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Abstract
Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and 
efficient methods to predict a variant’s impact on splicing are needed to interpret the growing number of variants of unknown 
significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS 
challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated 
to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared 
on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one 
weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline 
(SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools 
and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the 
performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One 
quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improve-
ments to splicing prediction methods for successful clinical application.

Introduction

The diagnosis of rare disorders has been revolutionised in 
recent years thanks to the availability and widespread adop-
tion of next generation sequencing technologies capable of 
detecting disease-causing variants. With the ever-decreas-
ing prices of whole-exome sequencing (WES) and whole-
genome sequencing (WGS) comes an increased use of these 
approaches, leading to the detection of more genetic variants 
than ever before. This brings with it a major challenge in 
understanding what these variants do, since our ability to 
detect them has far outstripped our ability to meaningfully 
interpret their effects, particularly outside of protein coding 
regions. As a result, even with WGS, around half of patients 
with rare disorders do not get a diagnosis (Turro et al. 2020; 
Stranneheim et al. 2021).

While estimates vary widely (Lord and Baralle 2021), it is 
thought somewhere between 15 and 60% of disease causing 

variants affect splicing (Krawczak et al. 1992; López-Bigas 
et al. 2005). Generally speaking, in diagnostic and research 
variant prioritisation pipelines, variants which fall within 
the 2 bp canonical splice acceptor or donor sites will be 
classed as splice-affecting, while variants outside of those 
small regions are often not assessed for splicing impact. It is 
common for intronic and synonymous variants to be filtered 
out, while missense variants are generally assessed for their 
impact on protein structure and function without considera-
tion for the role they may play in splicing. All of these vari-
ant types, however, can and do impact splicing and cause 
disease. This approach has led to an under-ascertainment of 
splice-affecting variants clinically (Lord et al. 2019). What 
is needed, particularly with the increasing use of WGS over 
WES enabling the detection of far more intronic variants 
than before, is a way to effectively triage which variants are 
splice-affecting and which are not.

Currently, under ACMG/AMP guidelines (Richards 
et al. 2015), in silico splicing prediction approaches may 
be used as supporting evidence for genetic diagnosis if 
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multiple independent tools predict an impact on splicing. 
Experimental validation of splicing effects using RT-
PCR, mini-genes or RNAseq is often required to confi-
dently establish a variant’s impact on splicing, but such 
approaches are time-consuming and expensive to perform 
at scale. Recent years have seen a plethora of innovative 
new approaches to splicing prediction, with many new 
tools being generated, often utilising machine learning. If 
a high degree of accuracy and reliability can be obtained 
from in silico approaches, we may be able to move away 
from requiring experimental confirmations, or at the least, 
have an efficient method to triage variants most in need of 
validation. This would require highly accurate algorithms 
and extensive testing in the clinical setting to give suffi-
cient confidence in these optimal approaches.

The Splicing Variants of Unknown Significance (VUS) 
challenge in the 6th Critical Assessment of Genome Inter-
pretation (CAGI6) sought to assess splicing prediction 
accuracy on a set of clinically ascertained, functionally 
validated variants. This enabled performance comparison 
of many cutting-edge splicing prediction approaches and 
gave insights into the types of variants not currently well-
captured by these methods.

Methods

Variant selection and validation

As previously described in Wai et al. 2020 (Wai et al. 
2020), a total of 64 variants were ascertained through 
Wessex Regional Genetics Laboratory in Salisbury (52 
variants) or the Splicing and Disease research study (12 
variants) at the University of Southampton, ethically 
approved by the Health Research Authority (IRAS Pro-
ject ID 49685, REC 11/SC/0269) and by the University of 
Southampton (ERGO ID 23056). Informed consent was 
provided for all patients for splicing studies to be con-
ducted. All variants had been, or were undergoing RT-PCR 
analysis to determine their impact on splicing using RNA 
from whole blood collected in PAXgene tubes, again as 
previously described (Wai et al. 2020).

Eight variants were excluded from the final analysis 
(unable to establish splicing impact before analysis period 
(n = 3), incorrect gene/variant annotations given in the 
data set distributed (n = 3), variant found to impact gene 
expression rather than splicing (n = 2)), giving a total of 
56 variants in the final assessment set (Supplementary 
Table 1), which span a wide range of rare disease and 
cancer predisposition associations, none of which had had 
their impact on splicing published previously.

