighted graphs is relatively straightforward.

A rooted graph G is a graph together with one distinguished ver-
tex called the root. We denote such graphs as G ¼ ðV; v;EÞ, where
v 2 V is the root. A walk w of length k in a graph G is a sequence of
nodes v0; v1 � � � ; vk such that ðvi; viþ1Þ 2 E, for 0 � i < k. A con-
nected graph is a graph where there exists a walk between any two
nodes.

Hypergraphs. A hypergraph G is a pair (V, E), where V again is
the vertex set and E is a family of non-empty subsets of V, referred
to as hyperedges. A hyperedge e is said to be incident with a vertex v
if v 2 e. Two vertices are called adjacent if there is an edge that con-
tains both vertices and two hyperedges are said to be adjacent if
their intersection is non-empty. The neighbors of a vertex v in a
hypergraph are the vertices adjacent to v. Finally, the degree d(v) of
a vertex v in a hypergraph is given by dðvÞ ¼ jfe 2 Ejv 2 egj, where-
as the degree of a hyperedge e is defined as dðeÞ ¼ jej.

As before, one can define a vertex-labeled, edge-labeled and
rooted hypergraphs. When the multiplicity of each hyperedge is one,
the hypergraph is said to be simple. A walk w of length k in a hyper-
graph is a sequence of vertices and hyperedges v0; e0; v1; . . . ; ek�1; vk

such that ðvi; viþ1Þ 2 ei for each 0 � i < k and ei 2 E. A connected
hypergraph is a hypergraph where there exists a walk between any
two nodes.

Since we are interested in counting small predefined hypergraphs
in large hypergraphs, we define two distinct ways in which these
substructures can be counted, as section hypergraphs or

subhypergraphs. Given a hypergraph G ¼ ðV;EÞ, a section hyper-
graph of G is a hypergraph G0 ¼ ðV 0;E0Þ where V 0 � V and
E0 ¼ feje 2 E ^ e � V0g. A subhypergraph of G is a hypergraph
G0 ¼ ðV 0;E0Þ where V 0 � V and E0 ¼ fe \ V0je 2 E ^ e \ V0 6¼1g.
In other words, when nodes V n V 0 are removed from V, section
hypergraphs retain only those edges that were subsets of the remain-
ing nodes V 0. In subhypergraphs, on the other hand, the edges that
originally contained nodes from both removed (V n V 0) and unre-
moved (V 0) nodes are retained as subsets of the original edges that
now include nodes only from V 0. Edges from the original graph that
only included nodes from V 0 can now have increased multiplicity.

Isomorphism. Consider two graphs, G ¼ ðV;EÞ and H ¼ ðW; FÞ.
We say that G and H are isomorphic, denoted as G ffi H, if there
exists a bijection f : V !W such that ðu; vÞ 2 E if and only if
ðf ðuÞ; f ðvÞÞ 2 F for all u; v 2 V. If G and H are hypergraphs, an iso-
morphism is defined as inter-related bijections f : V !W and g :
E! F such that e ¼ fv1; . . . ; vdðeÞg 2 E if and only if gðeÞ ¼
ff ðv1Þ; . . . ; f ðvdðeÞÞg 2 F for all hyperedges e 2 E. Isomorphic (hyper)-
graphs are structurally identical. An automorphism is an isomorphism
of a (hyper)graph to itself.

Edit distance. Let G and H be two vertex- and hyperedge-labeled
hypergraphs. The edit distance between these hypergraphs corre-
sponds to the minimum number of edit operations necessary to
transform G into H, where edit operations are often defined as inser-
tion/deletion of vertices/hyperedges and substitutions of vertex and
hyperedge labels. Any sequence of edit operations that transforms G
into H is called an edit path; hence, the hypergraph edit distance be-
tween G and H is the length of the shortest edit path between them.
This concept can be generalized to the case where each edit oper-
ation is assigned a cost. Hypergraph edit distance then corresponds
to the edit path of minimum cost.

2.2 Hypergraph duality
Let G ¼ ðV;EÞ be a hypergraph, where V ¼ fv1; . . . ; vng and
E ¼ fe1; . . . ; emg. The dual hypergraph of G, denoted as
G� ¼ ðV�;E�Þ, is obtained by constructing the set of vertices as
V� ¼ fe1; . . . ; emg and the set of hyperedges as E� ¼ f�1; . . . ; �ng
such that �i ¼ fejjvi 2 ejg. Thus, the vertices of the dual hypergraph
G� are hyperedges of the original hypergraph G, whereas the hyper-
edges of G� are constructed using the hyperedges of G that are inci-
dent with the respective vertices. Figure 1A, B shows two examples
of a hypergraph G and its dual hypergraph G�.

