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We present a generic Bayesian framework for the pep-
tide and protein identification in proteomics, and provide a
unified interpretation for the database searching and the de
novo peptide sequencing approaches that are used in pep-
tide identification. We describe several probabilistic graph-
ical models and a variety of prior distributions that can be
incorporated into the Bayesian framework to model differ-
ent types of prior information, such as the known protein
sequences, the known protein abundances, the peptide pre-
cursor masses, the estimated peptide retention time and the
peptide detectabilities. Various applications of the Bayesian
framework are discussed theoretically, including its applica-
tion to the identification of peptides containing mutations
and post-translational modifications.
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1. INTRODUCTION

The rapid advancement of protein analytical technologies
in the past decades, in particular the instrumental develop-
ment of mass spectrometry, has enabled the routine anal-
ysis of complex proteome samples at high throughput and
sensitivity. The most commonly used proteomics protocol
(often referred to as the bottom-up or shotgun proteomics),
starts from the trypsin digestion of a complex protein mix-
ture, followed by the analysis of tryptic peptides using liquid
chromatography tandem mass spectrometry (LC-MS/MS).
A shotgun proteomics dataset may consist of 10–100 thou-
sands of tandem mass (MS/MS) spectra, each of which is
generated from the fragmentation (e.g. by using collision-
induced dissociation, or CID) of a peptide ion, and thus
contains the information of a peptide sequence. The primary
task in shotgun proteomics, known as the protein identifica-
tion problem, is to identify the proteins in a proteome sam-
ple based on the set of MS/MS spectra acquired from the
sample. This problem is usually approached by a database
searching strategy, in which we attempt to infer, for each
protein in a given protein database of the organism from
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which the proteome sample is obtained (e.g. the human), if
it is present in the sample. The database searching proce-
dure consists of two steps: 1) the peptide identification, in
which the tryptic peptides of the proteins in the database
are identified (or scored) based on their MS/MS spectra;
and 2) the protein inference, in which the presence or ab-
sence of proteins are inferred from the identified peptides.
A notable challenge of the protein inference problem is that
many tryptic peptides are shared by two or more proteins
from the same organism (called the degenerate peptides), in
particular for the higher organisms like mammals [27]; and
thus, a protein inference algorithm should be able to distin-
guish the proteins sharing degenerate peptides. Many soft-
ware tools were developed for peptide identification, known
as the peptide search engines, including SEQUEST [40],
MASCOT [28], X!Tandem [8], OMSSA [16], and InSpecT
[35], whereas post-processing algorithms are also available
for protein inference, addressing the challenge of degenerate
peptides, including the ones based on parsimony formula-
tion such as IDPicker [41, 25] and MMP [2], and the ones
based on probabilistic models such as ProteinProphet [26],
MSBayesPro [21, 22], and OBM [30].

Statistical modeling methods are commonly applied to
protein identification, because an LC-MS/MS proteomics
experiment is a complex stochastic process. In particular,
in the peptide identification step, in addition to reporting
a peptide that is most likely to produce a given MS/MS
spectrum (i.e. a peptide-spectrum matching, or PSM [13]), a
peptide search engine should also provide a score that can
be used to distinguish the correct PSMs from the incor-
rect ones. This measure can be either completely heuristic
[40, 28, 8], or can be based on a statistical model of a heuris-
tic score and thus has a probabilistic interpretation [16, 19].
A commonly used statistical measure is the false discovery
rate (FDR), computed by using a target-decoy search strat-
egy [11]. However, it is often not clear that these statistical
measures of PSMs can be used for protein inference, i.e. to
compute the likelihood of a protein being present in the sam-
ple. For instance, the FDR of an identified protein cannot
be easily derived from the FDRs of the identified peptides
from this protein; as a result, independent procedures are
needed to derive the FDR of protein identification based on
peptide search results [39, 29].
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One of the probabilistic approaches that integrates the
peptide identification and protein inference steps was pre-
sented in the PeptideProphet/ProteinProphet algorithms
[19, 26]. PeptideProphet used a model-based method to
compute a probability for each PSM to be correct (or in-
correct), and these probabilities were then used by Pro-
teinProphet to compute a probability of each protein be-
ing correctly identified. Notably, the probabilities of PSMs
corresponding to degenerate peptides were considered in
the parsimonious model of ProteinProphet, and as a re-
sult, the protein probabilities from ProteinProphet can, to
some extent, distinguish proteins sharing degenerate pep-
tides [26].

An important feature of the proteomics analysis that
most current probabilistic models for protein identification
do not consider is that, based on prior knowledge, the pro-
teins (and peptides) are not equally likely to be observed in
a proteomics (LC-MS/MS) experiment. For example, some
peptides are more likely identified than the others in an
LC-MS/MS experiment because they are either more easily
ionized or better fragmented owning to their physicochem-
ical properties. It was shown that the probabilities of pep-
tides being observed in an LC-MS/MS experiment, defined
as the (standard) peptide detectabilities, can be predicted
solely from the peptide sequences [34, 23], and can be incor-
porated into a Bayesian model to improve protein inference
[22]. The other prior knowledge that can be used to im-
prove protein inference include the confidence of proteins
in the database (e.g. if proteins are computationally pre-
dicted from genomic sequences) and probabilities of proteins
being post-translationally modified and being processed in
the cell. In fact, the incorporation of the prior knowledge
into protein identification is not new. The database search-
ing approach itself is based on the assumption that only
the proteins in the database can be present in the sam-
ple. In comparison, the de novo peptide sequencing algo-
rithms (such as PEAKS [24], pepNovo [14] and pepHMM
[37]) attempt to reconstruct the peptide sequence directly
from an MS/MS spectrum. Assuming all peptides (not only
peptides in a database) are equally likely to be identified,
the p-value for a PSM to be derived from de novo sequencing
by chance can be estimated by using a dynamic program-
ming algorithm [20]. Previous studies showed that although
the most likely peptide reported by the de novo sequencing
algorithm for an MS/MS spectrum was often incorrect, cor-
rect peptide was usually the peptide in the database that
receives the highest score in de novo sequencing [14, 24],
indicating that the incorporation of the protein database
as prior knowledge significantly improves protein identifica-
tion.

In this paper, we describe a Bayesian framework that can
be used to incorporate various prior information into pep-
tide and protein identification, extended from our previous
Bayesian model for protein inference [21, 22]. The rest of
the paper is organized as follows. We will first introduce a

general Bayesian framework to model the LC-MS/MS exper-
iment and its application to incorporating various kinds of
prior information in peptide identification. We will then pro-
vide a unified interpretation of de novo peptide sequencing
and database searching algorithms based on the Bayesian
framework. Next, we will show that the Bayesian model can
be further extended to the protein inference step, and dis-
cuss the potential advantage of using the Bayesian frame-
work to integrate the peptide identification and protein in-
ference steps. Finally, we will discuss some practical issues
on the implementation of the Bayesian models, including the
computational complexity and the selection of appropriate
prior distributions.

2. A GENERAL BAYESIAN MODEL FOR
LC-MS/MS ANALYSES

An LC-MS/MS proteomics experiment is a complex
stochastic process. The same proteome sample analyzed
multiple times following the same experimental protocol on
the same platform may result in different mass spectral data,
and consequently lead to merely 30%–60% overlaps in pep-
tide identifications [33, 15]. The overlap can even be < 10%
when different experimental protocols (e.g. for proteolysis)
or platforms (e.g. mass spectrometers) are used [15]. Taking
the stochasticity of LC-MS/MS analyses into consideration,
we denote the probability of observing the MS data M from
sample P using an experimental protocol T , as P(M |P, T ).
The goal of the protein identification can then be formu-
lated as the problem of approximating the posterior proba-
bility

(2.1) P(P |M, T ) =
P(M |P, T ) · P(P |T )

P(M |T )
,

for the protein sample P . Assuming that the proteome
sample and the LC-MS/MS analysis are independent, we
have P(P |M, T ) ∝ P(M |P, T ) · P(P ), as represented in the
graphical model in Figure 3.1a. Furthermore, we neglect
the MS scans in the observed MS data and only model the
MS/MS spectra (denoted as MS2). Hence, P(P |MS2, T ) ∝
P(MS2|P, T ) · P(P ). For the peptide identification step, as
represented in Figure 3.1d, we consider each protein as a set
of (tryptic) peptides, and thus the goal is to determine the
peptide(s) that are fragmented in each MS/MS spectrum.
Let Y = (yk)k=1,...,K be the indicator matrix for peptides
corresponding to the set of fragmentation spectra (each vec-
tor yk ∈ {0, 1}J for peptides corresponding to a spectrum sk,
where J = |PD| is the size of the database), and let PD (or
DB) be a reference peptide (or protein) sequence database
for sample P , ignoring protein abundance information1, we

1We view protein database DB or peptide database PD as simplified
representations (approximations) of a proteome sample before or after
proteolysis respectively.
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obtain,

P(Y |MS2, T ) ∝ P(MS2|Y, T ) · P(Y |T )

(2.2)

= P(MS2|Y, T ) ·
∑
P

P(Y |P, T ) · P(P )(2.3)

≈ P(MS2|Y, T ) ·
∑
PD

P(Y |PD, T ) · P(PD).(2.4)