The Splicing VUS challenge

Variants were distributed as a tab delimited text file, 
including the following information: HGNC identifier, 
chromosome, position, reference allele, alternative allele, 
gene and strand. Entrants also had access to 256 previously 
published variants (Wai et al. 2020) obtained and vali-
dated by the same approach to aid in method development/
testing.

Challenge participants submitted their entries in the 
form of tab delimited text files, including the variant infor-
mation, a binary prediction of whether a variant affected 
splicing or not (1 = yes, 0 = no), along with a score for the 
probability of the variant affecting splicing and the level of 
confidence in the prediction given. All assessments were 
based on the binary splice-affecting prediction alone.

Challenge assessment

The performance of each prediction model was assessed 
by calculating and comparing a series of metrics: overall 
accuracy, area under the receiver operating characteristic 
curve (AUC), sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV). AUC 
and confidence intervals (2000 stratified bootstrap repli-
cates) were calculated using the pROC package (Robin et al. 
2011) in R v3.5.1 (R Core Team 2018), and plots made with 
ggplot2 (Wickham 2009). Performance of each method was 
compared across binned splicing locations—Near Accep-
tor (acceptor ± 10 bp), Near Donor (donor ± 10 bp), Exonic 
Distant (exonic, 11 bp or more from either splice site), and 
Intronic Distant (intronic, 11 bp or more from either splice 
site. For grouped analyses, exonic distant and intronic dis-
tant variants were grouped together due to low numbers). 
These scores were based on the concordance of the binary 
classification of the variants provided by each team/model 
(1 = splice-affecting and 0 = not splice-affecting) with the 
experimental validation of the splicing impact.

SpliceAI (Jaganathan et  al. 2019) and CADD v1.6 
(Kircher et al. 2014) (which incorporates SpliceAI predic-
tions) were included in the assessment alongside the chal-
lenge models as a comparison to emerging industry stand-
ards. CADD-phred scores were obtained by uploading a 
VCF to the CADD webserver (https://​cadd.​gs.​washi​ngton.​
edu/​score). SpliceAI scores were obtained from Ensembl’s 
Variant Effect Predictor (VEP) web interface (McLaren et al. 
2016) (44 variants scored) or using the SpliceAI webserver 
from the Broad Institute (https://​splic​eailo​okup.​broad​insti​
tute.​org/, 11 variants that were not scored by VEP; options: 
hg38, masked scores, max distance 50 bp). A cutoff of 0.2 
was used for SpliceAI scores, and 18 for CADD.

https://cadd.gs.washington.edu/score
https://cadd.gs.washington.edu/score
https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
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Results

Variant characteristics of challenge set

Of the 56 variants in the final analysis, the majority 
(n = 49, 87.5%) were SNVs, with 7 indels (12.5%). The 
variants fell within 42 different genes, broadly represent-
ative of clinical genetics referrals in the UK, with the 
majority of genes having a single variant in the set, and 
only 7 genes with >1 variant (BRCA1 n = 6, FBN1 n = 4, 
MYBPC3 n = 3, BRCA2 n = 2, SCN5A n = 2, APC n = 2, 
USP7 n = 2). 37 variants (66%) were found to affect splic-
ing, while 19 (34%) had no observable impact.

Variants were divided into 5 groups by their positions 
relative to intron–exon boundaries. There were 16 vari-
ants within 10 bp of a splice acceptor site (NearAcc), 
and 23 within 10 bp of a splice donor site (NearDon). 
10 exonic variants > 10 bp from either splice site were 
classed as Exonic > 10. Intronic variants > 10 bp from 
their nearest splice site were termed Intronic Distant (six 
upstream of the acceptor, one downstream of the donor). 
The locations of all variants relative to the intron–exon 
boundary and whether the variants were determined to be 
splice disrupting or not are given in Fig. 1.

Challenge participants

Eight teams submitted predictions for the challenge, with 
two teams submitting predictions from multiple models, 
giving 12 models altogether. Table 1 gives a summary of 
the approach taken by each model, which was provided 
by the challenge entrants upon submission of their predic-
tions, but blinded to the assessors until after the assess-
ment period.