2.3 Classification on hypergraphs
We are interested in binary classification on (possibly disconnected)
hypergraphs. The following paragraphs briefly introduce three clas-
sification problems on hypergraphs, formulated here so as to natur-
ally lead to the methodology proposed in the next section.

Vertex classification. Given a hypergraph G ¼ ðV;EÞ and a
training set fðvi; tiÞgmi¼1, where ti 2 f�1;þ1g is the class label of ver-
tex vi and m < jVj, the goal is to predict class labels of unlabeled
vertices. A number of classical problems in computational biology
map straightforwardly to vertex classification; e.g. network-based
protein function prediction, disease gene prioritization, etc.

Hyperedge classification. Given a hypergraph G ¼ ðV;EÞ and a
training set fðei; tiÞgm

i¼1, where ti 2 f�1;þ1g is the class label of
hyperedge ei and m < jEj, the goal is to predict class labels of un-
labeled hyperedges. An example of hyperedge classification is the
prediction of functional annotations for protein complexes.

Link prediction. Let G ¼ ðV;EÞ be a hypergraph with some
missing hyperedges and let E be all non-existent hyperedges in G;
i.e. E ¼ U � E, where U represents all possible hyperedges over V.
The goal is to learn a target function t : U ! f�1;þ1g and infer the
existence of all missing hyperedges. Examples of link prediction in-
clude predicting protein–protein interactions, predicting drug–target
interactions and so on.

2.4 Positive-unlabeled learning
A number of prediction problems in computational biology can be
considered within a semisupervised framework, where a set of
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labeled and a set of unlabeled examples are used to construct classi-
fiers that discriminate between positive and negative examples. A
special category of semisupervised learning occurs when labeled
data contain only positive examples; i.e. where the negative exam-
ples are either unavailable or ignored; say, if the set of available neg-
atives is small or biased. Such problems are generally referred to as
learning from positive and unlabeled data or positive-unlabeled
learning (Denis et al., 2005). Many problems in molecular biology
that are often referred to as the open world problems lend them-
selves naturally to the positive-unlabeled setting.

Research in machine learning has recently established tight con-
nections between traditional supervised learning and (non-tradition-
al) positive-unlabeled learning. Under mild conditions, a classifier
that optimizes the ranking performance; e.g. area under the ROC
curve (Fawcett, 2006), in the non-traditional setting has been shown
to also optimize the performance in the traditional setting (Reid and
Williamson, 2010). Similar relationships have been established in
approximating posterior distributions (Jain et al., 2016a,b) as well
as in recovering the true performance accuracy in the traditional set-
ting for a classifier evaluated in a non-traditional setting (Jain et al.,
2017; Menon et al., 2015; Ramola et al., 2019).

3 Materials and methods

3.1 Problem formulation
We consider binary classification problems on graphs and hyper-
graphs and propose to unify all such learning problems through
semisupervised vertex classification on hypergraphs. First, vertex
classification falls trivially into this framework. Second, the prob-
lems of edge classification in graphs and hyperedge classification in
hypergraphs are equivalent to the problem of vertex classification
on dual hypergraphs. As discussed in Section 2.2, both graphs and
hypergraphs give rise to dual hypergraph representations and, thus,
(hyper)edge classification on a graph G straightforwardly translates
into vertex classification on its dual hypergraph G�. We note here

that vertices with the degree of one in G give rise to self-loops in the
dual hypergraph G�. To account for them, we add one dummy node
per self-loop with the same vertex label as the original vertex and
connect them with an appropriately labeled edge. Third, one can
similarly see link prediction as vertex classification on dual hyper-
graphs, where the set of existing links is treated as positive data, the
set of known non-existing links is treated as negative data and the
remaining set of missing links is treated as unlabeled data. This for-
mulation further requires an extension of dual hypergraph represen-
tations as follows. Consider a particular negative or missing link
e 2 E in the original graph G with its dual hypergraph G� (Fig. 1C).
To make a prediction on this edge e, we must first introduce a new
vertex e in the dual hypergraph as well as modify those hyperedges
in G� that correspond to the vertices v 2 e in G (Fig. 1C). We denote
this extended hypergraph as G�e . It now easily follows that the sets
of negative and unlabeled examples can be created by considering
a collection of extended graphs G�e , one at a time, for select vertices
e 2 E.