Conceptually, there are two pieces of prior information re-
quired to compute the posterior probability P(Y |MS2, T ).
First, the LC-MS/MS experimental protocol T needs to be
modeled by a number of parameters, such as the mass ac-
curacy of the mass spectrometer, the ionization methods,
e.g. electrospray ionization (ESI) or matrix-assisted laser
desorption/ionization (MALDI), the fragmentation meth-
ods, e.g. collision induced dissociation (CID) or electron-
transfer dissociation (ETD), and the proteolytic digestion
protocol. The fragmentation method and the product ion
mass accuracy are often considered by peptide search en-
gines in their matching scoring scheme, and thus can be
incorporated in the probability distribution P(MS2|Y, T )
(or P(M |P, T ) for protein inference). The precursor mass
accuracy and the proteolysis protocol are currently consid-
ered by search engines to define the set of candidate pep-
tides. In the Bayesian framework, along with the bias in
the LC separation and ionization, they are modeled by the
peptide detectability [34, 23] via the probability distribution
P(Y |PD, T ) or P(Y |P, T ). The second type of prior infor-
mation, encoded in the distribution P(P ), reflects the prior
information about the sample P , in particular the putative
proteins and their abundances in the sample. For example,
knowledge about the organism from which the sample is de-
rived will enable the selection of the proper database of pro-
tein sequences to be used for peptide identification. Knowl-
edge of the expected forms of post-translational modifica-
tions (PTMs) can be used to specify the fixed or variable
PTMs when using peptide search engines. Finally, protein
abundances (Figure 3.1a) that can be estimated from pre-
vious (transcriptomics [38] or proteomics) experiments on
the same kinds of samples provide useful information to im-
prove protein identification, although they are not explicitly
considered in the current peptide/protein identification al-
gorithms2.

3. A BAYESIAN FRAMEWORK FOR
PEPTIDE IDENTIFICATION

Based on the general Bayesian model described above,
here we present a Bayesian interpretation for the com-
mon practices used in the peptide identification algorithms,
which provides a computational framework to potentially

2The protein inference model MSBayesPro does explicitly estimate the
abundance for candidate proteins, but informative prior distribution
is not used to model protein abundances.

improve peptide identification. It is worth pointing out that,
although prior information is implicitly used in current pep-
tide identification algorithms (both database search engines
and de novo sequencing algorithms), the peptide identifi-
cation problem has not been interpreted from a Bayesian
perspective.

The Bayesian model for peptide identification is illus-
trated in Figure 3.1d. As discussed above, the information
about either the experiment T or the sample P (or database
PD) can be used as priors. Below we will discuss the meth-
ods to incorporate several kinds of prior information into the
model. First, we will show that protein database represents
useful prior information in peptide identification. Then we
will present different peptide prior distributions for peptide
identifications given a deterministic protein database, and
suggest that they can be utilized in both database search-
ing and de novo sequencing algorithms to improve peptide
identification. Next, for the cases where a complete protein
database is unknown (e.g. for de novo sequencing), or un-
certain (e.g. for the identification of peptides containing mu-
tations or PTMs), we proposed several prior distributions
over the space of peptide databases. Finally, after trying to
combine the above two types of prior distributions (referred
to as the identification prior and the database prior, respec-
tively), we will propose the concept of effective database size
as a useful measure for the interpretation of the impacts of
prior knowledge on peptide identification.

3.1 Protein databases as prior information

There are at least three types of useful information em-
bedded in a protein database. The first is the sequence in-
formation. When a protein sequence database DB is used
for peptide identification, we implicitly assume that a pep-
tide from any protein in the database has some non-zero
probability of being present in the sample, and the other
peptides have zero probability and thus do not need be to
considered for PSM scoring. The second is the abundance
information. The database is biased against the low abun-
dance proteins. This assumption is particularly important
when the curated protein databases such as Swissprot [7]
are used in peptide identification, because a protein to be
included in these databases generally has a sufficiently high
abundance (thus detected by some experimental methods)
in some biological samples. Proteins at low expression lev-
els may not be included in curated databases. The third
piece of information is the sequence conservation informa-
tion. The proteins in the databases tend to be more con-
served across multiple species than the ones not in the
database, because the existence of homologous proteins are
often considered as a strong evidence for a protein to be real.
Notably, the protein databases derived solely from in silico
gene prediction software are rarely used in peptide identi-
fication as these databases could be much larger than cu-
rated databases while containing many mis-annotated pro-
teins.
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Figure 3.1. Bayesian probabilistic models for peptide identifications from the LC-MS/MS analysis of proteome samples.
(a) A high level graphical model for a real proteomics experiment; (b) A Bayesian interpretation of de novo peptide

sequencing algorithms; (c) A Bayesian interpretation of database searching algorithms; (d) A model of Bayesian peptide
identification. Graphical notations: dots, deterministic parameters; empty circle, random variables of interest; shaded circles,
random variables with observed values. Symbolic notations: P , a proteome sample; G, prior information about the sample;

M , the LC-MS/MS data; T , LC-MS/MS platform; A∗, the set of all possible peptides formed from amino acids in A, which is
the set of amino acids possibly with PTMs; e, parameters in the prior distribution of protein expression; DB, protein sequence

database; θA, amino acid frequencies, representing the frequency model for protein sequences; μ: parameters in the prior
distributions for amino acid mutations; ν: parameters in the prior distributions for peptide modifications; PD: peptide

sequence database; ys and y: random variables for a peptide to be fragmented in an MS/MS spectrum (ys) or to be observed
in a proteomics experiment (y); ds and d: per spectrum and per experiment detectabilities of peptide ions; mt, precursor mass
and retention time associated with an MS/MS spectrum; s, an MS/MS spectrum; π: the random variable for a peptide in a

sample; J and K, the numbers of peptides and spectra considered in an analysis.

Different peptide prior distributions can be used for pep-
tide identification. In peptide search engines, peptides are
deemed equally likely to be observed before peptide-spectra
matchings are scored. Below, we present a Bayesian formula-
tion of the peptide identification, in which non-uniform prior
probabilities for different peptides may be employed. We
note that in this section, we will follow the peptide-centric
view of peptide identification (as shown in Figure 3.1d),
which ignores the mutual dependence among peptides from
the same proteins or different but co-occurrent proteins (e.g.
proteins in the same biological pathway). More complex
Bayesian models (as shown in Figure 4.1a–4.1c) that ad-
dress these issues in the “real” proteomics experiment (as
shown in Figure 3.1a) will be discussed in the next sections.

3.2 Prior distributions for peptide
identification

In general, peptide identification is achieved by pep-
tide search engines, in which each MS/MS spectrum sk is
matched to each peptide in the peptide database PD.3

3Here, we assume that a protein database DB is converted to a set of
peptides PD to be used for the peptide identification from spectrum sk
by using a computational procedure mimicking the protein digestion

For simplicity, we assume individual MS/MS spectra are
independent during the database searching. Thus, we have
P(Y |MS2, P, T ) ∝

∏
k P(sk|yk, PD, T ) ·P(yk|PD, T ), where

yk = (yk1, . . . , ykJ ) is an indicator vector for peptide(s) that
produces spectrum sk, and J is the number of peptides in
the peptide database PD. Therefore, the goal of peptide
identification becomes to estimate

P(yk|sk, PD, T )(3.1)

=
P(sk|yk, PD, T ) · P(yk|PD, T )∑

yk∈{0,1}J P(sk|yk, PD, T ) · P(yk|PD, T )
,

for each MS/MS spectrum sk. The probability distribution
P(yk|PD, T ) defined on {0, 1}J is the prior distribution for
the peptide identification.

Note that, in a typical LC-MS/MS proteomics experi-
ment, an MS/MS spectrum can be produced from the frag-
mentation of a non-peptide molecule ion, a single peptide
ion, a mixture of two or (rarely) more peptide ions (called

a mixture spectrum), with
∑J

j=1 ykj ≤ 2 for most cases,
implying that most of the indicator variables ykj = 0. Fur-
thermore, mixture spectra are known to comprise a small

process. Precursor mass of an MS/MS spectrum can be applied as
constraints to reduce the size of PD (for details see Section 3.2.4).
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portion (10%–20%) of all MS/MS spectra in a proteomics
dataset [42, 6]. Therefore, in most proteomics analyses, only
the PSM with the best score (i.e. top-ranked) for an MS/MS
spectrum is retained after the database searching step. Al-
beit with small (posterior) probabilities, lower ranked PSMs
can also be correct (whereas the top PSM is wrong). Hence,
for the purpose of peptide identification, we argue that ev-
ery candidate peptide should be assigned a probability. Al-
though in practice lower ranked peptides are typically ig-
nored for convenience in probabilistic PSM assessment algo-
rithms such as PeptideProphet [19], in principle, the task of
assigning probability to the top-ranked PSM of an MS/MS
spectrum is best formulated as a subproblem of assigning
probability for all PSMs for this MS/MS spectrum. Thus,
in this paper, we will provide joint prior distribution for all
candidate peptides (using the indicator variables ykj for all
j = 1, . . . , J) for a spectrum sk, rather than only for the
top-ranked peptide4.