Model performance across 56 variants

Table 2 summarises the performance metrics of the 12 
models, along with CADD and SpliceAI. Full variant infor-
mation, scores and binary predictions for the 12 models, 
SpliceAI and CADD and experimental outcome of splic-
ing status are given in Supplementary Table 1. The ROC 
plots for each model are shown in Fig. 2, and Supplementary 
Fig. 1 shows the performance of each method on each vari-
ant across the splicing region.

No single approach performed optimally on all assess-
ment metrics (Table 2). Overall accuracy was joint highest in 
Teams 4 and 8 at 0.82, with Team 4 also achieving the high-
est binary outcome AUC at 0.839 (Fig. 2). Team 8 ranked 
highest on the related metrics for sensitivity (0.919) and 
NPV (0.800), indicating its permissive prediction approach 
(i.e., favouring sensitivity over specificity). Conversely, 
Team 5’s Model 2 performed the best in terms of specificity 
(0.947) and PPV (0.947), with the lowest proportion of false 
positive findings. All three models by Team 1, plus Team 4 
and Team 6 achieved over 70% in both sensitivity and speci-
ficity, indicating more balanced performance.

Included as comparators were SpliceAI with a cutoff of 
0.2 and CADD with a cutoff of 18. SpliceAI was competi-
tive with the challenge entrants, ranking near-top but not top 
on all metrics, and indeed top in the AUC when measured 
using prediction score rather than binary prediction out-
come. CADD, however, performed poorly on the challenge 
set with specificity in particular being very low (0.263).

Performance comparison by variant type

To get an overall impression of the performance of the meth-
ods on different types of variants, variants were grouped 
by location relative to their nearest splice site (Fig. 3), as 
described in Methods. All methods performed better on 

Fig. 1   Schematic diagram showing locations of the 56 challenge variants in relation to their nearest splice site, with colour indicating whether 
(yellow) or not (green) each variant was determined experimentally to impact splicing
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exonic distant variants than intronic distant variants, with 
the exception of SpliceAI, which correctly predicted all 
seven intronic distant variants. Across methods, there was 
a high degree of consistency in the proportion of variants 
correctly predicted in the near acceptor region, and a high 
degree of variance in performance in the intronic distant 
set. The types of error differed across regions, with the near 
acceptor region and exonic distant region having very few 
false positive predictions across all methods, while almost 
all methods gave false positive predictions in the near donor 
and intronic distant regions (Supplementary Fig. 2).

We also compared the performance of the approaches 
on SNVs vs indels, and found all methods except CADD 
had higher accuracy on SNVs than indels (Supplementary 
Fig. 3).

Some variants are consistently mispredicted

21 of the variants (37.5%) were correctly predicted by all 
12 submitted prediction methods. None of the variants were 
incorrectly predicted by all methods, but 14 variants (25%) 

were predicted correctly by ≤50% of the methods, with two 
variants only being correctly predicted by a single method. 
These were a splice-affecting single nucleotide deletion 
4 bp from a splice acceptor site in KANSL1 (correctly pre-
dicted by Team 3) and an SNV in the last base of an exon in 
TRPM6 which despite altering the conserved last G nucleo-
tide did not affect splicing in functional testing (correctly 
predicted by Team 4; Fig. 4).

Discussion

The CAGI6 Splicing VUS challenge assessed the perfor-
mance of 14 prediction approaches on a set of 56 clinically 
relevant variants whose impact on splicing had been func-
tionally tested using RT-PCR. A variety of approaches were 
adopted, and several methods equalled or exceeded the per-
formance of the emergent field leader, SpliceAI.