Since most biological networks lack large sets of representative
negative examples, we approach vertex classification, (hyper)edge
classification and link prediction as instances of vertex classification
on (extended, dual) hypergraphs in a positive-unlabeled setting. We
believe this is a novel and useful attempt at generalizing three dis-
tinct graph classification problems in a common semisupervised set-
ting. The following sections introduce hypergraphlet kernels that are
the next step of our classification approach.

3.2 Hypergraphlets
Inspired by graphlets (Przulj et al., 2004; Przulj, 2007), we define a
hypergraphlet as a small, simple, connected, rooted hypergraph,
without self-loops, where the root of the hypergraph is its automor-
phism orbit (Gaudelet et al., 2018). A hypergraphlet with n vertices
is called an n-hypergraphlet; and the ith hypergraphlet of order n is
denoted as ni. We consider hypergraphlets up to isomorphism and
will refer to these isomorphisms as root- and label-preserving
isomorphisms when hypergraphs are rooted and labeled. Figure 2
displays all non-isomorphic unlabeled n-hypergraphlets with up to
three vertices. There is only one hypergraphlet of order 1 (11;
Fig. 2A), one hypergraphlet of order 2 (21; Fig. 2B), nine hypergra-
phlets of order 3 (31; . . . ; 39; Fig. 2C) and 461 hypergraphlets of
order 4 (Supplementary Materials). We refer to all these hypergra-
phlets as base hypergraphlets since they correspond to the case when
jRj ¼ jNj ¼ 1.

Consider now a vertex- and hyperedge-labeled (or fully labeled
for short) hypergraphlet with n vertices and m hyperedges, where R
and N denote the vertex-label and hyperedge-label alphabets, re-
spectively. If jRj > 1 and/or jNj > 1, automorphic structures corre-
sponding to the same base hypergraphlet may exist; hence, the
number of fully labeled hypergraphlets per base structure is general-
ly smaller than jRjn � jNjm. For example, if one only considers vertex-
labeled 3-hypergraphlets, then there are jRj3 vertex-labeled hyper-
graphlets corresponding to the asymmetric base hypergraphlets 32,
34 and 37 but only 1

2 jRj
3 þ jRj2Þ

�
corresponding to the base hyper-

graphlets 31, 33, 35, 36, 38 and 39. This is a result of symmetries in
the base hypergraphlets that give rise to automorphisms among
vertex-labeled structures. Similarly, if jNj > 1, new symmetries may
form with respect to the base hypergraphlets that give rise to differ-
ent automorphisms among hyperedge-labeled structures.

These symmetries are important for counting vertex- and
hyperedge-labeled hypergraphlets within larger graphs. The enumer-
ation steps described above also determine the dimensionality of the
Hilbert space in which the prediction is carried out. Detailed results
on hypergraph enumeration are given in Supplementary Materials.

3.3 Hypergraphlet kernels
Motivated by the case for graphs (Lugo-Martinez and Radivojac,
2014; Shervashidze et al., 2009; Vacic et al., 2010), we introduce
hypergraphlet kernels. Let G ¼ ðV;E; f ; g;R;NÞ be a fully labeled
hypergraph where f is a vertex-labeling function f : V ! R, g is a
hyperedge-labeling function g : E! N and jRj; jNj 	 1. The vertex-

A

B

C

Fig. 1. Examples of hypergraph duality. (A) A hypergraph G ¼ ðV;EÞ, where V ¼
fv1; v2; v3; v4g and E ¼ fe1; e2; e3; e4; e5g with its dual hypergraph G� ¼ ðV�;E�Þ,
where V� ¼ fe1; e2; e3; e4; e5g and E� ¼ f�1; �2; �3; �4g such that �1 ¼
fe1; e3; e5g; �2 ¼ fe1; e2g; �3 ¼ fe2; e3; e4g and �4 ¼ fe4; e5g. (B) An example of

graph G with two degree-one vertices that lead to the dual hypergraph G� with self-

loops; �2 and �4. (C) An extended dual hypergraph that is proposed to formulate

link prediction as an instance of vertex classification in hypergraphs. To make a pre-

diction regarding the existence of edge e, shown as a dashed line on the left side, an

extended dual hypergraph is created in which e is added to the set of vertices V�.