To compute the posterior probability P(yk|sk, PD, T ), we
need to know both the likelihood P(sk|yk, PD, T ) and the
prior probability P(yk|PD, T ). We will focus on the mod-
eling of the prior probabilities in this paper. Below we will
present four specific types of distributions for P(yk|PD, T ),
which fall into two categories: the mutually exclusive (ME)
distributions, in which at most one peptide can be matched
to an MS/MS spectrum, and the independent (ID) distribu-
tions, in which peptides are matched to an MS/MS spec-
trum independently (and thus more than one peptide is al-
lowed to be matched to the same MS/MS spectrum). For
each of the classes, we can either assign a uniform proba-
bility to different peptides in the database (and thus do not
favor any specific peptide), or assign non-uniform probabili-
ties to different peptides based on prior knowledge. As a re-
sult, we have four different prior distributions: the identical
mutually exclusive (IME) prior distribution, the detectabil-
ity mutually exclusive (DME) prior distribution, the identi-
cal independent (IID) prior distribution and the detectabil-
ity independent (DID) prior distribution. Notably, all these
prior distributions ignore the mutual dependence of peptides
originated from a same protein, complying to the peptide-
centric view of peptide identification (Figure 3.1d). These
prior distributions, with properly selected parameters, can
be used to estimate the posterior probabilities of peptides
P(yk|sk, PD, T ).

In experiments on complex biological samples, it is ob-
served that a significant portion of the MS/MS spectra are
not matched to any peptide in the database. Thus, for these
four types of peptide identification prior distributions, we
require a non-zero prior probability p− for a spectrum to
be matched to none of the peptides in the database. The
purpose is to allow an MS/MS spectrum to be produced

4Note that when we say the peptide(s) are identified for a spectrum,
we really mean the peptide ion(s) of specific charges are identified.
However, to keep the notation simple, throughout this paper, we use
j = 1, . . . , J to indicate the peptides, ignoring their charges.

from the fragmentation of an ion that does not correspond
to a peptide in the database, but to a non-peptide molecule
or a peptide absent from the database, e.g., a peptide con-
taining unrecognized PTMs. Formally, we require the prior
distributions to satisfy

(3.2) P(yk = 0|PD, T ) = p−.

Note that the parameter p− is database dependent. How-
ever, when the same database PD is specified for the four
types of prior distributions, we expect them to satisfy Equa-
tion 3.2 with same p−. This will help us to better understand
the relationship among the distributions.

3.2.1 Mutually exclusive prior distributions

Let I be the indicator function, i.e. I(true) = 1 and
I(false) = 0. The IME prior distribution, denoted by
IME (p, J) with p ∈ [0, 1] and J ∈ N , is expressed as,

PIME (yk|PD, T ) = (1− p) · I
(

J∑
j=1

ykj = 0

)
(3.3)

+
p

J
· I

(
J∑

j=1

ykj = 1

)
.

The IME prior distribution is based on the assumption that
an MS/MS spectrum has some probability (1−p) of match-
ing no peptide in the database, while it has equal prior
probability p/J to match to one and only one peptide in
the database, where J is the total number of peptides in the
database. Applying the constraint of equation 3.2, we get
p = 1−p−. Note that the assumption behind the IME prior
distribution is implicitly used by most database searching
engines, although it was not expressed as a prior distribu-
tion in a Bayesian model.

A DME prior distribution, denoted by DME (l) with pa-
rameters l = (l1, . . . , lJ), satisfying lj ≥ 0 and 1

J ·
∑

j lj ≤ 1,
is expressed as,

PDME (yk|PD, T ) =

(
1−

1

J
·
∑
j

lj

)
· I

(∑
j

ykj = 0

)(3.4)

+
1

J
·
∏
j

lyki

i · I
(∑

j

ykj = 1

)
.

As in the IME prior distribution, PSMs in DME prior are
assumed to be mutually exclusive from each other. However,
to model the identification bias, peptide-specific parameters
l = (l1, . . . , lJ) are introduced, each for a specific PSM be-
tween spectrum sk and peptide πj , indicated by ykj = 1
(and ykj′ = 0 for j′ �= j). After introducing the IID and
DID prior distributions below, we will give an alternative
parameterization of DME distributions in which the peptide
detectabilities are used as parameters (see Section 3.2.3). We
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will show that the parameters lj are closely related to the
peptide detectabilities [34].

3.2.2 Independent prior distributions

By definition, when an IME or DME prior distribution is
used, the probability for two or more peptides to be identi-
fied for a single spectrum is 0. To eliminate this limitation,
we define the IID prior distribution, denoted by IID(p0, J),
as

(3.5) PIID(yk|PD, T ) =
∏
j

(1− p0)
1−ykj · p0ykj .

It allows an MS/MS spectrum to be matched to any number
(from 0 to J) of peptides in the database, and thus allows
multiple peptides to be identified for the mixture spectra, i.e.
those spectra resulted from the fragmentation of the mixture
of multiple peptide ions. The IID prior distribution assumes
that each peptide in the database has an equal and small
probability p0 to be matched to the spectrum sk. Applying

the constraint of equation 3.2, we get p0 = 1 − p
1/J
− . Re-

member that for the IME distribution we have p = 1− p−.
If we set p0 = 1− (1− p)1/J ≈ − 1

J · ln(1− p), the distribu-
tions IID(p0, J) and IME (p, J) are approximately equiva-
lent. As we mentioned above, IID prior allows mixture spec-
tra while IME prior does not. However, we can show that
when p → 0 (i.e. p− → 1), PIID(

∑
j ykj > 1|PD, T ) =

1−p−[1+J ·p0/(1−p0)] ≈ 1−(1−p) · [1− ln(1−p)] = O(p2)
can be ignored, i.e. when the fraction of the identifiable spec-
tra is small, the fraction of mixture spectra is negligible for
the IID prior.

The DID prior distribution, denoted by DID(d) with pa-
rameters d = (d1, . . . , dJ) and dj ∈ [0, 1], can be expressed
as

(3.6) PDID(yk|PD, T ) =
∏
j

(1− dj)
1−ykj · dykj

j .

Similar to the DME distribution, the DID prior distribution
is an extension of the IID by incorporating the peptide spe-
cific information for each peptide in the prior distribution.
The DME prior distribution considers peptide detectabil-
ity dj [34, 23] for each peptide j. It should be pointed out
that, 1) to be consistent with the primary goal of the pep-
tide identification (Figure 3.1d), we consider here the pep-
tide detectability dj as the probability of a peptide to be
matched to a single MS/MS spectrum sk rather than to
any of a set of MS/MS spectra in a dataset5, and thus it
is a much smaller value; and 2) the peptide detectability
should be predicted only from the sequence of the peptide
but not from the sequence and quantity of the protein from
which the peptide is generated, because we generally do
not have such information in the peptide identification step.

5To be strict, the notation ds with subscript s is used to denote the
per-spectrum peptide detectability as in Figure 3.1d. In the text, we
ignore the subscript s for simplicity.

This is different from the protein inference task, in which
peptide detectability is predicted using the information of
the protein sequence as well as the protein abundance (Fig-
ure 4.1b).

3.2.3 Relationships between the ME and ID prior distribu-
tions

We can see that the DID prior distribution is a generaliza-
tion of the IID prior distribution by allowing different pep-
tides to have different prior probabilities of being identified
by MS/MS spectra. If we assume dj = p0 for all j = 1, . . . , J
in the DID distribution, then it is reduced to IID. By solving
PDID(yk = 0|PD, T ) = p−, we get

∏J
j=1(1−dj) = p−, which

can be re-written as
∑J

j=1 ln(1−dj)/J = ln(1−p0), and ap-

proximately p0 =
∑J

j=1 dj/J when p0 → 0 and dj → 0. This
suggests that the IID prior distribution can be viewed as an
approximation of DID. Similarly, the IME distribution is a
special case of the DME distribution. To better understand
the relationship between DID and DME, we first define the
following concepts.

Definition 3.1 (Degree of a distribution). For a positive
integer J and an arbitrary distribution Ψ defined on {0, 1}J
– the set of indicator vectors, a number n is called the degree
of the distribution, denoted as deg(Ψ) = n, iff PΨ(

∑J
j=1 yj =

n) > 0 and PΨ(
∑J

j=1 yj > n |θ) = 0.

The terminology is inspired by the degree of a polynomial
concept and an equivalent definition of DID(d) as a polyno-
mial, i.e. DID(yk; d) =

∏
j [1− dj + (2 · dj − 1) · ykj ]. It can

be shown that each distribution Ψ defined on {0, 1}J has a
corresponding polynomial formulation. However, in general,
the degree of the corresponding polynomial does not equal
the degree of the distribution.

Intuitively, deg(Ψ) is the maximum number of the pep-
tides allowed for a mixture spectrum if Ψ is the prior dis-
tribution for peptide identification from this spectrum. One
critical difference between the DID and the PID distribu-
tions is that PDID(

∑
j ykj > 1) > 0 while PDME (

∑
j ykj >

1) = 0. Formally, we see that deg(DID) equals the num-
ber of peptides in the database PD with non-zero de-
tectabilities, while deg(DME ) equals 1. Meanwhile, as
we discussed earlier, the IID and IME prior distribu-
tions are approximately equivalent when p → 0, because
PIID(

∑
j ykj > 1|PD, T ) = O(p2). Similarly, we can prove

that PDID(
∑

j ykj > 1|PD, T ) = O((1 − p−)
2) when

PDID(yk = 0|PD, T ) = p− → 1, and thus, the DID
and DME distributions also approximate each other when
p− → 1.