While Teams 4 and 8 had joint highest overall accu-
racy, there was no single optimal method for the Splicing 
VUS challenge, since several different models performed 

Table 1   Summary of the prediction approaches of the 12 models from 8 entrants

Additional information on Teams 4 and 5 given in the Supplementary Methods

Team Authors Prediction approach

1 YW, ZH Models were built based on reported pathogenic splicing variants from the literature and benign variants from Clin-
Var (Landrum et al. 2018). The models were trained and tuned using Gradient Boosting Machine (GBM) with R 
package “caret” and “gbm”, considering 80 annotation features, including conservation, distance to exon-junctions, 
population allele frequencies, epigenetic states and prediction scores from SpliceAI (Jaganathan et al. 2019), CADD 
(Kircher et al. 2014), SCAP (Jagadeesh et al. 2019) and dbscSNV (Jian et al. 2014)

Model 1: Full model which uses all 80 features
Model 2: Five existing prediction scores as features
Model 3: As Model 2, plus distance to splice site and the splice site type as two additional features

2 ZZ Positive predictions from CADD-Splice (Rentzsch et al. 2021) (> 15), SpliceAI (Jaganathan et al. 2019) (> 0.5), 
MMsplice (Cheng et al. 2019) (> 2), and Ensembl Variant Effect Predictor (McLaren et al. 2016) variant conse-
quence (splice region) ranked as “1”, negative predictions as “0”. Mean of the four ranks calculated, and mean ≥ 0.5 
classed as positive overall

3 DD Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS; Danis et al. 2021) applied 
to data using default thresholds

4 PK, AW, OL SpliceAI (Jaganathan et al. 2019) adjusted with minor allele frequency (Karczewski et al. 2020), with scores > 0.25 
classified as splice affecting

5 YC, RDB Combined information from ClinVar (Landrum et al. 2018), gnomAD (Karczewski et al. 2020), established splicing 
tools [SpliceAI (Jaganathan et al. 2019) (> 0.5), MaxEntScan (Yeo and Burge 2004) (> 4)], branchpoint/enhancer 
locations, distance to exon, splice site database

Model 1: Base model for prediction
Model 2: Same as Model 1 but using different in-silico prediction score thresholds [SpliceAI (Jaganathan et al. 2019) 

(> 0.5), MaxEntScan (Yeo and Burge 2004) (> 6), MMsplice (Cheng et al. 2019) (> 2)]
Model 3: Required well-scoring compatible site (e.g., for donor loss, a well-scored donor within 300 bp of the exist-

ing acceptor), adding branchpoint/enhancer locations as extra features
6 SMM, BM, CL SpliceAI (Jaganathan et al. 2019) applied, with scores ≥ 0.21 classified as splice affecting
7 TvOH Alamut splicing software (Sophia Genetics) utilised—consensus of 3 programs with at least 10% difference between 

reference and alternative score predicted to be splice affecting and ACMG splicing guidelines (BRCA1/BRCA2—
ENIGMA)

8 RL, AM, CH, SK Splicing Prediction Pipeline (SPiP) (Leman et al. 2022) applied (> 0.18 for exonic variants, > 0.035 for intronic vari-
ants)
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optimally on different metrics. Choice of approach may, 
therefore, be dependent on the specific nature of the predic-
tions required. Seeking a molecular diagnosis for a particular 
family may favour sensitivity over specificity, since over-
looking a causal variant would prevent this aim, so Team 
8’s approach with almost 92% sensitivity may be preferred. 
Seeking confident splice disrupting candidates for functional 
validation or mechanistic research may call for greater speci-
ficity than sensitivity to avoid wasting resources on false 
positive variants that do not have an impact, in which case 
Team 5’s model 2 with almost 95% specificity may be the 
strategy of choice.

SpliceAI and CADDv1.6 were chosen as comparators for 
the entrants to the Splicing VUS challenge and were run by 
the assessors on the 56 challenge variants. SpliceAI has been 
emerging as a field leader in recent years, with accuracies 
>90% attained in several studies (Wai et al. 2020; Ha et al. 
2021; Strauch et al. 2022), although variable performance 
reported by some (Riepe et al. 2020) which is more consist-
ent with our observed 80.4% overall accuracy in this study.