Updates are made to hyperedges �1 and �4 (dashed) that correspond to those vertices

in G that are incident with the edge e
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and hyperedge-labeled n-hypergraphlet count vector for any v 2 V
is defined as

/nðvÞ ¼ ðun1
ðvÞ;un2

ðvÞ; . . . ;unjðn;R;NÞ
ðvÞÞ; (1)

where uni
ðvÞ is the count of the ith fully labeled n-hypergraphlet

rooted at v and jðn;R;NÞ is the total number of vertex- and

hyperedge-labeled n-hypergraphlets. Observe that, uni
ðvÞ must be

defined over a section hypergraph or subhypergraph of G which will
lead to distinct vectors of counts /nðvÞ. A kernel between the n-

hypergraphlet counts for vertices u and v is defined as an inner prod-
uct between /nðuÞ and /nðvÞ; i.e.

knðu; vÞ ¼ h/nðuÞ;/nðvÞi: (2)

The hypergraphlet kernel function incorporating all hypergra-
phlets up to the size N is given by

kðu; vÞ ¼
XN
n¼1

knðu; vÞ; (3)

where N is a small integer. In this work, we use N¼4 due to the ex-
ponential growth of the number of base hypergraphlets.

3.4 Edit-distance hypergraphlet kernels
Consider a fully labeled hypergraph G ¼ ðV;E; f ; g;R;NÞ. Given a
vertex v 2 V, we define the vector of counts for a s-generalized edit-
distance hypergraphlet representation as

/ðn;sÞðvÞ ¼ ðwðn1 ;sÞðvÞ;wðn2 ;sÞðvÞ; . . . ;wðnjðn;R;NÞ ;sÞðvÞÞ; (4)

where

wðni ;sÞðvÞ ¼
X

nj2Eðni ;sÞ
cðni;njÞ � unj

ðvÞ: (5)

Here, Eðni; sÞ is the set of all n-hypergraphlets such that for each

nj 2 Eðni; sÞ there exists an edit path of total cost at most s that
transforms ni into nj and cðni; njÞ 	 0 is a user-defined parameter. In
other words, the counts for each hypergraphlet ni are updated by

also counting all other hypergraphlets nj that are in the s vicinity of
ni. The parameter c can be used to adjust the weights of these pseu-
docounts or learned from data to add sophistication. We set

cðni; njÞ ¼ 1 for all i and j and the cost of all edit operations was also
set to 1. This restricts s to non-negative integers.

The length-s edit-distance n-hypergraphlet kernel kðn;sÞðu; vÞ be-
tween vertices u and v can be computed as an inner product between

the respective count vectors /ðn;sÞðuÞ and /ðn;sÞðvÞ; i.e.

kðn;sÞðu; vÞ ¼ h/ðn;sÞðuÞ;/ðn;sÞðvÞi: (6)

The length-s edit-distance hypergraphlet kernel function is given
as

ksðu; vÞ ¼
XN
n¼1

kðn;sÞðu; vÞ: (7)

The edit operations considered here incorporate substitutions of
vertex labels, substitutions of hyperedge labels and insertions/dele-
tions (indels) of hyperedges (see example in Supplementary Fig. S1).
Given these edit operations, we also define three subclasses of edit-
distance hypergraphlet kernels referred to as vertex label-
substitution kvl

s ðu; vÞ, hyperedge label-substitution khl
s ðu; vÞ and

hyperedge-indel kernels khi
s ðu; vÞ. Although the functions from

Equations (2) and (6) are defined as inner products, other formula-
tions such as radial basis functions can be similarly considered
(Shawe-Taylor and Cristianini, 2001). We also note that the com-
bined kernels from Equations (3) and (7) can be generalized beyond
linear combinations. For the simplicity of this work, however, we
only explore equal-weight linear combinations and normalize the
functions from Equations (3) and (7) using the cosine transform-
ation. Computational complexity and implementation details are
described in Supplementary Materials.

4 Experiment design

4.1 Datasets
Protein–protein interaction data. The protein–protein interaction
(PPI) data were used for both edge classification and link prediction.
In the context of edge classification, we are given a PPI network
where each interaction is annotated as either direct physical inter-
action or a comembership in a complex. The objective is to predict
the type of each interacting protein pair as physical versus complex
(PC). For this task, we used the budding yeast Saccharomyces cerevi-
siae PPI network assembled by Ben-Hur and Noble (2005).

Another important task in PPI networks is discovering whether
two proteins interact. Despite the existence of high-throughput ex-
perimental methods for determining interactions between proteins,
the PPI network data of all organisms is incomplete (Lewis et al.,
2012). Furthermore, high-throughput PPI data contains a potentially
large fraction of false-positive interactions (von Mering et al.,
2002). Therefore, there is a continued need for computational meth-
ods to help guide experiments for identifying novel interactions.
Under this scenario, there are two classes of link prediction algo-
rithms: (i) prediction of direct physical interactions (Ben-Hur and
Noble, 2005; Gomez et al., 2003) and (ii) prediction of comember-
ship in a protein complex (Ma et al., 2017; Zhang et al., 2004). We
focused on the former task and assembled six species-specific data-
sets comprised solely of direct protein–protein interaction data
derived from public databases (BIND, BioGRID, DIP, HPRD and
IntAct) as of January 2017. We considered only one protein isoform
per gene and used experimental evidence types described by Lewis
et al. (2012). Specifically, we constructed link prediction tasks for:
(i) Escherichia coli (EC), (ii) Schizosaccharomyces pombe (SP), (iii)
Rattus norvegicus (RN), (iv) Mus musculus (MM), (v)
Caenorhabditis elegans (CE) and (vi) Arabidopsis thaliana (AT).