Based on this observation, we define the 1st-order approx-
imation of the DID distribution, i.e. to only keep the 0th- and
1st-degree terms of the expanded DID distribution as defined
in equation 3.6. This will result in a mutually exclusive dis-
tribution with peptide detectabilities d = (d1, . . . , dJ ) as
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parameters. We denote this distribution as DME (d).

PDME (yk|PD, T )(3.7)

=

[
1 +

∑
j

(dj/(1− dj))

]−1

·
[
I
(∑

j

ykj = 0

)

+ I
(∑

j

ykj = 1

)
·
∏
j

(dj/(1− dj))
ykj

]
.

Comparing with the previous definition of the DME prior
distribution in equation 3.4, we can find the transformation
between the alternative parameterizations of the DME dis-
tribution as,

dj =
lj

lj +
∑J

m=1(1− lm)
,(3.8)

lj =
dj/(1− dj) · J

1 +
∑J

m=1(dm/(1− dm))
.(3.9)

With this transformation, the two parameterizations of
DME distribution are equivalent if a fixed database PD is
used. Unfortunately, the transformation cannot be applied
simultaneously to different databases unless DME is reduced
to IME. Accordingly, if we consider different PDs in the
peptide identification (e.g. as in Section 3.4), the constraint
P(yk = 0|PD, T ) = p− does not hold for DME or DID
distributions unless they are reduced to IME or IID. Ob-
serve that the transformation between the parameters dj
and lj for DME distribution are database dependent (i.e.
if we assume peptide detectability dsπ for peptide π to be
independent of the database where π is in, then lsπ will take
different values when π is in different PD; and vice versa),

unless
∑J

t=1(1 − lt) or
∑J

t=1(dt/(1 − dt)) is constant for
different databases, which turns out to be equivalent to re-
quiring P(yk = 0|PD, T ) to be constant for all databases.
To address the issue, we set P(yk = 0|PD, T ) = p− for one
database PD0 that is used to build the predictors for dj
and lj , and then we can rewrite the transformation by ap-
plying P(yk = 0|PD, T ) = p− for PD0 and obtain a new
transformation below, which generalizes the parameters to
the peptides that are not in PD0 and thus is database in-
dependent.

dj =
lj

lj + J · p−
,(3.10)

lj =
dj · J · p−
1− dj

.(3.11)

We note that, with this transformation, the l and d pa-
rameterizations of DME distribution are no longer equiva-
lent (expect for the database PD0) but only approximate
each other. Below, we will use these two parameterizations
for DME alternatively, depending on which one is more con-
venient.

3.2.4 Using retention time and precursor mass as prior in-
formation

The retention time at which a fragmentation spectrum
is acquired and the precursor mass can also be modeled
through the peptide identification prior distribution, to fur-
ther specify the putative peptides to be matched to the spec-
trum6. Formally, to combine the precursor mass mk and the
retention time tk together with the fragmentation sk so as
to achieve better posterior probability for peptide identifi-
cation, we apply the Bayes rule under the assumption of
conditional independence among sk, mk and tk, given yk,
PD, and experiment T .

P(yk|sk,mk, tk, PD, T )

(3.12)

=
P(sk|yk, PD, T ) · P(yk|mk, tk, PD, T )∑

yk∈{0,1}J P(sk|yk, PD, T ) · P(yk|mk, tk, PD, T )
.

We see that P(yk|mk, tk, PD, T ) may replace P(yk|PD,
T ) to be the prior distribution for peptide identification.
It can be shown that, under reasonable assumption for
P(mk|yk, PD, T ) and P(tk|yk, PD, T ), if P(yk|PD, T ) is a
DME or DID distribution, then P(yk|mk, tk, PD, T ) is still
a DME or DID distribution, only with the parameters
dj = P(ykj = 1|PD, T ) replaced by dkj = P(ykj = 1|mk, tk,
PD, T ), for j = 1, . . . , J and any k.

Proposition 3.2 (mtDME and mtDID distributions).
If a DME or DID prior distribution is used in pep-
tide identification with per spectrum peptide detectabilities
(dj)j=1,...,J as parameters, i.e. P(yk|DB, T ) = DME (yk; d)
or P(yk|DB, T ) = DID(yk; d), further assuming the like-
lihood function for precursor mass can be expressed as
P(mk|yk, PD, T ) =

∏
j:ykj=1 f+(mk;αj) ·

∏
j:ykj=0 f−(mk)

(where f+ and f− represent the likelihood of correctly and
incorrectly matched peptides to have the precursor mass
mk, respectively), and similarly, the likelihood function
for retention time can be expressed as P(tk|yk, PD, T ) =∏

j:ykj=1 g+(tk; τj) ·
∏

j:ykj=0 g−(tk), then the peptide iden-

tification still follow a DME or DID prior distribu-
tion (denoted by mtDME and mtDID, respectively), with
the updated detectabilities (dkj)j=1,...,J as parameters,
where

dkj =
f+(mk;αj) · g+(tk; τj) · dj

f−(mk) · g−(mk) · (1− dj) + f+(mk;αj) · g+(mk; τj) · dj
,

for j = 1, . . . , J .

Proof. Below we prove the proposition for the case of DME
distribution. A similar argument can also be applied to the
case of DID distribution. Let ykj = 1 be an indicator vector
with zeros for all but one variable (peptide) indexed by j,

6Note that incorporating retention time and precursor mass informa-
tion into the peptide identification scoring has been discussed in [31]
among others, although not within a Bayesian framework.
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and let yk = 0 be an indicator vector with all zero values.
Becausemk and tk are independently observed from sk given
yk, PD and T , we have,

PmtDME (yk|mk, tk, PD, T )

∝ PDME (yk|PD, T ) · P(mk|yk, PD, T ) · P(tk|yk, PD, T )

∝
[
I
(

J∑
j=1

ykj = 0

)
+ I

(
J∑

j=1

ykj = 1

)

·
J∏

j=1

(dj/(1− dj))
ykj

]
· P(mk|yk, PD, T )

· P(tk|yk, PD, T )

∝ I
(

J∑
j=1

ykj = 0

)
+ I

(
J∑

j=1

ykj = 1

)

·
J∏

j=1

(
dj · f+(mk;αj) · g+(tk; τj)
(1− dj) · f−(mk) · g−(tk)

)ykj

.

Comparing with DME (yk; dk), we find that
dkj

1−dkj
=

dj ·f+(mk;αj)·g+(tk;τj)
(1−dj)·f−(mk)·g−(tk)

, which gives updated detectability as

dkj =
f+(mk;αj) · g+(tk; τj) · dj

f−(mk) · g−(mk) · (1− dj) + f+(mk;αj) · g+(mk;αj) · dj
.

(3.13)

Therefore, we have PmtDME (yk|mk, tk, PD, T ) =
DME (yk; dkj).

According to the above proposition, we can use the exper-
imentally observed precursor mass and retention time to re-
fine peptide detectability dj , and thus give an updated prior
distribution for peptide identification in the same dataset.
We note that while dj is the same for all MS/MS spectra,
dkj is specific for each spectrum sk.

3.2.5 How does a prior distribution impact peptide identifi-
cation?

We pointed out earlier that the IME prior distribution
is implicitly used by most database search engines, because
1) they usually do not consider mixture spectra; and 2) ap-
plying the IME prior will not change the PSM ranks for
the same MS/MS spectrum. As a result, the performance
of a scoring scheme in the peptide identification will not be
affected by applying IME prior distribution.

On the contrary, both DID and DME distributions as-
sign peptide-specific prior probabilities for peptide identi-
fication. Although these prior distributions have not been
used in practice, we believe they will provide a simple yet
realistic model for improving the peptide identification from
fragmentation spectra (including mixture spectra), assum-
ing peptides are independently eluted and the ions are ran-
domly selected for fragmentation. We stress that DID and
DME prior distributions may improve peptide identification

in two ways: 1) it may re-rank the top-ranked PSMs, each
from a specific MS/MS spectrum; and 2) it may also re-rank
the PSMs for a single spectrum. As a result, a peptide (or
peptides for a mixture spectrum) with lower rank of like-
lihood may become top ranked by the posterior probabili-
ties.

3.3 Peptide identification priors for de novo
peptide sequencing

At first glance, a de novo peptide sequencing algorithm
does not seem to rely on any protein database as prior in-
formation. However, they indeed use it implicitly. Instead
of using a peptide database PD ⊆ A∗, it uses directly A∗,
which is the set of all possible peptides formed from amino
acids in A, the alphabet of amino acids including the ones
containing possible PTMs. The resulting peptide database
PDA for a spectrum sk is typically much larger than that
used in the database searching algorithm. In practice, the de
novo sequencing usually uses a sophisticated algorithm (e.g.
dynamic programming) that does not exhaustively exam-
ine the peptides in database A∗, and thus is much more
efficient. However, consider a brute force algorithm that
matches every peptide in A∗ against every spectrum sk, the
matching results will be the same as the de novo sequenc-
ing algorithm using the same scoring. Hence, if we consider
A∗ as the database7 for de novo peptide sequencing, then
de novo sequencing and database searching approaches are
not different in principle. We can thus analyze de novo se-
quencing algorithms using exactly the same Bayesian frame-
work and the same peptide identification prior distribu-
tions outlined above as used for database searching algo-
rithms.