CADD did not perform well on the challenge variants, 
achieving an overall accuracy of 62.5%. However, this was 
predominantly driven by a very low specificity, which is 
to be expected from CADD, since it is not only the impact 
on splicing being assessed by the tool, but overall delete-
riousness. For example, missense variants which were not 
found to affect splicing in the challenge set may still have 
been pathogenic through impact on protein structure and/or 
function. For such variants, CADD would accurately clas-
sify them as deleterious in general, but in our assessment 
solely of splicing impact, this would appear as a false posi-
tive, lowering CADD’s specificity. Notably, the version of 
CADD included in the assessment (v1.6) includes SpliceAI 
and additional splicing prediction tools in its underlying 
model (Rentzsch et al. 2021). Scoring the challenge vari-
ants with CADD v1.5 which did not include these splicing 
metrics resulted in an overall accuracy around 44.6% (data 
not shown). From these values it is clear that the explicit 
inclusion of splicing prediction methods within CADD’s 
underlying model has improved its ability to predict vari-
ants that impact splicing. CADD’s broad approach makes 
it a versatile tool for prediction of deleteriousness for many 
different variant types. At present, however, if predicting 
a variant’s splicing impact is the sole aim, the use of more 
specialised splicing tools is more appropriate.

Of note, SpliceAI featured heavily across the predictive 
strategies, being the sole predictive method for Team 6 and 
contributing heavily to the predictions of Team 4, which 
were weighted by MAF, as well as being run as a com-
parator by the assessors. Differences in the performance of 
these approaches highlight that even with the same nomi-
nal method, there can be variance in predictions depending 
on how the scores are obtained, and the thresholds that are Ta
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used to determine positive predictions. There were just three 
approaches that did not include SpliceAI as part of their pre-
dictions, two utilising instead recent machine learning-based 
prediction tools SQUIRLS (Danis et al. 2021) and SPiP 

(Leman et al. 2022), and one based on the splicing predic-
tion tools available within the Alamut software, which has 
been widely used in clinical practice. Of the three, SPiP was 
the only method to achieve greater accuracy than SpliceAI.

Fig. 2   Receiver operating 
characteristic (ROC) curves 
of model performance based 
on prediction scores. For Area 
Under Curve (AUC), see 
Table 2

Fig. 3   Proportion of variants correctly predicted by each method in the different regions (near acceptor, near donor, exonic and intronic distant)
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A major strength of the challenge in terms of providing 
a real-world assessment of the performance of these tools 
is the ascertainment of the challenge variants from genuine 
clinical practice, where potential splice altering variants in 
genes relevant to the patient’s presentation were referred 
for validation. This is precisely the type of variant splicing 
prediction models should be tested on when assessing their 
suitability for clinical application in rare disorders. It high-
lights that even in exceptionally well-studied genes, such as 
the BRCA genes, challenges in variant interpretation remain, 
since 3 of 8 variants across BRCA1 and BRCA2 were incor-
rectly predicted by over half of challenge methods, and only 
two of these were accurately predicted by all methods. How-
ever, the relatively small sample size makes it difficult to 
draw any major inferences and is a significant limitation of 
the study. Apparent variance in performance may be stochas-
tic at such a sample size, and may not be fully reflective of 
overall performance in a wider context. It also made draw-
ing firm conclusions about performance in subsets of the 
data, e.g., split by location, variant type, or disease group 
challenging. However, ascertaining a large body of clinical 
variants, validating the splicing impact and keeping that pri-
vate, as is needed for a blinded challenge, such as the CAGI6 
Splicing VUS challenge, raises ethical concerns. Accurate 
and timely variant interpretation is reliant on sharing of data, 
and withholding a large body of functionally validated vari-
ants from resources, such as ClinVar (Landrum et al. 2018), 
which are heavily used in clinical assessment of variants 
does not represent good practice.

This small but highly clinically relevant challenge 
assessed the performance of 12 prediction methods plus 
SpliceAI and CADD on 56 clinically ascertained variants 
and found SpliceAI weighted by allele frequency and SPiP 

to be the most accurate overall, while other methods had 
particular strengths in their sensitivity or specificity. A quar-
ter of variants were incorrectly predicted by half or more 
of the methods, showing there is still improvement to be 
made. Furthermore, this challenge was limited to a binary 
outcome—whether or not splicing was disrupted, but did 
not address the nature of that disruption. Disruption to splic-
ing is often complex (e.g., multiple different splicing events 
induced), incomplete (e.g., aberrant and wild-type splic-
ing observed), and can be further complicated by nonsense 
mediated decay. This will present an even greater challenge 
for accurate prediction than the binary outcome assessed 
here. A larger assessment set that would enable further 
investigation of the types of variants that are consistently 
incorrectly predicted may help direct efforts for refinement 
of models moving forwards.
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