Drug–target interaction data. Identification of interactions be-
tween drugs and target proteins is an area of growing interest in
drug design and therapy (Wang and Zeng, 2013; Yamanishi et al.,
2008). In a drug–target interaction (DTI) network, nodes corres-
pond to either drugs or proteins and edges indicate that a protein is
a known target of the drug. Here, we used DTI data for both edge
classification and link prediction. In the context of edge labeling, we
are given a DTI network where each interaction is annotated as dir-
ect (binding) or indirect, as well as assigned modes of action as acti-
vating or inhibiting. The objective is to predict the type of each
interaction between proteins and drug compounds. For this task, we
derived two datasets: (i) indirect versus direct (ID) binding derived
from MATADOR and (ii) activation versus inhibition (AI)
assembled from STITCH. Under link prediction setting, the learning
task is to predict drug–target protein interactions. We focused on
four drug–target classes: (i) enzymes (EZ), (ii) ion channels (IC), (iii)
G protein-coupled receptors (GR) and (iv) nuclear receptors (NR);
originally assembled by Yamanishi et al. (2008).

A C

B

Fig. 2. Undirected base hypergraphlets with 1, 2 and 3 vertices. The root node of

each hypergraphlet is inscribed in a square. Hypergraphlets are presented in a com-

pressed notation; e.g. structures 32 and 33 are shown in one drawing
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Hyperedge classification data. Hypergraphs provide a natural
way to encode protein complexes. Here, we used Corum 3.0 (Giurgiu
et al., 2019) which provides manually annotated protein complexes
from mammalian organisms. Under this setting, the learning objective
is to predict the functional annotation of each protein complex. For
this task, we defined two datasets: (i) protein binding versus cell cycle
(BC) and (ii) protein modification versus DNA processing (MP).
Table 1 summarizes all datasets used in this work.

4.2 Integrating domain knowledge via a vertex alphabet
To incorporate domain knowledge into the PPI networks, we
exploited the fact that each vertex (protein) in the graph is associ-
ated with its amino acid sequence. In particular, we used protein
sequences to predict their Gene Ontology (GO) terms using the
FANN-GO algorithm (Clark and Radivojac, 2011). Hierarchical
clustering was subsequently used on the predicted term scores to
group proteins into jRGOj broad functional categories. In the case of
DTI data, target proteins were annotated in a similar manner. For
labeling drug compounds, we used the chemical structure similarity
matrix computed from SIMCOMP (Hattori et al., 2003), trans-
formed it into a dissimilarity matrix and then applied hierarchical
clustering to group compounds into jRSSj structural categories.

4.3 Evaluation methodology
We evaluated all hypergraphlet kernels by comparing them to two
in-house implementations of random-walk-with-restarts kernels.
Given a hypergraph G and two vertices u and v, simultaneous ran-
dom walks wu and wv were generated from u and v for a fixed num-
ber of times (Nwalks). In each step during a walk, one must pick
hyperedges eu0 and ev0 incident with current vertices u0 and v0,

respectively, and then pick next vertices u00 2 eu0 and v00 2 ev0 . After
a transition is made to the next pair of nodes u00 and v00, the walk is
terminated with some probability 0 < p < 1, or continued. In the
conventional random walk implementation, a walk is scored as 1 if
the sequences of all vertex and hyperedge labels between wu and wv

are identical; otherwise, a walk is scored as 0. After Nwalks ¼ 10 000
walks are completed, the scores over all walks are summed to pro-
duce a kernel value between the starting vertices u and v. To con-
struct a random walk similar to the hypergraphlet edit-distance
approach, a cumulative random walk kernel was also implemented.
Here, any match between the labels of vertices u0 and v0, or hyper-
edges eu0 and ev0 of each walk is scored as 1, while a mismatch is
scored as 0. Thus, a walk of length ‘ can contribute between 0 and
2‘� 1 to the total count. In each of the random walks, the probabil-
ity of restart P was selected from a set f0:1; 0:2; . . . ;0:5g. On the
link prediction datasets, we also evaluated the performance of
the preferential attachment method (Barabási et al., 2002) and
the L3 framework (Kovács et al., 2019). Furthermore, we
evaluated pairwise spectrum kernels (Ben-Hur and Noble, 2005) on
the PPI datasets (excluding the protein complex data). The k-mer
size for pairwise spectrum kernels was varied from k 2 f3;4; 5g.
Finally, in the case of the edit-distance kernels, we computed the
set of normalized hypergraphlet kernel matrices K using
kvl