The relationship among de novo sequencing, database
searching, and Bayesian peptide identification is evident
from the perspective of the probabilistic graphical model
representations, given in Figure 3.1b–3.1d. For both de novo
sequencing and database searching, a single peptide is sam-
pled from a given peptide database with equal probability
and then matched to the MS/MS spectrum, whereas for
the Bayesian peptide identification model in Figure 3.1d, a
non-deterministic peptide database PD is allowed (see Sec-
tion 3.4), and multiple peptides can be sampled together at
non-equal probabilities for one MS/MS spectrum. The de
novo peptide sequencing (Figure 3.1b) is a special case of
the database searching (Figure 3.1c), when PD = A∗; and
the database searching can be viewed as a special case of
Bayesian peptide identification, when P(PD) = I(PD =
PD) and a IME prior distribution is used. Therefore, the
Bayesian peptide identification model illustrated in Fig-
ure 3.1d provides a unified interpretation for different pep-
tide identification approaches.

7Note that we will provide an alternative and better treatment later
by modeling the peptide database as a random variable for de novo
sequencing.
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3.3.1 Impact of large databases

The prominent difference between de novo sequencing
and database searching approaches is that the database
size J is significantly larger (theoretically infinite) for de
novo peptide sequencing algorithms. The number of pep-
tides increases dramatically with the increasing size of al-
phabet A of amino acids (and the ones with PTMs) on
the order of O(||A||L) with L > 7 typically being the
peptide length. Large J will lead to low identifiability of
the true peptide, where the identifiability is referred to as
the power of a PSM scoring scheme to identify a specific
true peptide with high confidence from a set of MS/MS
spectra. Because the prior probability for a specific pep-
tide j to be identified, i.e. P(ykj = 1, ykj̄ = 0|PD, T ),
approaches 0 for both the PME prior distribution (equa-
tion 3.3), with P(yki = 1, ykj̄ = 0|PD, T ) = 1−p−

J , and the
IID prior distribution (equation 3.5), with P(yki = 1, ykj̄ =

0|PD, T ) ≈ − 1
J · ln p−. It can be shown that if new pep-

tides are randomly added to the database, and a fixed frac-
tion of the newly added peptides match spectrum sk with
non-zero likelihood P(sk|yk, PD, T ) for yk �= 0, and then
lim|PD|→∞ P(ykj = 1, ykj̄ = 0|sk, PD, T ) = 0. This indi-
cates that if we assume a uniform prior probability dis-
tribution over all putative peptides, the de novo sequenc-
ing algorithms may have very small power to identify the
true peptides, due to the very large number of the putative
peptides. It is worth pointing out that, since the effective
database size N < ∞ after filtering for precursor mass and
possibly retention time for a specific MS/MS spectrum, the
sensitivity of the de novo sequencing is the result of a bat-
tle between the large database size (hence low information
content in the prior) and the useful information content in
a MS/MS spectrum. If a spectrum is informative enough to
tell apart the true peptide(s) from very similar false pep-
tides, the de novo sequencing using IID or IME priors can
still work. However, unlike for DNA sequencing techniques,
the signal/noise ratio in MS/MS spectra are often not high
enough to accomplish this goal.

Interestingly, these observations regarding database size
does not apply to the DID and DME prior distributions,
which consider the peptide-specific prior probabilities. This
is obviously true, because a properly designed DID (DME)
prior distribution for a de novo sequencing algorithm can ef-
fectively approximate either IME or IID prior distributions
used in the database searching methods which use a much
smaller peptide database PD: we can simply set dj = 0
for peptides not in PD. Of course, this is not a practi-
cal approach for assigning prior in real applications since
PD is typically unknown (and assumed to be A∗) when de
novo algorithms are used. However, the peptide detectabil-
ity prediction and other information (such as precursor mass
and retention time information as discussed above, and the
amino acid frequencies in real proteins and the prior prob-
abilities of PTM occurrences that will be discussed below)
may be combined to define better prior distributions, and

thus the power of the de novo peptide sequencing can be im-
proved. In summary, it is possible to overcome the low iden-
tifiability limitation of the de novo sequencing algorithms
by applying informative DID/DME prior distributions over
the peptides.

3.4 Prior distributions over databases

For the prior distributions discussed so far, we assumed
the database is pre-determined: the IME, DME, IID and
DID prior distributions are defined on a given peptide
database PD, and the de novo peptide sequencing uses
PD = A∗. Although in the DME and DID prior distribu-
tions, the peptide-specific bias of peptide identification in
an LC-MS/MS experiment is modeled by the peptide de-
tectability, all peptides in the database are assumed to be
equally likely present in the sample. Besides, the abundances
of these peptides are not modeled.

In practice, however, the correct peptide database can
be unknown, as for the de novo peptide sequencing, or un-
certain, as for the identification of mutations and PTMs
in proteins when the mutation forms and PTMs of the pro-
teins are not known for sure to be present. When the protein
sequences are predicted from genomic or transcriptomic se-
quences, some sequences in the database are more likely to
be real while some others are more likely to be erroneous due
to prediction mistakes. Such information may be captured
by modeling P(PD), the prior distribution of the peptide
database PD.

An ideal protein database for protein identification from
a biological sample should have a specific probability distri-
bution for the abundances of all putative proteins, some of
which may have high probability to be abundant (e.g., the
ones in the curated database) whereas the others may have
low probability to be abundant (e.g., the ones predicted from
the genomic sequences). In practice, this is hardly achiev-
able, although it can be approached by incorporating previ-
ous transcriptomics/proteomics studies of the same sample.

3.4.1 Amino acid frequencies based prior distribution

For the de novo peptide sequencing, more prior informa-
tion can be employed other than peptide detectability. A
simple observation is that, in all organisms, the amino acid
occurrences in the bona fide proteins follow a non-uniform
distribution: some amino acids occurred more often than
the others. As a result, a peptide π ∈ A∗ with multiple
rare amino acids is unlikely to be real. For a tryptic peptide
π = π(1) · π(2) · . . . · π(L) of length L, we define,

(3.14)

P(π|θA) = I(π(L) ∈{K,R})·θπ(L)
·
L−1∏
j=1

[I(π(j) /∈{K,R})·θπ(j)
].

The probability distribution is defined in the space of all
peptides A∗, where θA = (θa)a∈A represent the expected
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probabilities for amino acids in A to occur in real proteins.
We can see that the distribution 3.14 is an extension of the
geometric distribution defined on {0, 1}∗. It assigns proba-
bility 0 to any mis-cleavage or non-tryptic peptide. The dis-
tribution can be further generalized to model mis-cleaved
or non-tryptic peptides. To do that, we use a Markov chain
model of peptides with parameters θA and τA = (τa)a∈A,
where τa represents the transition probability from an amino
acid a ∈ A to the C-terminal, while θa is the transition
probability from any amino acid to a. We then can obtain
a prior distribution for peptides with any C-terminal amino
acid specificity (resulted from the digestion of any protease
or other peptide truncation mechanisms [1]) as,

(3.15) P(π|θA, τA) = τπ(L) · θπ(L)
·
L−1∏
j=1

[(1− τπ(j)) · θπ(j)
].

The distribution in equation 3.14 is a special case of the
one in equation 3.15 with τa∈{K,R} = 1 and τa/∈{K,R} = 0. In
general, τA signifies the protease specificity, while θA signi-
fies the amino acid frequencies in real peptides8. Compared
to 3.14, 3.15 allows all peptides in A∗ to be present when
∀a∈Aτa �= 0, although shorter peptides are always preferred.

Given a well-defined prior distribution for peptides, we
can then define the amino acid frequency (AF) prior distri-
bution as

(3.16) PAF (PD|θA, τA) =
J∏

j=1

P(πj |θA, τA),

for a peptide database PD = (πj)j=1,...,J ∈ (A∗)J of size J .
Again, here we neglect the mutual dependency among pep-
tides from the same protein. Of course, protein sequences
are not available for de novo sequencing.