s ðxi;xjÞ; khl
s ðxi; xjÞ; khi

s ðxi; xjÞ and ksðxi; xjÞ for all pairs (xi, xj)
obtained from a grid search over s ¼ f0;1g; jRj ¼ f2; 4; 8;16g and
N ¼ f3; 4g.

The performance of each method was evaluated through a 10-
fold cross-validation. In each iteration, 10% of nodes in the dual
network were selected for the test set, whereas the remaining 90%
were used for training. When evaluating link prediction methods,
the negative examples were sampled with probabilities proportional
to the product of degrees of the two nodes. Support vector machine
(SVM) classifiers were used to construct all predictors and perform
comparative evaluation. We used SVMlight with the default value for
the capacity parameter (Joachims, 2002). Once each predictor was
trained, we used Platt’s correction to adjust the outputs of the pre-
dictor to the 0–1 range (Platt, 2000). Finally, we estimated the area
under the ROC curve (AUC), which plots the true positive rate (sen-
sitivity, sn) as a function of false-positive rate (1—specificity,
1� sp). Area under the ROC curve is an easily interpretable quan-
tity that has advantages over precision-recall curves in the positive-
unlabeled setting because the class priors are difficult to estimate
(Jain et al., 2017; Ramola et al., 2019).

5 Results

5.1 Performance on edge and hyperedge classification
We first evaluated the performance of hypergraphlet kernels in the
task of predicting the types of interactions between pairs of proteins
in a PPI network, as well as interaction types and modes of action
between proteins and chemicals in DTI data. As described in Section
3.1, we first converted each input hypergraph to its dual hypergraph
and then used the dual hypergraph for vertex classification. Table 2
lists AUC estimates for each method and each dataset. Figure 3
shows ROC curves for one representative dataset from each classifi-
cation task and network type. Observe that hypergraphlet kernels
achieved the highest AUCs on the three datasets, thus, outperform-
ing all other methods. Therefore, these results provide evidence of
the feasibility of this alternative approach to edge classification via
exploiting hypergraph duality. Next, we evaluated the performance
of the hypergraphlet kernels for predicting functional annotation of
protein complexes in Corum. As shown in Table 2, traditional
hypergraphlet kernel (s¼0) also performed favorably over the edit-
distance kernels. In general, hypergraphlet kernels achieved the
highest AUCs on both hyperedge classificatiton datasets over ran-
dom walk kernels.

5.2 Performance on link prediction
The performance of hypergraphlet kernels was further evaluated on
the problem of link prediction on multiple PPI and DTI network

Table 1. Summary of binary classification tasks and datasets

Type Dataset

Edge classification

jVj jEj nþ n�
PPI PC 4761 22 988 10 517 12 471

DTI ID 544 drugs 10 436 4284 6152

2261 targets

AI 378 drugs 1039 249 790

267 targets

Hyperedge classification

jVj jEj nþ n�
PPI BC 3436 2357 145 161

MP 3436 2357 175 200

Link prediction

jVj jEj jV lccj jElccja
PPI EC 393 391 100 153

CE 3026 5163 2779 5014

AT 5391 12 825 5063 12 631

SP 853 1197 685 1092

RN 526 532 301 388

MM 2065 2833 1590 2522

DTI EZ 445 drugs 2926 809 2556

664 targets

IC 210 drugs 1476 409 1473

204 targets

GR 223 drugs 635 240 570

95 targets

NR 54 drugs 90 42 50

26 targets

Note: For each learning problem, we show the number of vertices (V) and

edges (E) in the full hypergraph, as well as the largest connected component

(V lcc; Elcc). We also show the number of positive (nþ), negative (n�) or un-

labeled (nu) data points.
aThe size of nþ and nu is given by jElccj.
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datasets. Table 2 and Supplementary Table S2 show the perform-
ance accuracies for each hypergraph-based method across all link
prediction datasets. These results demonstrate good performance of
our methods, with edit-distance kernels generally having the best
performance. Interestingly, the bona fide hypergraphlet approaches
displayed the highest accuracy on most PPI datasets (excluding CE),
with a minor variation regarding the best method between section