3.4.2 Prior distributions for peptides containing mutations
and PTMs

The problems of identifying the mutations and PTMs in
peptides remain challenging in proteomics. These problems
can be approached by either database searching or de novo
peptide sequencing algorithms. De novo sequencing of pep-
tides containing mutations is not different from the conven-
tional de novo peptide sequencing, because the search space
remains the same (as the set of all peptides). The de novo
identification of PTMs in peptides can be viewed as the same
problem as the de novo peptide sequencing on an expanded
amino acid alphabet A′, which includes the modified amino
acids. For database searching algorithms, to identify the mu-
tated and modified peptides, an expanded peptide database
should be constructed, explicitly or implicitly, containing
the mutated or modified peptides in addition to the original

8In order to model the C-terminal peptides in proteins, we need to
modify P(π|θA, τA) so that τπ(L) = 1 for all C-terminal amino acid
π(L). A mixture distribution can be used to model both protein C-
terminal peptides and other peptides.

peptides. Database searching algorithms can then be applied
in the same way as used for the identification of unmodified
peptides [3, 4]. An issue of this non-Bayesian approach is
that the mutated and modified peptides are deemed equally
likely to be present a priori as the unmodified peptides,
and different mutations and PTMs in the same peptides are
also deemed equally likely. In practice, however, the faction
of fragmentation spectra resulted from peptides containing
mutations or PTMs is either much smaller (e.g., in a shot-
gun proteomics experiment) or much greater (e.g., when the
sample is enriched for certain PTM such as phosphorylation,
or when the protein database from a different species is used
for the searching) than the fraction of spectra from unmod-
ified peptides. In some cases, only a few MS/MS spectra
correspond to form modified peptides, while the number of
putative modified peptides in the expanded database can
be several orders of magnitude larger than the unmodified
peptides9.

This issue may be addressed within a Bayesian frame-
work, in which a prior distribution of the modified and
unmodified peptides can be obtained from previous experi-
mental analysis of related samples10. Ideally, the prior dis-
tribution should incorporate two types of prior informa-
tion: 1) the propensity of the mutations and PTMs, i.e.
how likely the mutations and PTMs occur in each site
of a specific peptide; and 2) the dependency between the
mutant/PTM forms and the unmodified peptides, because
the modified and unmodified peptides tend to occur mu-
tually exclusively for a given site of a protein in real sam-
ples.

For an unmodified peptide πj ∈ PD0 (where PD0 is
the reference database of unmodified peptides), we denote
the set of peptides mutated from it as Δμπj ⊆ A∗, and
the set of peptides modified from it as Δνπj ⊆ A′∗, where
A′ is the expanded alphabet including the modified amino
acids, μ and ν are the parameters for modeling the pro-
cesses of amino acid mutations and post-translational mod-
ifications11, respectively. The propensity of amino acid mu-
tations can then be modeled by the probability distribu-
tion P(π′|π, μ) for all π ∈ A∗ and π′ ∈ Δμπ. And simi-
larly, the propensity of PTMs can be modeled by P(π′|π, ν)
for π′ ∈ Δνπ. For brevity, we will not discuss the specific
forms of P(π′|π, μ) and P(π′|π, ν) in this paper. But we com-
ment that they are conceptually easy to derive based on
the amino acid substitution rate matrix (for P(π′|π, μ)) [17]
and some PTM predictors (for P(π′|π, ν)) [18], respectively.
Once they are determined, these probability distributions
can be incorporated as priors into database searching or de
novo sequencing algorithms for the identification of muta-
tions and PTMs.

9Due to the same reason, the identification of mutations and PTMs is
also computationally expensive.
10Note that fitting the prior distribution from the current dataset is
feasible only as a post-processing step within the Bayesian framework.
11Note that πj ∈ Δμπj and πj ∈ Δνπj .
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For the identification of mutations in an unmodified pep-
tide πj ∈ PD0 = (πj)j=1,...,J , we assert that there is one and
only one peptide12 in Δμπj that can be present in the target
database PD = (π′

j)j=1,...,J , i.e. either the original peptide
or a mutant of the peptide. As a result, we can define the
mutDB prior distribution over the target peptide database
as,

(3.17) PmutDB (PD|PD0, μ) =
∏

i=1,...,J

P(π′
i|πi, μ).

Note that, unlike the AF prior distribution used for de
novo peptide sequencing, mutDB prior distribution is de-
pendent on a reference peptide database PD0. We see that
the sample space of PD is Δμπ1 × · · · × ΔμπJ , which is a
set of databases of the same size as the reference database
PD0. Although the size of the database PD is J , the size
of ∪π∈DBΔμπ, the set of peptides with non-zero marginal
probabilities, is much larger.

In the PTM identification, more than one PTM forms of
the unmodified peptide πi can be present in Δνπi, including
the unmodified peptide itself. However, the total abundance
of all PTM forms should be summed up to a fix value, assum-
ing all peptides are at the same abundances13, the standard
abundance, for the peptide identification. Therefore, distinct
from all prior distributions discussed so far, the prior dis-
tribution for PTM peptide database models not only pep-
tide sequences but also their abundances. Assuming that the
standard abundance of a peptide corresponds to n0 copies
of peptides in the sample, and assuming a multinomial dis-
tribution for the copy numbers of all possible PTM forms
according to the PTM propensity defined by P(π′|π, ν), we
obtain the modDB prior distribution over all modified pep-
tide databases as

PmodDB (q = (qjh)jh|PD0, ν, n0)

(3.18)

=
∏

j=1,...,J

n0! · I(
∑
h

qjh = n0) ·
∏

h:πjh∈Δπj

P(πjh|πj , ν)
qjh

qjh!
,

where qjh represents the abundance of the h-th PTM form
(πjh) of the peptide πj ∈ PD0. Note that the sample space

of q = (qjh) is a subset of N
∑

j |Δνπj |. Although the two
prior distributions, modDB (which models peptide abun-
dances) and mutDB (which models peptide presence only),
are different in general, modDB is reduced to mutDB when
n0 = 1.

12This assertion is obviously correct for haploid organisms. For a
diploid organism, we may need to consider two distinct peptide se-
quences, derived from both the major and minor alleles, respectively,
and the prior distribution between these two copies can be defined
based on the population frequencies of the two alleles.
13Note that this assumption can be relaxed after incorporating the
estimated protein abundances into the Bayesian model as shown in
Figure 4.1a; see Section 4.

3.5 Combining database priors with peptide
identification priors

We argue that the best practice for Bayesian peptide
identification should combine all prior information for pep-
tide identification, including 1) the bias of amino acid fre-
quency in real peptides; 2) the mutation and PTM propen-
sity; 3) the sequence database of unmodified peptides and
preferably also the probability that each of peptide/protein
is real; 4) the retention time and mass of the precursor ion of
each MS/MS spectrum; and 5) peptide detectabilities. The
first three can be modeled in the protein sample/database
prior distribution, whereas the other two can be modeled in
the peptide identification prior distribution.

These two categories of prior distributions model com-
pletely different aspects of a proteomics experiment.
Database prior distributions model the presence of pep-
tides in the sample, whereas the peptide identification
prior distributions model the possibility of peptides to
be captured in a proteomics experiment. Given a peptide
database prior distribution P(PD|θ) parameterized by θ,
and a peptide identification prior distribution P(yk|PD, T )
or P(yk|mk, tk, PD, T ) for an MS/MS spectrum, a natural
way of combining the two is to marginalize out PD and
obtain P(yk|θ, T ) �

∑
PD⊆A∗ P(yk|PD, T ) · P(PD|θ). For

example, for the de novo peptide sequencing, combining the
AF prior distribution and the DID prior distribution, we can
define AF-DID prior distribution as PAF-DID(yk|θA, T ) =∑

PD⊆A∗ PDID(yk|PD, T )·PAF (PD|θA). A similar prior dis-
tribution can be defined by combining the DME and AF
prior distributions. Interestingly, mutually exclusive prior
distributions (IME and DME) for peptide identification
combined with an AF prior distribution for a database will
lead to mutually exclusive distributions, because in any spe-
cific database PD, the probability for two peptides to be
identified simultaneously is zero, then the same holds after
PD is marginalized out. Specifically, we have the following
statement for the AF-DME and AF-IME distributions.

Proposition 3.3 (AF-DME distribution). In the de novo
peptide sequencing algorithm, rather than using a deter-
ministic database A∗, we assume an AF prior distribu-
tion over databases of size J , i.e. PAF (PD|θA, τA) =∏J

j=1 P(πj |θA, τA), and for any given peptide database
PD = (π1, . . . , πJ ), we further assume a DME dis-
tribution is used for peptide identification with lPD =
(lπj )j=1,...,J as parameter, where lπj is independent of the
database PD, i.e. PDME (yk|PD, T ) = DME (yk; lPD) ·
I(

∑
π/∈PD ykπ = 0), then P(yk|θA, τA, T ) follows an DME

distribution DME (yk; lA∗) over database A∗, with parame-
ters lA∗ = (|A∗| · P(π|θA, τA) · lπ)π∈A∗ .