hypergraphlet and subhypergraphlet approaches. Both approaches
have outperformed the state-of-the-art L3 link prediction frame-
work as well as preferential attachment method and pairwise spec-
trum kernels. On the other hand, dual graphlet kernels
(Supplementary Materials) showed the best performance on drug–
target datasets suggesting that at this time, the increased resolution
of modeling does not lead to increased performance on these net-
works (Supplementary Table S3). Note that pairwise spectrum ker-
nels could not be applied to DTI datasets because they expect two
pairs of objects of the same type as input, which further strengthens
the appeal of our approach. Further breakdown of results based on
the categories of difficulty identified by Park and Marcotte (2012) is
shown in Supplementary Tables S2 and S3.

5.3 Estimating interactome sizes
A positive-unlabeled formulation for link prediction presents an op-
portunity to estimate interactome sizes in biological networks. As a
proof of concept, here we used the AlphaMax algorithm (Jain et al.,
2016a) for estimating class priors in positive-unlabeled learning to
estimate both the number of missing links and false-positive interac-
tions in different PPI networks. To do this, we used BIND,
BioGRID, DIP, HPRD and IntAct to construct Homo sapiens and
S.cerevisiae PPI networks. The human network contained 10 841
nodes and 45 386 edges (10 729 and 45 327 in the largest connected
component), whereas the yeast network contained 4690 nodes and
26 165 edges (4674 and 26 156 in the largest connected compo-
nent). The negative examples were sampled uniformly randomly
from the set of all possible edges, which was necessary to correctly
estimate class priors and posteriors (Jain et al., 2016a).

Assuming a tissue and cellular component agnostic model (i.e.
any two proteins can interact), we obtained that the number of

Table 2. Area under the ROC curve estimates for PPI/DTI datasets using 10-fold cross-validation

Method/dataset (Hyper)edge classification Link prediction

PC ID AI BC MP EC SP RN MM CE AT EZ IC GR NR

Without domain information, jRj ¼ 1

Section hypergraphlet

kernel (s ¼ 0)

0.647 0.555 0.529 0.546 0.585 0.724 0.639 0.671 0.628 0.762 0.578 0.537 0.542 0.552 0.783

Subhypergraphlet

kernel (s ¼ 0)

0.838 0.633 0.675 0.830 0.787 0.692 0.691 0.651 0.612 0.873 0.681 0.788 0.711 0.579 0.732

Section hypergraphlet

kernel (s ¼ 1)

0.649 0.551 0.521 0.570 0.599 0.708 0.641 0.678 0.628 0.772 0.581 0.535 0.550 0.542 0.791

Subhypergraphlet

kernel (s ¼ 1)

0.834 0.632 0.672 0.827 0.767 0.681 0.686 0.649 0.611 0.871 0.683 0.784 0.702 0.580 0.736

L3 framework – – – – – 0.717 0.577 0.634 0.573 0.511 0.501 0.629 0.642 0.596 0.505

Preferential

attachment

– – – – – 0.814 0.492 0.552 0.498 0.660 0.449 0.534 0.561 0.545 0.497

With domain information, jRj ¼ f4; 8; 16g
R ¼ RGO R ¼ RGO [ RSS R ¼ RGO R ¼ RGO R ¼ RGO [ RSS

Random hyperwalk 0.741 0.626 0.807 0.792 0.936 0.815 0.610 0.599 0.588 0.597 0.608 0.523 0.543 0.534 0.548

Cumulative random

hyperwalk

0.711 0.837 0.822 0.800 0.937 0.848 0.681 0.647 0.670 0.569 0.637 0.844 0.617 0.550 0.518

Pairwise spectrum

kernel

(k ¼ f3; 4; 5g)

0.780 – – – – 0.816 0.584 0.716 0.689 0.754 0.629 – – – –

Section hypergraphlet

kernel (s ¼ 0)

0.651 0.634 0.681 0.663 0.784 0.861 0.677 0.698 0.655 0.804 0.559 0.633 0.583 0.625 0.775

Subhypergraphlet

kernel (s ¼ 0)

0.940 0.936 0.918 0.935 0.952 0.796 0.740 0.676 0.708 0.846 0.678 0.936 0.879 0.724 0.757

Section hypergraphlet

kernel (s ¼ 1)

0.650 0.635 0.693 0.674 0.795 0.875 0.697 0.706 0.667 0.786 0.574 0.637 0.585 0.619 0.777

Subhypergraphlet

kernel (s ¼ 1)

0.940 0.939 0.922 0.930 0.952 0.812 0.750 0.719 0.736 0.860 0.728 0.944 0.884 0.747 0.764

Note: The highest performance for each dataset is shown in boldface.