Proof. Notice that the peptide database PD = (π1, . . . , πJ)
is a vector of random variables, each with A∗ as the sample
space. Also notice that by using lPD as parameters across
different PD, we implicitly assume that lπ is only depen-
dent on the peptide π, but not on the peptide database PD
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containing π. Hence, we have,

PAF-DME (yk = (ykπ)π∈A∗ |θA, τA, T )

=
∑

|PD|=J, PD⊆A∗

[PDME (yk|PD, T ) · PAF (PD|θA, τA)]

=
∑

|PD|=J, PD⊆A∗

{[
I
(

J∑
j=1

ykπj = 0

)
·
(
1−

1

J
·

J∑
j=1

lπj

)

+
1

J
· I

(
J∑

j=1

ykπj = 1

)
·

J∏
j=1

l
ykπj
πj

]

· I
( ∑

π/∈PD

ykπ = 0

)
·

J∏
j=1

P(πj |θA, τA)
}

= I
( ∑

π∈A∗

ykπ = 0

)
·
(
1−

1

J
· EPD

(
J∑

j=1

lπj

))

+
1

J
· EPD

(
I
( ∑

π/∈PD

ykπ = 0

)

·
J∑

j=1

(
I
(

J∑
j=1

ykπj = 1

)
· lπj · ykπj

))

= (1− Eπ1(lπ1)) · I
( ∑

π∈A∗

ykπ = 0

)

+ Eπ1(lπ1 · I(ykπ1 = 1, ykπ �=π1 = 0))

= I
( ∑

π∈A∗

ykπ = 0

)
·
(
1−

∑
π⊆A∗

lπ · P(π|θA, τA)
)

+
∑
π⊆A∗

[P(π|θA, τA) · lπ · I(ykπ = 1, ykπ′ �=π = 0)]

= I
( ∑

π∈A∗

ykπ = 0

)
·
(
1−

∑
π⊆A∗

lπ · P(π|θA, τA)
)

+ I
( ∑

π∈A∗

ykπ = 1

)
·
∑
π⊆A∗

[P(π|θA, τA) · lπ]yπ

= DME (yk; lA∗).

Notice that PAF-DME (yk|θA, τA, T ) is independent of the
assumed database size J , and a nice symmetry is followed by

PDME (yk|PD, T ) = I
( ∑

π∈PD

ykπ = 0

)
· (1− Eπ∈PD(lπ))

+ I
( ∑

π∈PD

ykπ = 1

)
·

∏
π∈PD

[
1

J
· lπ

]ykπ

and

PAF-DME (yk|θA, τA, T )

= I
( ∑

π∈A∗

ykπ =0

)
· (1− Eπ∈A∗(lπ))

+ I
( ∑

π∈A∗

ykπ =1

)
·
∑
π⊆A∗

[P(π|θA, τA) · lπ]ykπ ,

with PD replace by A∗ and 1
J replaced by P(π|θA, τA).

Similar conclusion does not hold for the IID and DID
prior distributions. The AF-DID distribution, whose degree
is no bigger than J , only approximates a DID distribution
over A∗, whose degree can be ∞. For the de novo peptide
sequencing, we can go one step further and combine AF with
mtDME, which again gives a DME distribution. Similarly,
for the case of mutant peptide identification, the mutDB
prior distribution for databases can be combined with the
DME (or mtDME) and obtain the mut-DME, which is still
a DME distribution with updated parameters. Therefore,
same as for the precursor mass and retention time, the pep-
tide database prior may also be integrated into the prior dis-
tribution for peptide identification (equations 3.6 and 3.7)
by modifying the peptide detectabilities.

We emphasize that a fixed database PD0 can be inter-
preted as a specific type of prior distribution, i.e. I(PD =
PD0), with probability 1 for PD = PD0 and probability
0 for any other database. Thus, the peptide prior distribu-
tions (IME, DME, IID and DID) for a given database have
already assumed a (simple) database prior distribution. We
emphasize that a deterministic database does not make the
peptide identification easier, because even when we are cer-
tain that proteins/peptides in a database are present in the
sample, the peptides may not be detected in a proteomics
experiment [5].

3.6 Entropy and effective database size of
prior distributions

To systematically compare the information content of the
prior distributions, we introduce a measure called effective
database size, defined based on the entropy of an arbitrary
prior distribution Ψ for the indicator vector of peptide iden-
tification y defined over {0, 1}J . Let qΨ � PΨ(y = 0) be
the non-matching probability for Ψ. Notice that J and non-
matching probability q will completely define an IME distri-
bution IME (1−q, J). Let HΨ be the entropy of distribution
Ψ and HIME (q, J) be the entropy of IME (1− q, J).

Definition 3.4. The effective database size of the distribu-
tion Ψ, NΨ, is the size of a database on which an IME prior
distribution has the same entropy and same non-matching
probability as that of the distribution Ψ, i.e. NΨ satisfies
HIME (qΨ,NΨ) = HΨ.

For the IME prior distribution, it is easy to obtain the
entropy HIME (qΨ, J) = H(qΨ)+(1−qΨ)·lnN , where H(qΨ)
is the entropy for a Bernoulli distribution with parameter
qΨ. Thus, according to the definition, we have

(3.19) NΨ = e
HΨ−H(qΨ)

1−qΨ .
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Note that, for an MS/MS spectrum sk, NΨ is defined for
any distribution of yk, including the identification posterior
probability P(yk|sk, θ, T ), but not defined for prior distribu-
tions over peptide database P(PD|θA).

With the help from effective database size, we can study
the impact of prior information on peptide identification.
First, we argue that improving peptide identification is man-
ifested as reducing the effective database size. Apparently,
the goal of peptide identification is to assign high (close
to 1) probability to the true peptides, yk = ytruek for each
spectrum sk when ytruek �= 0, or assign non-matching proba-
bility qΨ → 1 when ytruek = 0. It is easy to show that when
P (yk = ytruek ) → 1 and ytruek �= 0, the entropy H → 0 and
effective database size N → 1, which is the minimum value
of effective database size; meanwhile when P (yk = 0) → 1,
H → 0 but not necessarily N → 1. Hence, the process
of improving peptide identification is a process of reducing
the entropy and effective database size of the distribution
P (yk). However, the opposite statement is not correct, be-
cause when the effective database size approaches 1, a wrong
peptide may receive the highest probability.

We discussed earlier that a DME or DID prior distribu-
tion defined over a larger database could effectively mimic
an IME or IID prior distribution defined over a smaller
database. In general, it can be proved that NDME ≤ NIME ,
i.e. the effective database size of a DME distribution is
smaller than the original database size, and also NDID ≤
NIID if ∀j : dj < 0.7822.14 In practice, it is expected that an
informative prior distribution for peptide identification cor-
responds to a small effective database size, the exact value
of which depends on the parameters of the distribution. Fi-
nally, we emphasize that the effective database size or en-
tropy are not sufficient for the evaluation of the impact of
prior distributions, because even if two prior distributions
have the same entropy, one of them could express the cor-
rect prior information, and hence improve the peptide iden-
tification, whereas another one could express wrong prior
information, and thus deteriorate the peptide identification.
More on the appropriateness of prior distributions will be
discussed in the discussion section. We note here the ap-
propriateness is hard to quantify unless we have the ground
truth of which peptides are the true peptides in the sample.

4. THE BAYESIAN APPROACH TO
PROTEIN INFERENCE

In previous sections, we focused on the Bayesian model
of peptide identification, in which we neglect the mutual de-
pendence among peptides within a same protein and the

14This can be shown via the convexity of g(dj) = −(1 − eln(1−dj)) ·
[ln(1 − dj) − ln(1 − eln(1−dj))] when dj ∈ (0, 0.7822). Note that dj is
the per spectra peptide detectability, thus the values of dj should be
at the order of 1/J . Hence,the condition dj < 0.7822 is expected to be
true.

degeneracy of peptides that are shared by multiple pro-
teins. In order to incorporate these aspects, we have pro-
posed a Bayesian model for protein inference that takes as
input a set of identified peptides and infers a most proba-
ble set of proteins containing these peptides [21, 22]. The
Bayesian protein inference model MSBayesPro, as shown in
Figure 4.1b, incorporated the (per experiment) peptide de-
tectabilities as prior probabilities, and thus can distinguish
proteins sharing the same identified peptides based on the
distinct peptides between them that are not identified by
search engines. The Bayesian inference models can also be
used to improve the peptide identification by computing a
posterior probability for each identified peptide [22]. This
probability can be viewed as a re-evaluation of the possi-
bility of each peptide identification being correct, taking
into account not only the quality of the matching between
the peptide and the MS/MS spectrum, but also the mutual
dependence among identified peptides (and their matching
with the corresponding MS/MS spectra) from the same pro-
tein. For example, intuitively, if an identified peptide a from
protein A has a high probability of being correct, another
identified peptide b from the same protein A will be likely
to be correct even if it is scored relatively low by a peptide
search engine. It is better to assess the correctness of the
peptide identification with the protein inference step if data
from a whole LC-MS/MS experiment rather than a single
MS/MS spectrum is given.

One technical issue on integrating the MSBayesPro model
(Figure 4.1b) into peptide identification is that the protein
inference is conducted on the whole experiment rather than
each MS/MS spectrum. The peptides need to be identified
for each spectrum first and then the spectra correspond-
ing to a single peptide are aggregated, and thus the model
can only be applied after peptide identification. Bona fide
Bayesian peptide identification can be achieved by the model
proposed in Figure 4.1a, which is similar to the model in the
Figure 3.1d, but explicitly model the protein sample P as
protein sequence and abundance pairs (xi, qi)i=1,...,I rather
than a peptide database PD = (πj)j=1,...,J with peptides of
equal abundance. By considering the information from the
other MS/MS spectra, the model can effectively estimate a
more specific prior distribution (and hence smaller effective
database size) for each single MS/MS spectrum.