Fig. 3. ROC curves for different kernel methods for four representative datasets: AI,

BC, MM and GR, as described in Table 1. Methods: RHWK, random hyperwalk

kernel; C-RHWK, cumulative RHWK; HGK, hypergraphlet kernel; L3, L3

framework
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missing interactions on the largest component of the human PPI net-
work is about 5% (i.e. 
2.5 million interactions), while the number
of misannotated interactions is close to 11% which translates to
about 4985 false interactions. In the case of yeast, we computed that
less than 1% of the potential protein interactions are missing which
is close to 95 000. At the same time, the number of misannotated
interactions is close to 13%, which is about 3400 misannotated pro-
tein pairs. Some of these numbers fall within previous studies that
suggest that the size of the yeast interactome is between 13 500
(Stumpf et al., 2008) and 137 000 (Huang et al., 2007); however,
the size of the human interactome is estimated to be within 130 000
(Venkatesan et al., 2009) and 650 000 (Stumpf et al., 2008) interac-
tions. A more recent paper by Lewis et al. (2012) presents a scenario
where yeast and human interactome size could reach 400 000 and
over two million interactions, respectively. Although these results
serve as a validation of our problem formulation and approach, add-
itional tests and experiments, potentially involving exhaustive classi-
fier and parameter optimization, will be necessary for more accurate
and reliable estimates, especially for understanding the influence of
potential biases within the PPI network data.

6 Related work

The literature on the similarity-based measures for learning on
hypergraphs is relatively scarce. Most studies revolve around the use
of random walks for clustering that were first used in the field of cir-
cuit design (Cong et al., 1991). Historically, typical hypergraph-
based learning approaches can be divided into (i) tensor-based
approaches, which extend traditional matrix (spectral) methods on
graphs to higher-order relations for hypergraph clustering (Cong
et al., 1991; Leordeanu and Sminchisescu, 2012), and (ii)
approximation-based approaches that convert hypergraphs into
standard weighted graphs and then exploit conventional graph clus-
tering and semisupervised learning (Agarwal et al., 2005; Zhou
et al., 2006). The methods from the first category provide a direct
and mathematically rigorous treatment of hypergraph learning, al-
though most tensor problems are NP-hard. As a consequence, this
line of research remains largely unexplored despite a renewed inter-
est in tensor decomposition approaches (Hein et al., 2013; Purkait
et al., 2014). Regarding the second category, there are two common-
ly used transformations for graph-based hypergraph approximation,
reviewed and compared in the study by Agarwal et al. (2006).

Under a supervised learning framework, Wachman and Khardon
(2007) proposed walk-based hypergraph kernels on ordered hyper-
graphs, while Sun et al. (2008) presented a hypergraph spectral
learning formulation for multilabel classification. More recently, Bai
et al. (2014) introduced a hypergraph kernel that transforms a
hypergraph into a directed line graph and computes a Weisfeiler–
Lehman isomorphism test between directed graphs. A major draw-
back of most such approaches is that no graph representation fully
captures the hypergraph structure.

7 Conclusions

This article presents a learning framework for the problems of ver-
tex classification, (hyper)edge classification and link prediction in
graphs and hypergraphs. The key ideas in our approach were (i) the
use of hypergraph duality to cast each classification problem as an
instance of vertex classification, and (ii) the use of a new family of
kernels defined directly on labeled hypergraphs. Using the termin-
ology of Bleakley et al. (2007), our method belongs to the category
of ‘local’ learners. That is, it captures the structure of local neighbor-
hoods, rooted at the vertex of interest, and should be distinguished
from ‘global’ models such as Markov Random Fields or diffusion
kernels (Kondor and Lafferty, 2002). The body of literature on
graph learning is vast; see Supplementary Materials for more details.
We therefore selected to perform extensive comparisons against a
limited set of methods that are most relevant to ours.

The development of hypergraphlet kernels derives from the
graph reconstruction conjecture, an idea of using small graphs to

probe large graphs (Bondy and Hemminger, 1977; Borgs et al.,
2006). Hypergraphlet kernels prioritize accuracy over run time and
are not an optimal choice for huge dense graphs where real-time per-
formance is critical. However, biological networks (for now) are
sparse and moderate in size, making accurate prediction to prioritize
biological experiments an appealing choice. We additionally believe
that unification of disparate prediction tasks on biological networks
via hypergraph duality reduces the need for custom method develop-
ment. Overall, our work provides evidence that hypergraph-based
inference and hypergraphlet kernels are competitive with other
approaches and readily deployable in practice.
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