The Bayesian approach can be further extended to ad-
dress several open problems in proteomics. As shown in Fig-
ure 4.1c, after inserting an extra layer of nodes (denoted as
u) in the Bayesian model, it is possible to infer the expres-
sion of a protein set15 in the sample, such as co-regulated
genes, protein complexes and proteins in the same pathway.
The model can also be applied to the analysis of metapro-
teomics data in principle to infer the presence of species

15We use protein set to denote a group of proteins expected to have
positively correlated expression levels. A related notation, the gene set,
is commonly used in gene expression analysis [32].
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Figure 4.1. Bayesian probabilistic models considering protein or higher level information for the LC-MS/MS analysis of
proteome samples. (a) A Bayesian model for peptide identification incorporating prior information at protein level; (b) The
MSBayesPro [22] model for protein inference; (c) A Bayesian model for peptide and protein identification incorporating prior
information from protein sets (e.g. protein complexes or proteins in the same pathways). Graphical notations in addition to
those in Figure 3.1: x, random variable for the presence of a protein in a sample; q: random variable for the abundance of a
protein; u, protein set such as the set of proteins from a gene, a protein complex, a signaling pathway, or proteins from one

organism in the context of meta-proteomics; I, L, the numbers of proteins and protein sets considered in an analysis.

bases on proteomics evidences. Extensive further studies are
needed to explore the applications of such a model.

We want to emphasize here that the models in Figure 3.1b
to 4.1a will be able to make use of incrementally more prior
information, and hence should be able to provide incremen-
tally better performances for the same tasks. For example,
the model in Figure 4.1a is expected to give better peptide
identification than the model in Figure 3.1c. One implication
is that the de novo peptide sequencing algorithms coupled
(in a post processing fashion) with the advanced models for
the identification of protein or protein set might be able to
achieve a good power for confidently identifying peptides,
even if it cannot be done with model 3.1d. This will also be
an interesting problem for future investigation.

4.1 Using protein abundances as prior
information

For most prior distributions discussed so far, the pep-
tide and protein abundance information are not considered.
This simplification may not always be appropriate. For ex-
ample, unlike mutations in peptides which either occur or
not, post-translational modification processes are quantita-
tive and dynamic. Furthermore, the modified and the orig-
inal peptides may be both present in the sample at various
abundance ratios. To incorporate abundance information,
we need 1) to specify prior distribution for peptide abun-
dances; and 2) to model the dependence of peptide iden-
tification on the peptide quantity in an LC-MS/MS anal-

ysis, similar as the database priors and identification pri-
ors that we have discussed in previous sections. The sim-
plest peptide abundance prior adopts a delta distribution
δ(qj − qj0), i.e. to treat qj as a deterministic parameter with
unknown value qj0 . The quantity dependent peptide identifi-
cation prior can be devised by using the quantity adjustment
of peptide detectability (resulting in effective detectability,
as used in the MSBayesPro model [23, 21], Figure 4.1b) via
the transformation P (yj = 1|qj , DB, T ) = 1− (1− dj)

qj for
each peptide j. These can be implemented for the model of
Figure 4.1a to improve Bayesian peptide identification.

The dilemma of using protein abundance as prior infor-
mation is that they are not available until peptide identifi-
cation and protein inference are completed. This, however,
does not prevent using an iterative procedure to improve
peptide and protein identification a posteriori. In order to
analyze the effect of considering protein abundances in pep-
tide identification, we assume that the abundances of all
proteins in a sample are precisely known, whether the pro-
teins are identified or not, and we assume proteins do not
share proteolytic peptides. These are not realistic assump-
tions in the current protocol of proteomics data analysis.
They are assumed here for simplicity so that peptide iden-
tification is de-coupled from protein inference. Under these
assumptions, we argue (instead of proving) that knowing
the protein abundances should on average lead to a smaller
entropy for the DME distribution for peptide identification
than assuming all proteins to be at equal abundance. First,

34 Y. F. Li et al.



on average, the mean standard peptide detectability d̄i for
peptides in each protein i is roughly a constant. If we further
assume all proteins (roughly) have the same number of pep-
tides, then we can use an average peptide with detectability
d̄i to represent all peptides in each protein. As a result, as-
suming equal protein abundances will lead to an IME prior
distribution over average peptides, whereas knowing the real
protein abundances will lead to a DME distribution and
hence a smaller effective database size.

5. DISCUSSION

Incorporating prior knowledge to reduce the search space
and to improve protein identification is a common strategy
applied in current proteomics research. A Bayesian proba-
bilistic point of view of this strategy, however, has not been
presented before. The Bayesian framework for protein iden-
tification is meaningful in three ways. First, it provides a
formal yet intuitive framework for understanding the ad-
vantages and pitfalls of the current protein identification
algorithms. Second, as a robust and extendible framework,
the Bayesian model enables further improvement of the cur-
rent algorithms and the development of new algorithms to
address challenges yet to be solved, e.g. the identification of
mutations and PTMs, based on probabilistic principles. Fi-
nally, the Bayesian framework provides probabilistic scores
that can be intuitively interpreted for peptide and protein
identification. However, there are several issues with the
Bayesian framework, such as the potentially high computa-
tional complexity and the required prior information, which
we discuss below.

5.1 Computational complexity of the
Bayesian model

The Bayesian model for peptide identification can either
be used as a post-processing step after database searching,
or integrated into the peptide identification algorithms. In
principle, in a Bayesian peptide identification framework,
all peptides with non-zero prior probabilities need to be
matched with MS/MS spectra explicitly or implicitly. This
requires extensive computing when the database is large. In
practice, however, sophisticated algorithms such as dynamic
programing are used in the de novo peptide sequencing to
avoid brute force peptide-spectrum matching over all pep-
tides.

An alternative strategy is to filter out all peptides j with
sufficiently small prior probability P(ykj = 1|DB, T ) < ε0,
and reduce the search space. A similar strategy was typi-
cally applied in the precursor mass based filtering of pep-
tides used in the peptide search engines, and sometimes was
integrated into the PSM scoring scheme [31]. Notably, in the
prior probability filtering in the Bayesian framework, the
peptides passing the filtering will still be assigned different
prior probabilities, while peptides passing a precursor mass
based filter will effectively be assigned with equal probabil-
ities in non-probabilistic peptide identification algorithms.

The prior probability filtering strategy may accelerate
peptide identification algorithms; in particular, when a
proper and informative prior is available. For example, we
may filter the peptide database PD for a spectrum sk by
the precursor mass and retention time modified peptide de-
tectability dkj = P(ykj = 1|mk, tk, PD, T ) for each candi-
date peptide πj , where mk and tk are the observed pre-
cursor mass and retention time for sk. Compared with the
precursor-mass-based filter used in database searching algo-
rithms, this filter will result in an even smaller number of
peptides to be matched to each MS/MS spectrum.

5.2 Appropriate prior distributions

The application of the prior distributions in the Bayesian
model for peptide and protein identification is dependent on
the prior knowledge of the proteome sample. For an organ-
ism without extensive previous studies, a proteomics study
may have to rely mainly on de novo peptide sequencing, in
which only the prior information regarding the experimen-
tal platform and protocol (e.g. fragmentation ion types and
preferences, mass accuracy, and peptide detectability which
summarized multiple factors) can be utilized. If a protein
sequence database from related species are available, error-
tolerant database searching (which effectively enlarge the
reference database with all possible mutations, or in our
Bayesian framework, assign non-zero prior probabilities to
mutant peptides) could be used. When the genomic or tran-
scriptomic sequences of an organism are available, the de-
rived protein sequence database can be used by database
search engines for peptide identification. With the accumu-
lation of more genomic, transcriptomic and proteomic stud-
ies carried out on a specific type of sample (e.g. a specific
tissue or a specific development stage of a specific organ-
ism), informative prior information about the presence of
proteins and their abundances can be used in subsequent
proteomics studies of the same type of sample. Ultimately,
we may know for sure the protein sequences and their abun-
dances for a given type of sample (and thus no further pro-
tein identifications are needed), we may still use the prior
information for the identification of mutations or PTMs.

To facilitate the use of the prior information gained from
previous experimental studies, it is important to construct
the repository of these data. Compared with genomic and
transcriptomic data, proteomic databases are less well de-
veloped, partly due to lack of standardization of current pro-
teomics techniques, the complexity of proteomics datasets,
and the lack of standard proteomics tool sets. Most of the
current proteomics data repositories [10, 12, 36] collect raw
proteomics data. The GPMDB (Global Proteome Machine
Database) [9] is a unique database for hosting processed
proteomics data. Not without limitations, GPMDB serves
as a good model for the proteomics knowledge database
that are useful both for Bayesian protein identification of
future proteomics experiment and for integrative studies
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across multiple data sources – genomics, transcriptomics,
and proteomics.

The advantages of using informative prior distribution
for protein identification come with a price. A prior prob-
ability distribution is appropriate only when it expresses
the correct prior knowledge regarding a proteome sample.
Just like using the protein sequence database from an ir-
relevant species, using an inappropriate prior distribution
can lead to poor performance of peptide identification. For
example, while accurate peptide detectabilities used for pep-
tide identification can improve protein inference [22, 23], us-
ing peptide detectability trained on a different experimental
platform may result in worse protein inference. A specific
(low entropy) but inappropriate prior can be worse than a
non-informative prior by biasing the posterior probabilities
incorrectly. As a result, it is critical to select informative
and appropriate prior distribution for the specific datasets
to be analyzed.
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